Рассмотрим криволинейную трапецию, ограниченную осью Ох, кривой y=f(x) и двумя прямыми: х=а и х=Ь (рис. 85). Возьмем произвольное значение х (только не а и не Ь). Дадим ему приращение h = dx и рассмотрим полоску, ограниченную прямыми АВ и CD, осью Ох и дугой BD, принадлежащей рассматриваемой кривой. Эту полоску будем называть элементарной полоской. Площадь элементарной полоски отличается от площади прямоугольника ACQB на криволинейный треугольник BQD, а площадь последнего меньше площади прямоугольника BQDM со сторонами BQ = =h=dx} QD=Ay и площадью, равной hAy = Ay dx. С уменьшением стороны h сторона Ду также уменьшается и одновременно с h стремится к нулю. Поэтому площадь BQDM является бесконечно малой второго порядка. Площадь элементарной полоски есть приращение площади, а площадь прямоугольника ACQB, равная АВ-АС==/(х) dx> есть дифференциал площади. Следовательно, саму площадь найдем, интегрируя ее дифференциал. В пределах рассматриваемой фигуры независимое переменное л: меняется от а до b, поэтому искомая площадь 5 будет равна 5= \f(x) dx. (I) Пример 1. Вычислим площадь, ограниченную параболой у - 1 -х*, прямыми X =--Fj-, х = 1 и осью О* (рис. 86). у Рис. 87. Рис. 86. 1 Здесь f(x)= 1 - л?, пределы интегрирования а = - и £=1, поэтому J [*-т]\- -fl -- Г -1-±Л_ 1V1 -l-l-Ii-^ 3) |_ 2 3V 2 / J 3 24 24* Пример 2. Вычислим площадь, ограниченную синусоидой y = sinXy осью Ох и прямой (рис. 87). Применяя формулу (I), получаем Л 2 S= J sinxdx= [-cos x]Q =0 -(-1) = lf Пример 3. Вычислим площадь, ограниченную дугой синусоиды ^у = sin jc, заключенной между двумя соседними точками пересечения с осью Ох (например, между началом координат и точкой с абсциссой я). Заметим, что из геометрических соображений ясно, что эта площадь будет в два раза больше площади предыдущего примера. Однако проделаем вычисления: я 5= | s\nxdx= [ - cosх}* - - cos я-(-cos 0)= 1 + 1 = 2. о Действительно, наше предположение оказалось справедливым. Пример 4. Вычислить площадь, ограниченную синусоидой и ^ осью Ох на одном пе-х риоде (рис. 88). Предварительные рас-рис суждения позволяют предположить, что площадь получится в четыре раза больше, чем в пр. 2. Однако, произведя вычисления, получим «я Г,*я S - \ sin х dx = [ - cos х]0 = = -cos 2л -(-cos 0) = - 1 + 1 = 0. Этот результат требует разъяснений. Для выяснения сути дела вычисляем еще площадь, ограниченную той же синусоидой у = sin л: и осью Ох в пределах от л до 2я. Применяя формулу (I), получаем 2л $2л sin хdx=[ - cosх]л =-cos 2я~}-с05я=- 1-1 =-2. я Таким образом, видим, что эта площадь получилась отрицательной. Сравнивая ее с площадью, вычисленной в пр. 3, получаем, что их абсолютные величины одинаковы, а знаки разные. Если применить свойство V (см. гл. XI, § 4), то получим 2л я 2л J sin xdx= J sin * dx [ sin x dx = 2 + (- 2) = 0То, что получилось в этом примере, не является случайностью. Всегда площадь, расположенная ниже оси Ох, при условии, что независимое переменное изменяется слева направо, получается при вычислении с помощью интегралов отрицательной. В этом курсе мы всегда будем рассматривать площади без знаков. Поэтому ответ в только что разобранном примере будет таким: искомая площадь равна 2 + |-2| = 4. Пример 5. Вычислим площадь ОАВ, указанную на рис. 89. Эта площадь ограничена осью Ох, параболой у = - хг и прямой у - =-х+\. Площадь криволинейной трапеции Искомая площадь ОАВ состоит из двух частей: ОАМ и МАВ. Так как точка А является точкой пересечения параболы и прямой, то ее координаты найдем, решая систему уравнений 3 2 У = тх. (нам нужно найти только абсциссу точки А). Решая систему, находим л; = ~. Поэтому площадь приходится вычислять по частям, сначала пл. ОАМ, а затем пл. МАВ: .... Г 3 2 , 3 Г хП 3 1 / 2 У 2 . QAM-^х непрерывной и неотрицательной фукнции f (x ), ординатами, проведенными в точках a и b , и отрезком оси Ox между точками a и b (см. Рис. 2).

Докажем следующее утверждение.

Криволинейная трапеция представляет собой квадрируемую фигуру, площадь P

Доказательство . Так как непрерывная на сегменте [a , b ] функция интегрируема, то для любого положительного числа ε можно указать такое разбиение T сегмента [a , b ], что разность S - s < ε , где S и s - соответственно верхняя и нижняя суммы разбиения T . Но S и s равны соответственно S d и S i , где S d и S i - площади ступенчатых фигур (многоугольников), первая из которых содержит криволинейную трапецию, а вторая содержится в криволинейной трапеции (на Рис. 2 изображены также и указанные ступенчатые фигуры). Так как S d - S i < ε , то, в силу теоремы 1, криволинейная трапеция квадрируема. Поскольку предел при Δ → 0 верхних и нижних сумм равен и s P S , то площадь P криволинейной трапеции может быть найдена по формуле (1).

Замечание . Если функция f (x ) непрерывна и неположительна на сегменте [a , b ], то значение интеграла равно взятой с отрицательным знаком площади криволинейной трапеции, ограниченной графиком функции f (x ), ординатами в точках a и b и отрезком оси Ox между точками a и b . Поэтому, еслиf (x ) меняет знак, то равен сумме взятых с определенным знаком площадей криволинейных трапеций, расположенных выше и ниже оси Ox , причем площади первых берутся со знаком +, а вторых со знаком -.

Площадь криволинейного сектора

Пусть кривая L задана в полярной системе координат уравнением r = r (θ ), α θ β (см. Рис. 3), причем функция r (θ ) непрерывна и неотрицательна на сегменте [α , β ]. Плоскую фигуру, ограниченную кривой L и двумя лучами, составляющими с полярной осью углы α и β , будем называть криволинейным сектором .

Докажем следующее утверждение. Криволинейный сектор представляет собой квадрируемую фигуру, площадь P которой может быть вычислена по формуле

Доказательство . Рассмотрим разбиение T сегмента [α , β ] точками α = θ 0 < θ 1 < ... < θ n = β и для каждого частичного сегмента [θ i -1 , θ i ] построим круговые секторы, радиусы которых равны минимальному r i и максимальному R i значениям r (θ ) на сегменте [θ i -1 , θ i ]. В результате получим две веерообразные фигуры, первая из которых содержится в криволинейном секторе, а вторая содержит криволинейный сектор (эти веерообразные фигуры изображены на Рис. 3). Площади и указанных веерообразных фигур равны соответственно и . Отметим, что первая из этих сумм является нижней суммойs для функции для указанного разбиения T сегмента [α , β ], а вторая сумма является верхней суммой S для этой же функции и этого же разбиения. Так как функция интегрируема на сегменте [α , β ], то разность может быть как угодно малой. Например, для любого фиксированного ε > 0 эта разность может быть сделана меньше ε /2. Впишем теперь во внутреннюю веерообразную фигуру многоугольник Q i с площадью S i , для которого , и опишем вокруг внешней веерообразной фигуры многоугольник Q d площадью S d , для которого * . Очевидно, первый из этих многоугольников вписан в криволинейный сектор, а второй описан вокруг него. Так как справедливы неравенства

Определенный интеграл. Как вычислить площадь фигуры

Переходим к рассмотрению приложений интегрального исчисления. На этом уроке мы разберем типовую и наиболее распространенную задачу – как с помощью определенного интеграла вычислить площадь плоской фигуры . Наконец-то ищущие смысл в высшей математике – да найдут его. Мало ли. Придется вот в жизни приближать дачный участок элементарными функциями и находить его площадь с помощью определенного интеграла.

Для успешного освоения материала, необходимо:

1) Разбираться в неопределенном интеграле хотя бы на среднем уровне. Таким образом, чайникам для начала следует ознакомиться с уроком Не .

2) Уметь применять формулу Ньютона-Лейбница и вычислять определенный интеграл. Наладить теплые дружеские отношения с определенными интегралами можно на странице Определенный интеграл. Примеры решений .

В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, параболу и гиперболу. Сделать это можно (многим – нужно) с помощью методического материала и статьи о геометрических преобразованиях графиков .

Собственно, с задачей нахождения площади с помощью определенного интеграла все знакомы еще со школы, и мы мало уйдем вперед от школьной программы. Этой статьи вообще могло бы и не быть, но дело в том, что задача встречается в 99 случаев из 100, когда студент мучается от ненавистной вышки с увлечением осваивает курс высшей математики.

Материалы данного практикума изложены просто, подробно и с минимумом теории .

Начнем с криволинейной трапеции.

Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:

Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений я говорил, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры . Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости кривую, располагающуюся выше оси (желающие могут выполнить чертёж), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно , с техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций . Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):


Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:

На отрезке график функции расположен над осью , поэтому:

Ответ:

У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница , обратитесь к лекции Определенный интеграл. Примеры решений .

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 2

Вычислить площадь фигуры, ограниченной линиями , , и осью

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Что делать, если криволинейная трапеция расположена под осью ?

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение : Выполним чертеж:

Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:
В данном случае:

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение : Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .
Этим способом лучше, по возможности, не пользоваться .

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Техника поточечного построения для различных графиков подробно рассмотрена в справке Графики и свойства элементарных функций . Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

Повторюсь, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматом».

А теперь рабочая формула : Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

Ответ:

На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось задается уравнением , а график функции расположен не выше оси , то

А сейчас пара примеров для самостоятельного решения

Пример 5

Пример 6

Найти площадь фигуры, ограниченной линиями , .

В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но по невнимательности… найдена площадь не той фигуры , именно так несколько раз лажался ваш покорный слуга. Вот реальный случай из жизни:

Пример 7

Вычислить площадь фигуры, ограниченной линиями , , , .

Решение : Сначала выполним чертеж:

…Эх, чертеж хреновенький вышел, но вроде всё разборчиво.

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Ответ:

Переходим еще к одному содержательному заданию.

Пример 8

Вычислить площадь фигуры, ограниченной линиями ,
Представим уравнения в «школьном» виде , и выполним поточечный чертеж:

Из чертежа видно, что верхний предел у нас «хороший»: .
Но чему равен нижний предел?! Понятно, что это не целое число, но какое? Может быть ? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что . Или корень. А если мы вообще неправильно построили график?

В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.

Найдем точки пересечения прямой и параболы .
Для этого решаем уравнение:


,

Действительно, .

Дальнейшее решение тривиально, главное, не запутаться в подстановках и знаках, вычисления здесь не самые простые.

На отрезке , по соответствующей формуле:

Ответ:

Ну, и в заключение урока, рассмотрим два задания сложнее.

Пример 9

Вычислить площадь фигуры, ограниченной линиями , ,

Решение : Изобразим данную фигуру на чертеже.

Блин, забыл график подписать, а переделывать картинку, простите, не хотца. Не чертёжный, короче, сегодня день =)

Для поточечного построения необходимо знать внешний вид синусоиды (и вообще полезно знать графики всех элементарных функций ), а также некоторые значения синуса, их можно найти в тригонометрической таблице . В ряде случаев (как в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.

С пределами интегрирования здесь проблем нет, они следуют прямо из условия: – «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:

На отрезке график функции расположен над осью , поэтому:

Введение

Нахождение производной f" (x) или дифференциала df=f" (x) dx функции f(x) является основной задачей дифференциального исчисления. В интегральном исчислении решается обратная задача: по заданной функции f(x) требуется найти такую функцию F(x), что F" (х)=f(x) или F(x)=F" (x) dx=f(x) dx. Таким образом, основной задачей интегрального исчисления является восстановление функции F(x) по известной производной (дифференциалу) этой функции. Интегральное исчисление имеет многочисленные приложения в геометрии, механике, физике и технике. Оно дает общий метод нахождения площадей, объемов, центров тяжести и т.д.

Курс математического анализа содержит разнообразный материал, однако, одним из его центральных разделов является определенный интеграл. Интегрирование многих видов функций подчас представляет собой одну из труднейших проблем математического анализа.

Вычисление определенного интеграла имеет не только теоретический интерес. К его вычислению сводятся иногда задачи, связанные с практической деятельностью человека.

Также понятие определенного интеграла широко используется в физике.

Нахождение площади криволинейной трапеции

Криволинейной трапецией называется фигура, расположенная в прямоугольной системе координат и ограниченная осью абсцисс, прямыми х = а и х = b и кривой, причем неотрицательна на отрезке. Приближенно площадь криволинейной трапеции можно найти так:

1. разделить отрезок оси абсцисс на n равных отрезков;

2. провести через точки деления отрезки, перпендикулярные к оси абсцисс, до пересечения с кривой;

3. заменить получившиеся столбики прямоугольниками с основанием и высотой, равной значению функции f в левом конце каждого отрезка;

4. найти сумму площадей этих прямоугольников.

Но можно найти площадь криволинейной иначе: по формуле Ньютона-Лейбница. Для доказательства формулы, носящей их имена, докажем, что площадь криволинейной трапеции равна, где - любая из первообразных функции, график которой ограничивает криволинейную трапецию.

Вычисление площади криволинейной трапеции записывается так:

1. находится любая из первообразных функции.

2. записывается. - это формула Ньютона-Лейбница.

Нахождение площади криволинейного сектора

Рассмотрим кривую? = ? (?) в полярной системе координат, где? (?) - непрерывная и неотрицательная на [?; ?] функция. Фигура, ограниченная кривой? (?) и лучами? = ?, ? = ?, называется криволинейным сектором. Площадь криволинейного сектора равна

Нахождение длины дуги кривой

Прямоугольные координаты

Пусть в прямоугольных координатах дана плоская кривая AB, уравнение которой y = f(x), где a ? x ? b. (рис 2)

Под длиной дуги AB понимается предел, к которому стремиться длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной неограниченно возрастает, а длина наибольшего звена ее стремиться к нулю.

Применим схему I (метод сумм).

Точками X = a, X, …, X = b (X ? X? … ? X) разобьем отрезок на n частей. Пусть этим точкам соответствуют точки M = A, M, …, M = B на кривой AB. Проведем хорды MM, MM, …, MM, длины которых обозначим соответственно через?L, ?L, …, ?L.

Получим ломанную MMM … MM, длина которой равна L = ?L+ ?L+ … + ?L = ?L.

Длину хорды (или звена ломанной) ?L можно найти по теореме Пифагора из треугольника с катетами?X и?Y:

L = , где?X = X - X, ?Y = f(X) - f(X).

По теореме Лагранжа о конечном приращении функции

Y = (C) ?X, где C (X, X).

а длина всей ломанной MMM … MM равна

Длина кривой AB, по определению, равна

Заметим, что при?L 0 также и?X 0 (?L = и следовательно | ?X | < ?L). Функция непрерывна на отрезке , так как, по условию, непрерывна функция f (X). Следовательно, существует предел интегральной суммы L=?L= , кода max ?X 0:

Таким образом, L = dx.

Пример: Найти длину окружности радиуса R. (рис 3)

Найдем? часть ее длины от точки (0; R) до точки (R; 0). Так как

В разделе 4.3 уже отмечалось, что определенный интеграл () от

неотрицательной функции численно равен площади криволинейной трапеции, ограниченной графиком функции = (), прямыми = , = и= 0.

Пример 4.24. Вычислить площадь фигуры, заключенной между осью и синусоидой = sin , (рисунок 4.6 ).

sin = − cos 0

= −(cos − cos 0) = 2.

Если фигура не является криволинейной трапецией, то ее площадь стараются представить в виде суммы или разности площадей фигур, являющихся криволинейными трапециями. В частности, справедлива теорема.

Теорема 4.13. Если фигура ограничена снизу и сверху графиками непрерывных функций = 1 (), = 2 () (не обязательно неотрицательных, (рисунок 4.7 ), то ее площадь можно найти по формуле

2 () − 1 () .

Пример 4.25. Вычислить площадь фигуры, ограниченной кривой = 4 и прямыми = и = 4.

y = f2 (x)

y = f1 (x)

Рисунок 4.6

Рисунок 4.7

Решение. Построим

плоскости

(рисунок 4.8 ). Очевидно,

1 () = 4 , 2 () = ,

= ∫

2 − 4 ln

2 = 8 − 4 ln 4 − (2 − 4 ln 2) = 2(3 − 2 ln 2).

Часть I. Теория

Глава 4. Теория интегрирования 4.4. Приложения интеграла. Несобственные интегралы

Рисунок 4.8

4.4.2. Длина дуги кривой

Вычисление длин кривых также приводит к интегралам. Пусть функция= () непрерывна на отрезке [ ; ] и дифференцируема на интервале (;). Ее график представляет некоторую кривую, (; ()), (; ()) (рисунок 4.9 ). Кривую разобьем точками 0 = , 1 , 2 , . . . , = напроизвольных частей. Соединим две соседние точки −1 и хордами,= 1, 2, . . . , . Получим -звенную ломаную, вписанную в кривую. Пусть

есть длина хорды −1 , = 1, 2, . . . , = max16 6 . Длина ломаной будет выражаться формулой

Естественно определить длину кривой как предельное значение длин ломаных, когда → 0, т.е.

Пусть есть абсциссы точек, = 1, 2, . . . ,

< < . . . < = .

Тогда координаты точек есть (; ()), и, пользуясь формулой для расстояния между двумя точками , найдем

C n−1

C k 1C k

Следовательно, есть интегральная сумма для функции √ 1 + (′ ())2 на отрезке [ ; ]. Тогда на основании равенств (4.31) имеем:

= ∫

1 + (′ ())2

Пример 4.26. Найти длину графика = 2

между = 0 и = 3.

Решение. Построим график указанной функции (рисунок 4.10 ).

y = 2

√x 3

Рисунок 4.10

По формуле (4.33) находим:

= ∫ 3

= ∫ 3 √

= ∫ 3 √

1 + (2 1 )2

1 + (′ ())2

(+ 1)2

3 (+ 1)2 0 = 3 (8 − 1) = 3 .