Бром.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 .

Валентные электроны выделены жирным шрифтом. Относится к семейству р-элементов. Так как наибольшее главное квантовое число равно 4-м, а число электронов на внешнем энергетическом уровне равно 7, бром расположен в 4-м периоде, VIIA группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид:

Германий.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 .

Валентные электроны выделены жирным шрифтом. Относится к семейству p-элементов. Так как наибольшее главное квантовое число равно 4-м, а число электронов на внешнем энергетическом уровне равно 4, германий расположен в 4-м периоде, IVA группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид:

Кобальт.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2 .

Валентные электроны выделены жирным шрифтом. Относится к семейству d-элементов. Кобальт расположен в 4-м периоде, VIIB группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид:

Медь.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

Валентные электроны выделены жирным шрифтом. Относится к семейству d-элементов. Так как наибольшее главное квантовое число равно 4-м, а число электронов на внешнем энергетическом уровне равно 1, медь расположена в 4-м периоде, IВ группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид.

Олово (лат. Stannum), Sn, химический элемент IV группы периодической системы Менделеева; атомный номер 50, атомная масса 118,69; белый блестящий металл, тяжёлый, мягкий и пластичный. Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120 Sn наиболее распространён (около 33%).

Историческая справка. Сплавы О. с медью - бронзы были известны уже в 4-м тыс. до н. э., а чистый металл во 2-м тыс. до н. э. В древнем мире из О. делали украшения, посуду, утварь. Происхождение названий "stannum" и "олово" точно не установлено.

Распространение в природе. О. - характерный элемент верхней части земной коры, его содержание в литосфере 2,5·10 =4 % по массе, в кислых изверженных породах 3·10 =4 %, а в более глубоких основных 1,5·10 =4 %; ещё меньше О. в мантии. Концентрирование О. связано как с магматическими процессами (известны "оловоносные граниты", пегматиты, обогащённые О.), так и с гидротермальными процессами; из 24 известных минералов О. 23 образовались при высоких температурах и давлениях. Главное промышленное значение имеет касситерит SnO 2 , меньшее - станнин Cu 2 FeSnS 4 (см. Оловянные руды ). В биосфере О. мигрирует слабо, в морской воде его лишь 3·10 =7 %; известны водные растения с повышенным содержанием О. Однако общая тенденция геохимии О. в биосфере - рассеяние.

Физические и химические свойства. О. имеет две полиморфные модификации. Кристаллическая решётка обычного b-Sn (белого О.) тетрагональная с периодами а = 5,813 , с =3,176 ; плотность 7,29 г /см 3 . При температурах ниже 13,2 °C устойчиво a-Sn (серое О.) кубической структуры типа алмаза; плотность 5,85 г /см 3 . Переход b a сопровождается превращением металла в порошок (см. Оловянная чума ), t пл 231,9 °C, t kип 2270 °C. Температурный коэффициент линейного расширения 23·10 =6 (0-100 °C); удельная теплоёмкость (0°C) 0,225 кдж /(кг ·К), т. е. 0,0536 кал /(г ·°C); теплопроводность (0 °C) 65,8 вт /(м ·К), т. е. 0,157 кал /(см ·-сек ·°C); удельное электрическое сопротивление (20 °C) 0,115·10 =6 ом ·м , т. е. 11,5·10 =6 ом ·см .Предел прочности при растяжении 16,6 Мн /м 2 (1,7 кгс /мм 2)" , относительное удлинение 80-90%; твёрдость по Бринеллю 38,3-41,2 Мн /м 2 (3,9-4,2 кгс /мм 2).При изгибании прутков О. слышен характерный хруст от взаимного трения кристаллитов.

В соответствии с конфигурацией внешних электронов атома 5s 2 5p 2 О. имеет две степени окисления: +2 и +4; последняя более устойчива; соединения Sn (П) - сильные восстановители. Сухим и влажным воздухом при температуре до 100 °C О. практически не окисляется: его предохраняет тонкая, прочная и плотная плёнка SnO 2 . По отношению к холодной и кипящей воде О. устойчиво. Стандартный электродный потенциал О. в кислой среде равен - 0,136 в . Из разбавленных HCl и H 2 SO 4 на холоду О. медленно вытесняет водород, образуя соответственно хлорид SnCl 2 и сульфат SnSO 4 . В горячей концентрированной H 2 SO 4 при нагревании О. растворяется, образуя Sn (SO 4) 2 и SO 2 . Холодная (О °C) разбавленная азотная кислота действует на О. по реакции:

4Sn + 10HNO 3 = 4Sn (NO 3) 2 + NH 4 NO 3 + 3H 2 O.

При нагревании с концентрированной HNO 3 (плотность 1,2-1,42 г /см 3) О. окисляется с образованием осадка метаоловянной кислоты H 2 SnO 3 , степень гидратации которой переменна:

3Sn+ 4HNO 3 + n H 2 O = 3H 2 SnO 3 ·n H 2 O + 4NO.

При нагревании О. в концентрированных растворах щелочей выделяется водород и образуется гексагидростаннат:

Sn + 2КОН + 4Н 2 О = K 2 + 2H 2 .

Кислород воздуха пассивирует О., оставляя на его поверхности плёнку SnO 2 . Химически двуокись SnO 2 очень устойчива, а окись SnO быстро окисляется, её получают косвенным путём. SnO 2 проявляет преимущественно кислотные свойства, SnO - основные.

С водородом О. непосредственно не соединяется; гидрид SnH 4 образуется при взаимодействии Mg 2 Sn и соляной кислоты:

Mg 2 Sn + 4HCl = 2MgCl 2 + SnH 4 .

Это бесцветный ядовитый газ, t kип -52 °C; он очень непрочен, при комнатной температуре разлагается на Sn и H 2 в течение нескольких суток, а выше 150 °C - мгновенно. Образуется также при действии водорода в момент выделения на соли О., например:

SnCl 2 + 4HCl + 3Mg = 3MgCl 2 + SnH 4 .

С галогенами О. даёт соединения состава SnX 2 и SnX 4 . Первые солеобразны и в растворах дают ионы Sn 2+ , вторые (кроме SnF 4) гидролизуются водой, но растворимы в неполярных органических жидкостях. Взаимодействием О. с сухим хлором (Sn + 2Cl 2 = SnCl 4) получают тетрахлорид SnCl 4 ; это бесцветная жидкость, хорошо растворяющая серу, фосфор, йод. Раньше по приведённой реакции удаляли О. с вышедших из строя лужёных изделий. Сейчас способ мало распространён из-за токсичности хлора и высоких потерь О.

Тетрагалогениды SnX 4 образуют комплексные соединения с H 2 O, NH 3 , окислами азота, PCl 5 , спиртами, эфирами и многими органическими соединениями. С галогеноводородными кислотами галогениды О. дают комплексные кислоты, устойчивые в растворах, например H 2 SnCl 4 и H 2 SnCl 6 . При разбавлении водой или нейтрализации растворы простых или комплексных хлоридов гидролизуются, давая белые осадки Sn (OH) 2 или H 2 SnO 3 ·n H 2 O.С серой О. даёт нерастворимые в воде и разбавленных кислотах сульфиды: коричневый SnS и золотисто-жёлтый SnS 2 .

Получение и применение. Промышленное получение О. целесообразно, если содержание его в россыпях 0,01%, в рудах 0,1%; обычно же десятые и единицы процентов. О. в рудах часто сопутствуют W, Zr, Cs, Rb, редкоземельные элементы, Та, Nb и др. ценные металлы. Первичное сырьё обогащают: россыпи - преимущественно гравитацией, руды - также флотогравитацией или флотацией.

Концентраты, содержащие 50-70% О., обжигают для удаления серы, очищают от железа действием HCl. Если же присутствуют примеси вольфрамита (Fe, Mn) WO 4 и шеелита CaWO 4 , концентрат обрабатывают HCl; образовавшуюся WO 3 ·H 2 O извлекают с помощью NH 4 OH. Плавкой концентратов с углём в электрических или пламенных печах получают черновое О. (94-98% Sn), содержащее примеси Cu, Pb, Fe, As, Sb, Bi. При выпуске из печей черновое О. фильтруют при температуре 500-600 °C через кокс или центрифугируют, отделяя этим основную массу железа. Остаток Fe и Cu удаляют вмешиванием в жидкий металл элементарной серы; примеси всплывают в виде твёрдых сульфидов, которые снимают с поверхности О. От мышьяка и сурьмы О. рафинируют аналогично - вмешиванием алюминия, от свинца - с помощью SnCl 2 . Иногда Bi и Pb испаряют в вакууме. Электролитическое рафинирование и зонную перекристаллизацию применяют сравнительно редко для получения особо чистого О.

Около 50% всего производимого О. составляет вторичный металл; его получают из отходов белой жести, лома и различных сплавов. До 40% О. идёт на лужение консервной жести, остальное расходуется на производство припоев, подшипниковых и типографских сплавов (см. Оловянные сплавы ). Двуокись SnO 2 применяется для изготовления жаростойких эмалей и глазурей. Соль - станнит натрия Na 2 SnO 3 ·3H 2 O используется в протравном крашении тканей. Кристаллический SnS 2 ("сусальное золото") входит в состав красок, имитирующих позолоту. Станнид ниобия Nb 3 Sn - один из наиболее используемых сверхпроводящих материалов.

Н. Н. Севрюков.

Токсичность самого О. и большинства его неорганических соединений невелика. Острых отравлений, вызываемых широко используемым в промышленности элементарным О., практически не встречается. Отдельные случаи отравлений, описанные в литературе, по-видимому, вызваны выделением AsH 3 при случайном попадании воды на отходы очистки О. от мышьяка. У рабочих оловоплавильных заводов при длительном воздействии пыли окиси О. (т. н. чёрное О., SnO) могут развиться пневмокониозы , у рабочих, занятых изготовлением оловянной фольги, иногда отмечаются случаи хронической экземы. Тетрахлорид О. (SnCl 4 ·5H 2 O) при концентрации его в воздухе свыше 90 мг /м 3 раздражающе действует на верхние дыхательные пути, вызывая кашель; попадая на кожу, хлорид О. вызывает её изъязвления. Сильный судорожный яд - оловянистый водород (станнометан, SnH 4), но вероятность образования его в производственных условиях ничтожна. Тяжёлые отравления при употреблении в пищу давно изготовленных консервов могут быть связаны с образованием в консервных банках SnH 4 (за счёт действия на полуду банок органических кислот содержимого). Для острых отравлений оловянистым водородом характерны судороги, нарушение равновесия; возможен смертельный исход.

Органические соединения О., особенно ди- и триалкильные, обладают выраженным действием на центральную нервную систему. Признаки отравления триалкильными соединениями: головная боль, рвота, головокружение, судороги, парезы, параличи, зрительные расстройства. Нередко развиваются коматозное состояние (см. Кома ), нарушения сердечной деятельности и дыхания со смертельным исходом. Токсичность диалкильных соединений О. несколько ниже, в клинической картине отравлений преобладают симптомы поражения печени и желчевыводящих путей. Профилактика: соблюдение правил гигиены труда.

О. как художественный материал. Отличные литейные свойства, ковкость, податливость резцу, благородный серебристо-белый цвет обусловили применение О. в декоративно-прикладном искусстве. В Древнем Египте из О. выполнялись украшения, напаянные на другие металлы. С конца 13 в. в западно-европейских странах появились сосуды и церковная утварь из О., близкие серебряным, но более мягкие по абрису, с глубоким и округлым штрихом гравировки (надписи, орнаменты). В 16 в. Ф. Брио (Франция) и К. Эндерлайн (Германия) начали отливать парадные чаши, блюда, кубки из О. с рельефными изображениями (гербы, мифологические, жанровые сцены). А. Ш. Буль вводил О. в маркетри при отделке мебели. В России изделия из О. (рамы зеркал, утварь) получили широкое распространение в 17 в.; в 18 в. на севере России расцвета достигло производство медных подносов, чайников, табакерок, отделанных оловянными накладками с эмалями. К началу 19 в. сосуды из О. уступили место фаянсовым и обращение к О. как художественному материалу стало редким. Эстетические достоинства современных декоративных изделий из О. - в чётком выявлении структуры предмета и зеркальной чистоте поверхности, достигаемой литьём без последующей обработки.

Лит.: Севрюков Н. Н., Олово, в кн.: Краткая химическая энциклопедия, т. 3, М., 1963, с. 738-39; Металлургия олова, М., 1964; Некрасов Б. В., Основы общей химии, 3 изд., т. 1, М., 1973, с. 620-43; Рипан P., Четяну И., Неорганическая химия, ч. 1 - Химия металлов, пер. с рум., М., 1971, с. 395-426; Профессиональные болезни, 3 изд., М., 1973; Вредные вещества в промышленности, ч. 2, 6 изд., М, 1971; Tardy, Les étspan>français, pt. 1-4, P., 1957-64; Mory L., Schönes Zinn, Münch., 1961; Haedeke H., Zinn, Braunschweig, 1963.

    См. также: Список химических элементов по атомным номерам и Алфавитный список химических элементов Содержание 1 Символы, используемые в данный момент … Википедия

    См. также: Список химических элементов по символам и Алфавитный список химических элементов Это список химических элементов, упорядоченный в порядке возрастания атомных номеров. В таблице приводятся название элемента, символ, группа и период в… … Википедия

    - (ИСО 4217) Коды для представления валют и фондов Codes for the representation of currencies and funds (англ.) Codes pour la représentation des monnaies et types de fonds (фр.) … Википедия

    Простейшая форма материи, которая может быть идентифицирована химическими методами. Это составные части простых и сложных веществ, представляющие собой совокупность атомов с одинаковым зарядом ядра. Заряд ядра атома определяется числом протонов в … Энциклопедия Кольера

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    У этого термина существуют и другие значения, см. Русские (значения). Русские … Википедия

    Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации

Легкий цветной металл, простое неорганическое вещество. В таблице Менделеева обозначается Sn, stannum (станнум). В переводе с латинского это значит «прочный, стойкий». Первоначально этим словом называли сплав свинца и серебра, и только значительно позже так стали именовать чистое олово. Слово «олово» имеет славянские корни и обозначает «белый».

Металл относится к рассеянным элементам, и не самым распространенным на земле. В природе он встречается в виде различных минералов. Самые важные для промышленной добычи: касситерит - оловянный камень, и станнин - оловянный колчедан. Добывают олово из руд, как правило, содержащих не более 0,1 процента этого вещества.

Свойства олова

Легкий мягкий пластичный металл серебристо-белого цвета. Имеет три структурные модификации, переходит из состояния α-олово (серое олово) в β-олово (белое олово) при температуре +13,2 °С, а в состояние γ-олово при t +161 °С. Модификации весьма сильно отличаются своими свойствами. α-олово - серый порошок, который относят к полупроводникам, β-олово («обычное олово» при комнатной температуре) - серебристый ковкий металл, γ-олово - белый хрупкий металл.

В химических реакциях олово проявляет полиморфизм, то есть кислотные и оснóвные свойства. Реактив достаточно инертный на воздухе и в воде, так как быстро покрывается прочной оксидной пленкой, защищающей его от коррозии.

Олово легко вступает в реакции с неметаллами, с трудом - с концентрированной серной и соляной кислотой; с этими кислотами в разбавленном состоянии не взаимодействует. С концентрированной и разбавленной азотной кислотой реагирует, но по-разному. В одном случае получается оловянная кислота, в другом - нитрат олова. Со щелочами вступает в реакции только при нагревании. С кислородом образует два оксида, со степенью окисления 2 и 4. Является основой целого класса оловоорганических соединений.

Воздействие на человеческий организм

Олово считается безопасным для человека, оно есть в нашем организме и каждый день мы получаем его в минимальных количествах с пищей. Его роль в функционировании организма пока не изучена.

Пары олова и его аэрозольные частицы опасны, так как при длительном и регулярном вдыхании оно может вызвать заболевания легких; ядовиты также органические соединения олова, поэтому работать с ним и его соединениями надо в средствах защиты.

Такое соединение олова как оловянистый водород, SnH 4 , может служить причиной тяжелых отравлений при употреблении в пищу очень старых консервов, в которых органические кислоты вступили в реакцию со слоем олова на стенках банки (жесть, из которой делают консервные банки - это тонкий лист железа, покрытый с двух сторон оловом). Отравление оловянистым водородом может быть даже смертельным. К его симптомам относятся судороги и чувство потери равновесия.

При понижении температуры воздуха ниже 0 °С белое олово переходит в модификацию серого олова. При этом объем вещества увеличивается почти на четверть, оловянное изделие трескается и превращается в серый порошок. Это явление стали называть «оловянной чумой».

Некоторые историки считают, что «оловянная чума» послужила одной из причин поражения армии Наполеона в России, так как превратила пуговицы на одежде французских солдат и пряжки для ремней в порошок, и тем самым оказала на армию деморализующее влияние.

А вот настоящий исторический факт: экспедиция английского полярного исследователя Роберта Скотта к Южному полюсу закончилась трагически в том числе потому, что все их топливо вылилось из запаянных оловом баков, они лишились своих мотосаней, а дойти пешком сил не хватило.

Применение

Большая часть выплавляемого олова используется в металлургии для производства различных сплавов. Эти сплавы идут на изготовление подшипников, фольги для упаковки, белой пищевой жести, бронзы, припоев, проводов, литер типографских шрифтов.
- Олово в виде фольги (станиоль) востребовано в производстве конденсаторов, посуды, изделий искусства, органных труб.
- Используется для легирования конструкционных титановых сплавов; для нанесения антикоррозионных покрытий на изделия из железа и иных металлов (лужение).
- Сплав с цирконием обладает высокой тугоплавкостью и стойкостью к коррозии.
- Оксид олова (II) - используется в качестве абразива при обработке оптических стекол.
- Входит в состав материалов, применяющихся для изготовления аккумуляторов.
- При производстве красок «под золото», красителей для шерсти.
- Искусственные радиоизотопы олова применяются как источник γ-излучения в спектроскопических методах исследования в биологии, химии, материаловедении.
- Двухлористое олово (оловянную соль) используют в аналитической химии, в текстильной индустрии для крашения, в химпроме для органического синтеза и производства полимеров, в нефтепереработке - для обесцвечивания масел, в стекольной отрасли - для обработки стекол.
- Олово борфтористое применяется для изготовления жести, бронзы, других нужных промышленности сплавов; для лужения; ламинирования.

Химический элемент олово является одним из семи древних металлов, которые известны человечеству. Этот металл входит в состав бронзы, имеющей огромное значение. В настоящее время химический элемент олово утратил востребованность, но его свойства заслуживают детального рассмотрения и изучения.

Что собой представляет элемент

Располагается он в пятом периоде, в четвертой группе (главной подгруппе). Подобное расположение свидетельствует о том, что химический элемент олово - амфотерное соединение, способное проявлять и основные, и кислотные свойства. Относительная атомная масса составляет 50, поэтому его считают легким элементом.

Особенности

Химический элемент олово является пластичным, ковким, легким веществом серебристого белого цвета. По мере эксплуатации он теряет свой блеск, что считают минусом его характеристик. Олово - металл рассеянный, поэтому существуют сложности с его добычей. Элемент имеет высокую температуру кипения (2600 градусов), низкую температуру плавления (231,9 С), большую электрическую проводимость, отличную ковкость. У него высокое сопротивление разрыву.

Олово - элемент, который не обладает токсичными свойствами, не оказывает негативного воздействия на организм человека, поэтому востребован в пищевом производстве.

Какое еще имеет свойство олово? При выборе данного элемента для изготовления посуды и водного трубопровода не придется опасаться за свою безопасность.

Нахождение в организме

Чем еще характеризуется олово (химический элемент)? Как читается его формула? Данные вопросы рассматриваются в курсе школьной программы. В нашем организме данный элемент располагается в костях, способствуя процессу регенерации костной ткани. Его относят к макроэлементам, поэтому для полноценной жизнедеятельности, человеку достаточно от двух до десяти мг олова в сутки.

В организм этот элемент попадает в большем количестве с пищей, но кишечник усваивает не больше пяти процентов поступлений, поэтому вероятность отравления минимальна.

При недостатке данного металла происходит замедление роста, происходит потеря слуха, меняется состав костной ткани, наблюдается облысение. Отравление вызывается поглощением пыли или паров данного металла, а также его соединений.

Основные свойства

Плотность олова имеет среднюю величину. Металл отличается высокой коррозионной стойкостью, поэтому его применяют в народном хозяйстве. Например, олово востребовано при изготовлении консервных банок.

Чем еще характеризуется олово? Применение этого металла основывается также на его способности объединять различные металлы, создавая устойчивую к агрессивным средам, внешнюю среду. Например, сам металл необходим для лужения предметов быта и посуды, а его припои нужны для радиотехники и электричества.

Характеристики

По своим внешним характеристикам этот металл аналогичен алюминию. В реальности сходство между ними незначительное, ограничивается только легкостью и металлическим блеском, устойчивостью к химической коррозии. Алюминий проявляется амфотерные свойства, поэтому легко вступает в реакцию со щелочами и кислотами.

Например, если на алюминий действует уксусная кислота, наблюдается химическое взаимодействие. Олово же способно взаимодействовать только с сильными концентрированными кислотами.

Преимущества и недостатки олова

Данный металл практически не используется в строительстве, поскольку не отличается высокой механической прочностью. В основном в настоящее время используют не чистый металл, а его сплавы.

Выделим основные преимущества данного металла. Особое значение имеет ковкость, ее используют в процессе изготовления предметов быта. Например, эстетично выглядят подставки, светильники, выполненные из данного металла.

Оловянное покрытие позволяет существенно снижать трение, благодаря чему изделие защищено от преждевременного износа.

Среди основных недостатков данного метала можно упомянуть его незначительную прочность. Олово непригодно для изготовления частей и деталей, предполагающих существенные нагрузки.

Добыча металла

Плавление олова осуществляется при невысокой температуре, но из-за трудности его добычи металл считается дорогостоящим веществом. Из-за низкой температуры плавления при нанесении олова на поверхность металла можно получить существенную экономию электрической энергии.

Структура

Металл имеет однородную структуру, но, в зависимости от температуры, возможны разные его фазы, отличающиеся по характеристикам. Среди самых распространенных модификаций данного металла отметим β-вариант, существующий при температуре 20 градусов. Теплопроводность, его температура кипения, являются основными характеристиками, приводимыми для олова. При снижении температуры от 13,2 С образуется α-модификация, именуемая серым оловом. Эта форма не обладает пластичностью и ковкостью, имеет меньшую плотность, поскольку обладает иной кристаллической решеткой.

При переходе из одной формы в другую наблюдается изменение объема, так как существует разница в плотности, в результате чего происходит разрушение оловянного изделия. Такое явление называют «оловянной чумой». Такая особенность приводит к тому, что существенно уменьшается область использования металла.

В природных условиях олово можно найти в составе горных пород в виде рассеянного элемента, кроме того известны его минеральные формы. Например, в касситерите содержится его оксид, а в оловянном колчедане - его сульфид.

Производство

Перспективными для промышленной переработки считают оловянные руды, в которых содержание металла не меньше 0,1 процента. Но в настоящее время эксплуатируют и те месторождения, в которых содержание металла составляет всего 0,01 процента. Для добычи минерала применяют различные способы, учитывая специфику месторождения, а также его разновидность.

В основном оловянные руды представлены в виде песков. Добыча сводится к его постоянной промывке, а также к концентрированию рудного минерала. Коренное месторождение разрабатывать гораздо сложнее, поскольку необходимы дополнительные сооружения, строительство и эксплуатация шахт.

Концентрат минерала перевозят на завод, специализирующийся на плавке цветного металла. Далее осуществляется многократное обогащение руды, измельчение, затем промывание. Рудный шлих восстанавливают, воспользовавшись специальными печами. Для полного восстановления олова этот процесс проводят несколько раз. На завершающем этапе осуществляют процесс очистки от примесей чернового олова, используя термический либо электролитический способ.

Использование

В качестве основной характеристики, позволяющей применять олово, выделяют его высокую коррозионную устойчивость. Данный металл, а также его сплавы являются одними из самых устойчивых соединений по отношению к агрессивным химическим веществам. Больше половины всего олова, производимого в мире, применяется для изготовления белой жести. Данную технологию, связанную с нанесением на сталь тонкого слоя олова, стали применять для защиты от химической коррозии консервных банок.

Способность олова к раскатыванию используется для производства из него тонкостенных труб. Из-за неустойчивости данного металла к низким значениям температур его бытовое использование достаточно ограничено.

У сплавов олова значение теплопроводности существенно ниже, чем у стали, поэтому их можно применять для производства умывальников и ванн, а также для изготовления различной сантехнической фурнитуры.

Олово подходит для производства незначительных декоративных и бытовых предметов, изготовления посуды, создания оригинальных ювелирных украшений. Этот неяркий и ковкий металл при объединении с медью давно стал одним из самых излюбленных материалов скульпторов. Бронза объединяет в себе высокую прочность, стойкость к химической и естественной коррозии. Этот сплав востребован в качестве декоративного и строительного материала.

Олово является тонально-резонансным металлом. Например, при его соединении со свинцом получают сплав, применяемый для изготовления современных музыкальных инструментов. С древних времен известны бронзовые колокола. Для создания органных труб применяют сплав олова со свинцом.

Заключение

Увеличение внимания современного производства к вопросам, связанным с охраной окружающей среды, а также к проблемам, связанным с сохранением здоровья населения, повлиял на состав материалов, применяемых в изготовлении электроники. Например, возрос интерес к технологии бессвинцового процесса пайки. Свинец является материалом, приносящим существенный вред здоровью человека, поэтому его перестали применять в электротехнике. Ужесточились требования к пайке, вместо опасного свинца стали использовать сплавы олова.

Чистое олово практически не используется в промышленности, поскольку возникают проблемы с развитием «оловянной чумы». Среди основных сфер применения данного редкого рассеянного элемента выделим изготовление сверхпроводящих проводов.

Покрытие чистым оловом контактных поверхностей позволяет увеличивать процесс пайки, защищать металл от процесса коррозии.

В результате перехода на бессвинцовую технологию многих производителей стали ими начало использоваться натуральное олово для покрытия контактных поверхностей и выводов. Подобный вариант позволяет по приемлемой стоимости получать качественное защитное покрытие. Благодаря отсутствию примесей, новая технология не только считается экологически безопасной, но и дает возможность получать отличный результат по приемлемой стоимости. Именно олово производители считают перспективным и современным металлом в электротехнике, радиоэлектронике.