В сторону архипелага Северная Земля со скоростью 55 километров в год. Ученые предполагают: готовится смена полюсов из-за волнений в жидкой части ядра планеты, недоступной прямым наблюдениям. Что именно там происходит, понять трудно, но есть много гипотез.

Миссия к «железному миру»

В 2022 году NASA собирается отправить аппарат к астероиду Психея, находящемуся между Марсом и Юпитером. Его называют железным миром.

По отражению лучей с поверхности, по тому, как быстро она нагревается и остывает, ученые поняли, что это если не полностью, то по большей части металл. Не исключено, что именно оттуда к нам прилетают железные метеориты. Это происходит очень редко, всего известно не более двух сотен таких событий.

Предполагается, что Психея - ядро планеты земной группы, которая лишилась внешних оболочек. Вместе с Землей и Венерой эта планета формировалась вблизи Солнца, но затем что-то случилось. Может, катастрофа, а может, всему виной повторные разогревы планетоземали - сгустков материи, из которых образуются планеты.

Ученые непременно хотят попасть в «железный мир», и не только ради геологической разведки месторождений в интересах наших потомков. В первую очередь - чтобы вплотную исследовать аналог ядра Земли.

Почему ядро железное

Ядро Земли - интереснейший объект. Его состав и температура отражаются на вышележащих слоях и атмосфере. Ядро - источник магнитного поля, благодаря которому возникла жизнь. Там же - ключ к тайне образования планет земной группы.

Недра Земли исследуют с помощью сейсмических волн и моделирования. Грубо говоря, планета состоит из верхней оболочки - коры, мантии и ядра.

О том, что ядро - железное, свидетельствует несколько фактов. У Земли собственное магнитное поле, словно диполь вставлен по оси вращения. Мантия не может генерировать такое поле, она слишком слабо проводит электрический ток. Согласно модели геодинамо на это способна только проводящая жидкость. Значит, часть ядра - жидкая. Железо - один из самых распространенных элементов в Солнечной системе. Это подтверждается его обилием в метеоритах.

Во внешней части ядра не проходят упругие S-волны, значит, она жидкая. Внутренняя часть ядра радиусом примерно 1221 километр слабо распространяет S-волны - соответственно, она либо твердая, либо в состоянии, симулирующем твердость. Граница двух слоев в ядре довольно четкая, как и между ядром и нижней мантией.

Считается, что ядро железное, с небольшими примесями никеля (на это указывает состав железных метеоритов), кремния, сульфидов и кислорода.

Некоторые особенности прохождения сейсмоволн говорят о том, что внутреннее твердое ядро вращается слегка быстрее, чем мантия и кора, примерно на 0,15 градуса в год.

Когда и как образовалось ядро Земли? Каково в нем соотношение химических элементов? Почему оно не однородное? Какая там температура? Где источник энергии? И главное, почему ядро вообще сформировалось внутри планеты? По каждому из этих и множеству других вопросов есть немало гипотез.

Кому из близнецов повезло

Венеру считают близнецом Земли - она лишь немного меньше по массе и размерам. Но нынешние условия на ее поверхности совершенно другие. У Земли есть собственное магнитное поле, атмосфера и биосфера.

У Венеры из этого списка - только ядовитая атмосфера с облаками из серной кислоты. Следов магнитного поля нет и в геологическом прошлом, хотя они могли и исчезнуть. Вероятно, все дело в происхождении близнецов.

Венера и Земля образовались в одной части газопылевой туманности, окружавшей Солнце. Зародыши планет увеличивались, притягивая к себе все больше материала. Когда масса стала критической, начались разогрев, плавление. Вещество разделялось на фракции: тяжелые элементы оседали внутри, легкие поднимались наверх.

Как полагают ученые из Германии, Японии и Франции, расслоение таких тел, как Земля, идет равномерно и стабильно, каждый слой - однородный. Чтобы ядро получилось двухслойное и неоднородное, где-то ближе к концу процесса планета должна была испытать очень сильный удар другого массивного тела. Часть вещества «пришельца» осталась в недрах Земли, часть была выбита на орбиту, где затем образовалась Луна. От удара внутренности планеты перемешались, и это привело к частичному плавлению ядра.

А вот эволюция Венеры прошла гладко, без ЧП космического масштаба. Расслоение благополучно завершилось с образованием твердого железного ядра, неспособного генерировать магнитное поле.

Есть и другая гипотеза: спонтанная кристаллизация железного расплава. Однако для этого ему нужно остыть до тысячи Кельвинов, что невозможно.

Значит, зародыши кристаллизации проникли извне, сделали вывод ученые из США. Например, из нижней мантии. Это крупные куски железа размером десятки и сотни метров. Откуда им там взяться - большой вопрос.

Один из ответов лежит на поверхности Земли в виде древних железистых кварцитов. Возможно, более трех миллиардов лет назад из этих пород сложилось дно океанов. Из-за движения плит оно погрузилось в мантию и оттуда - в ядро.

Создание магнитного щита

Соотношение радиоактивных изотопов свинца указывает на возраст ядра: порядка четырех с половиной миллиардов лет. Когда возникло магнитное поле, неизвестно. Его следы встречаются уже в самых древних горных породах Земли возрастом 3,5 миллиарда лет.

В соответствии с моделью геодинамо для магнитного поля Земли нужна проводящая жидкость, вращение которой сопровождается перемешиванием.

Проблема в том, что магнитное поле у быстро вращающихся жидкостей рано или поздно затухает. Судя по геологическим данным, на видимом нам отрезке времени интенсивность магнитного поля Земли не менялась. Должен быть какой-то постоянный мощный источник энергии.

На эту роль есть два кандидата. Температурная конвекция, возможная, если внутреннее ядро горячее внешнего, и композиционная конвекция, то есть перемещение элементов из одной части в другую. Это означает, что твердая часть ядра увеличивается. Но бояться полного застывания не стоит. На это понадобится не один миллиард лет.

МОСКВА, 13 июн - РИА Новости, Татьяна Пичугина. Северный магнитный полюс продолжает смещаться с территории Канады в сторону архипелага Северная Земля со скоростью 55 километров в год. Ученые предполагают: готовится смена полюсов из-за волнений в жидкой части ядра планеты, недоступной прямым наблюдениям. Что именно там происходит, понять трудно, но есть много гипотез.

Миссия к "железному миру"

По отражению лучей с поверхности, по тому, как быстро она нагревается и остывает, ученые поняли, что это если не полностью, то по большей части металл. Не исключено, что именно оттуда к нам прилетают железные метеориты. Это происходит очень редко, всего известно не более двух сотен таких событий.

Предполагается, что Психея - ядро планеты земной группы, которая лишилась внешних оболочек. Вместе с Землей и Венерой эта планета формировалась вблизи Солнца, но затем что-то случилось. Может, катастрофа, а может, всему виной повторные разогревы планетоземали - сгустков материи, из которых образуются планеты.

Ученые непременно хотят попасть в "железный мир", и не только ради геологической разведки месторождений в интересах наших потомков. В первую очередь - чтобы вплотную исследовать аналог ядра Земли.

Почему ядро железное

Ядро Земли - интереснейший объект. Его состав и температура отражаются на вышележащих слоях и атмосфере. Ядро - источник магнитного поля, благодаря которому возникла жизнь. Там же - ключ к тайне образования планет земной группы.

Недра Земли исследуют с помощью сейсмических волн и моделирования. Грубо говоря, планета состоит из верхней оболочки - коры, мантии и ядра.

О том, что ядро - железное, свидетельствует несколько фактов. У Земли собственное магнитное поле, словно диполь вставлен по оси вращения. Мантия не может генерировать такое поле, она слишком слабо проводит электрический ток. Согласно модели геодинамо на это способна только проводящая жидкость. Значит, часть ядра - жидкая. Железо - один из самых распространенных элементов в Солнечной системе. Это подтверждается его обилием в метеоритах.

Во внешней части ядра не проходят упругие S-волны, значит, она жидкая. Внутренняя часть ядра радиусом примерно 1221 километр слабо распространяет S-волны - соответственно, она либо твердая, либо в состоянии, симулирующем твердость. Граница двух слоев в ядре довольно четкая, как и между ядром и нижней мантией.

Считается, что ядро железное, с небольшими примесями никеля (на это указывает состав железных метеоритов), кремния, сульфидов и кислорода.

Некоторые особенности прохождения сейсмоволн говорят о том, что внутреннее твердое ядро вращается слегка быстрее, чем мантия и кора, примерно на 0,15 градуса в год.

Когда и как образовалось ядро Земли? Каково в нем соотношение химических элементов? Почему оно не однородное? Какая там температура? Где источник энергии? И главное, почему ядро вообще сформировалось внутри планеты? По каждому из этих и множеству других вопросов есть немало гипотез.

Кому из близнецов повезло

Венеру считают близнецом Земли - она лишь немного меньше по массе и размерам. Но нынешние условия на ее поверхности совершенно другие. У Земли есть собственное магнитное поле, атмосфера и биосфера.

У Венеры из этого списка - только ядовитая атмосфера с облаками из серной кислоты. Следов магнитного поля нет и в геологическом прошлом, хотя они могли и исчезнуть. Вероятно, все дело в происхождении близнецов.

Венера и Земля образовались в одной части газопылевой туманности, окружавшей Солнце. Зародыши планет увеличивались, притягивая к себе все больше материала. Когда масса стала критической, начались разогрев, плавление. Вещество разделялось на фракции: тяжелые элементы оседали внутри, легкие поднимались наверх.

Как полагают ученые из Германии, Японии и Франции, расслоение таких тел, как Земля, идет равномерно и стабильно, каждый слой - однородный. Чтобы ядро получилось двухслойное и неоднородное, где-то ближе к концу процесса планета должна была испытать очень сильный удар другого массивного тела. Часть вещества "пришельца" осталась в недрах Земли, часть была выбита на орбиту, где затем образовалась Луна. От удара внутренности планеты перемешались, и это привело к частичному плавлению ядра.

А вот эволюция Венеры прошла гладко, без ЧП космического масштаба. Расслоение благополучно завершилось с образованием твердого железного ядра, неспособного генерировать магнитное поле.

Есть и другая гипотеза: спонтанная кристаллизация железного расплава. Однако для этого ему нужно остыть до тысячи Кельвинов, что невозможно.

Значит, зародыши кристаллизации проникли извне, сделали вывод ученые из США. Например, из нижней мантии. Это крупные куски железа размером десятки и сотни метров. Откуда им там взяться - большой вопрос.

Один из ответов лежит на поверхности Земли в виде древних железистых кварцитов. Возможно, более трех миллиардов лет назад из этих пород сложилось дно океанов. Из-за движения плит оно погрузилось в мантию и оттуда - в ядро.

© Иллюстрация РИА Новости. Алина Полянина, NASA Более четырех миллиардов лет назад Земля столкнулась с массивным космическим телом. В результате удара ее формирующееся ядро перемешалось, в нем выделилась жидкая внешняя часть, и это привело к возникновению магнитного поля. Ударом выбило часть вещества Земли, из которого возникла Луна

Земля уже существует 4 миллиарда 600 миллионов лет. Долгое время, и все же, по какой-то причине, её поверхность не остыла и до сих пор удивляет активностью. Внутренности многих планет остаются горячими из-за ядерных реакций, а точнее радиогенных процессов. В случае Земли это в основном распады изотопов урана, тория и калия.

Как быстро камень может остыть? Даже если он достаточно процветающий, скажем, размером с планету?

Миллионов, не говоря уже о миллиардах лет, должно быть более чем достаточно, чтобы полностью охладить и укрепить его. Это вызвано нашей интуицией, поддерживаемой вторым непобедимым законом термодинамики. Мы все знаем, что каждое тело отдает тепло своему окружению, и каждый костер должен когда-нибудь погаснуть. Тем не менее, несмотря на здравый смысл, «вечное тепло», похоже, царит глубоко под поверхностью земной коры. Итак, давайте посмотрим на саму суть нашей планеты.

Никель-железный шар диаметром 7 тыс. километров, объединяющий почти 1/3 массы всего земного шара, остается постоянно освещенным до температуры свыше 5,5 тыс. С. Через 4,6 миллиарда лет внутренняя часть нашей планеты все еще генерирует густые тераватты энергии и горит немного меньше, чем поверхность Солнца. И пусть не будет никаких сомнений, что тепло от мантии и ядра протекает максимально, даже в процессе конвекции.

Расплавленное вещество под нашими ногами неутомимо поднимается, отдавая часть температуры, затем сгущается и снова начинает падать к центру. Однако это не относится к самому внутреннему ядру. Несмотря на огромные температуры достаточных для плавного плавления любого металла, давление удерживает их в форме твердого вещества.

Казалось бы, обычно такой процесс давно должен был охладить наш мир и привести к его геологической гибели. Возможно ли, что планеты просто так медленно теряют энергию, которая все еще получается в процессе их бурного рождения? Оказывается, что... да. Хотя это было бы невозможно без помощи собственного автономного источника энергии в форме ядерных реакций. Пусть не будет недопонимания (с чем я столкнулся): речь идет не о термоядерных процессах, то есть о слиянии атомных ядер, типичном для звездных внутренностей.

Планеты не имеют достаточной массы (или в нашем случае достаточного количества топлива), чтобы обеспечить необходимые условия для поддержания синтеза. Однако у нас есть примеси тяжелых радиоактивных изотопов, которые легко подвергаются самопроизвольному распаду, что сопровождается выделением определенных порций энергии.

Любознательные читатели могут задаться вопросом, откуда, черт возьми, мы знаем о ядерных реакциях, происходящих совершенно за пределами нашего поля зрения. Действительно, это довольно необычно, потому что большая часть современных геологических моделей была создана с использованием нейтринных детекторов, а точнее электронных антинейтрино. Чаще всего мы связываем эти крошечные проникающие частицы с космическими источниками (например, солнечными нейтрино), но их излучение сопровождает многие физические явления, особенно отдельные ядерные распады.

В 2005 году команда японского детектора KamLand начала ловить те геонейтрино, на основании которых они сделали тщательную оценку явлений, происходящих внутри Земли. Согласно существующей модели, ядерные распады генерируют до 20 тераватт энергии, причем около 40% этого значения приходится на распад урана-238, еще 40% - на распад тория-232 и 20% - на распад калия-40.

Следует отметить еще два факта

Прежде всего, наши теории о тепловом балансе Земли не являются полными и все еще оставляют место для обсуждения. Радиоактивность - мощная сила, но, вероятно, не ответственная за всю произведенную энергию. Во-вторых, распады изотопов происходят в мантии нашей планеты, но не в ядре. По мнению физиков и геологов, уран, торий и калий практически отсутствуют в самом ядре Земли, поэтому все радиогенное тепло должно подниматься немного выше.

Так каков правильный ответ на заглавный вопрос?

Кажется, что ядро фактически горит исходным теплом, которое является реликтом после рождения планеты. Тем не менее, оно не остыло, потому что оно остается завернутым в толстый слой расплавленных пород, постоянно нагреваемых ядерными распадами. Поэтому мантию можно рассматривать здесь даже не как обычное одеяло, а как электрическое одеяло с собственным источником нагрева.

Означает ли все это, что Земля никогда не замерзнет?

Конечно нет, но процесс охлаждения её интерьера невероятно медленный. Учитывая скорость тепловыделения и все остальное, ядру понадобится от 55 до 90 миллиардов лет, чтобы полностью затвердеть. Потому что высокая температура и конвекционные движения миллиардов тонн расплавленного железа являются условием существования магнитосферы Земли.

У ученых, кажется, появилось новое объяснение тому, почему земное ядро сохраняет твердое состояние, несмотря на то что его температура выше, чем температура поверхности Солнца. Оказывается, это может быть связано с атомной архитектурой кристаллизованного железного «шарика», расположенного в центре нашей планеты.

Исследователи предполагают, что для земного ядра может быть свойственно никогда невиданное доселе атомное состояние, которое позволяет ему выдерживать невероятные температуры и давление, характерные, согласно расчетам, для центра нашей планеты. Если ученые правы в этом вопросе, то это, возможно, поможет решить еще одну загадку, которая не давала покоя многие десятилетия.

Группа исследователей из шведского Королевского технологического института в Стокгольме использовали Triolith – один из самых производительных суперкомпьютеров страны – для симуляции атомного процесса, который бы мог происходить на глубине около 6400 километров под поверхностью земли. Как и в случае с любым другим металлом, атомные структуры железа способны изменяться под воздействием изменения температуры и давления. При комнатной температуре и при обычном давлении железо находится в так называемой фазе объёмно-центрированной кубической структуры (ОЦК) кристаллической решетки. Под высоким же давлением решетка переходит в гексагональную плотноупакованную фазу. Этими терминами описывается расположение атомов внутри кристаллической решетки металла, которые, в свою очередь, отвечают за прочность и другие его свойства, вроде того, останется ли металл в этом случае в твердом состоянии или нет.

Ранее считалось, что твердое, кристаллизованное состояние железа в земном ядре объясняется тем, что оно находится в гексагональной плотноупакованной фазе кристаллической решетки, так как условия для ОЦК здесь слишком нестабильны. Однако новое исследование может указывать на то, что среда в центре нашей планеты на самом деле закаляет и уплотняет состояние ОЦК, а не разрушает.

«В условиях земного ядра ОЦК решетка железа демонстрирует ранее невиданную картину диффузии атомов. ОЦК-фаза проходит под девизом «что меня не убивает, то делает сильнее». Нестабильность способна прервать ОЦК-фазу при низкой температуре, однако высокая температура, наоборот, повышает стабильность этой фазы», — говорит ведущий исследователь Анатолий Белоношко.

В качестве аналогии повышенной активности атомов в железе в центре Земли Белоношко приводит колоду тасующихся карт, где атомы (представленные картами) могут постоянно и очень быстро между собой перемешиваться под воздействием повышенной температуры и давления, но при этом колода остается единым целым. И показатели эти очень впечатляют: в 3,5 миллиона раз выше того давления, что мы испытываем на поверхности, и примерно на 6000 градусов Цельсия выше температура.

Данные, полученные с помощью суперкомпьютера Triolith, также показывают, что до 96 процентов (выше, чем показывали предыдущие расчеты) от массы внутреннего земного ядра, вероятнее всего, приходится именно на железо. Оставшаяся часть приходится на никель и другие легкие элементы.

Еще одна загадка, которая может быть решена благодаря последним исследованиям, заключается в том, почему сейсмические волны двигаются быстрее между полюсами, а не через экватор. Это явление часто называют анизотропией. Исследователи говорят, что особенности поведения ОЦК решетки в железе под воздействием экстремальных условий, свойственных для центра Земли, могут быть достаточны для крупномасштабного эффекта анизотропии, что, в свою очередь, создает для ученых еще одно поле для исследований в будущем.

Важно отметить, что это предположение выведено на базе конкретно взятых компьютерных симуляций внутренних динамических процессов Земли, и на базе других моделей результаты подсчетов могут отличаться. До тех пор, пока мы не придумаем, как опустить на такую глубину соответствующие научные инструменты, мы не сможем со стопроцентной уверенностью говорить о правильности расчетов. А учитывая ту температуру и давление, которые там могут иметь место, получение прямых доказательств активности ядра планеты, возможно, для нас будет и вовсе невозможным.

И все же, несмотря на сложности, важно продолжать подобные исследования, потому что как только мы сможем больше узнать о том, что же на самом деле происходит внутри нашей планеты, у нас будет больше шансов на то, чтобы узнать, что будет дальше.