Удивительно, насколько разнообразны окружающие нас предметы и материалы, из которых они изготовлены. Раньше, примерно в XV-XVI веках, основными материалами были металлы и дерево, чуть позже стекло, почти во все времена фарфор и фаянс. А вот сегодняшний век - это время полимеров, о которых и пойдет речь дальше.

Понятие о полимерах

Полимер. Что это такое? Ответить можно с разных точек зрения. С одной стороны, это современный материал, используемый для изготовления множества бытовых и технических предметов.

С другой стороны, можно сказать, это специально синтезированное синтетическое вещество, получаемое с заранее заданными свойствами для использования в широкой специализации.

Каждое из этих определений верное, только первое с точки зрения бытовой, а второе - с точки зрения химической. Еще одним химическим определением является следующее. Полимеры - соединения, в основе которых лежат короткие участки цепи молекулы - мономеры. Они многократно повторяются, формируя макроцепь полимера. Мономерами могут быть как органические, так и неорганические соединения.

Поэтому вопрос: "полимер - что это такое?" - требует развернутого ответа и рассмотрения по всем свойствам и областям применения этих веществ.

Виды полимеров

Существует множество классификаций полимеров по различным признакам (химической природе, термостойкости, строению цепи и так далее). В ниже приведенной таблице коротко рассмотрим основные виды полимеров.

Классификация полимеров
Принцип Виды Определение Примеры
По происхождению (возникновению) Природные (натуральные) Те, что встречаются в естественных условиях, в природе. Созданы природой. ДНК, РНК, белки, крахмал, янтарь, шелк, целлюлоза, каучук натуральный
Синтетические Получены в лабораторных условиях человеком, не имеют отношения к природе. ПВХ, полиэтилен, полипропилен, полиуретан и другие
Искусственные Созданы человеком в лабораторных условиях, но на основе Целлулоид, ацетатцеллюлоза, нитроцеллюлоза
С точки зрения химической природы Органической природы Большая часть всех известных полимеров. В основе мономер органического вещества (состоит из атомов С, возможно включение атомов N, S, O, P и других). Все синтетические полимеры
Неорганической природы Основу составляют такие элементы, как Si, Ge, O, P, S, H и другие. Свойства полимеров: не бывают эластичными, не образуют макроцепей. Полисиланы, полидихлорфосфазен, полигерманы, поликремниевые кислоты
Элементоорганической природы Смесь органических и неорганических полимеров. Главная цепь - неорганика, боковые - органика. Полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.
Различие главной цепочки Гомоцепные Главная цепь представлена либо углеродом, либо кремнием. Полисиланы, полистирол, полиэтилен и другие.
Гетероцепные Основной остов из разных атомов. Полимеры примеры - полиамиды, белки, этиленгликоль.

Также различают полимеры линейного, сетчатого и разветвленного строения. Основа полимеров позволяет быть им термопластичными или термореактивными. Также они имеют различия по способности к деформации при обычных условиях.

Физические свойства полимерных материалов

Основные два агрегатных состояния, характерные для полимеров, это:

  • аморфное;
  • кристаллическое.

Каждое характеризуется своим набором свойств и имеет важное практическое значение. Например, если полимер существует в аморфном состоянии, значит, он может быть и вязкотекущей жидкостью, и стеклоподобным веществом и высокоэластичным соединением (каучуки). Это находит широкое применение в химических отраслях промышленности, строительстве, технике, производстве промышленных товаров.

Кристаллическое состояние полимеры имеют достаточно условное. На самом деле данное состояние перемежается с аморфными участками цепи, и в целом вся молекула получается очень удобной для получения эластичных, но в тоже время высокопрочных и твердых волокон.

Температуры плавления для полимеров различны. Многие аморфные плавятся при комнатной температуре, а некоторые синтетические кристаллические выдерживают довольно высокие температуры (оргстекло, стекловолокно, полиуретан, полипропилен).

Окрашиваться полимеры могут в самые разные цвета, без ограничений. Благодаря своей структуре они способны поглощать краску и приобретать самые яркие и необычные оттенки.

Химические свойства полимеров

Химические свойства полимеров отличаются от таковых у низкомолекулярных веществ. Это объясняется размером молекулы, наличием различных функциональных группировок в ее составе, общим запасом энергии активации.

В целом можно выделить несколько основных типов реакций, характерных для полимеров:

  1. Реакции, которые будут определяться функциональной группой. То есть если в состав полимера входит группа ОН, характерная для спиртов, значит, и реакции, в которые они будут вступать, будут идентичны таковым у окисление, восстановление, дегидрирование и так далее).
  2. Взаимодействие с НМС (низкомолекулярными соединениями).
  3. Реакции полимеров между собой с образованием сшитых сетей макромолекул (сетчатые полимеры, разветвленные).
  4. Реакции между функциональными группировками в пределах одной макромолекулы полимера.
  5. Распад макромолекулы на мономеры (деструкция цепи).

Все перечисленные реакции имеют в практике большое значение для получения полимеров с заранее заданными и удобными человеку свойствами. Химия полимеров позволяет создавать термоустойчивые, кислотно и щелочеупорные материалы, обладающие при этом достаточной эластичностью и стабильностью.

Применение полимеров в быту

Применение этих соединений повсеместно. Мало можно вспомнить областей промышленности, народного хозяйства, науки и техники, в которых не нужен был бы полимер. Что это такое - полимерное хозяйство и повсеместное применение, и чем оно исчерпывается?

  1. Химическая промышленность (производство пластмасс, дубильных веществ, синтез важнейших органических соединений).
  2. Машиностроение, авиастроение, нефтеперерабатывающие предприятия.
  3. Медицина и фармакология.
  4. Получение красителей и пестицидов и гербицидов, инсектицидов сельского хозяйства.
  5. Строительная промышленность (легирование сталей, конструкции звуко- и теплоизоляции, строительные материалы).
  6. Изготовление игрушек, посуды, труб, окон, предметов быта и домашней утвари.

Химия полимеров позволяет получать все новые и новые, совершенно универсальные по свойствам материалы, равных которым нет ни среди металлов, ни среди дерева или стекла.

Примеры изделий из полимерных материалов

Прежде чем называть конкретные изделия из полимеров (их невозможно перечислить все, слишком большое их многообразие), для начала нужно разобраться, что дает полимер. Материал, который получают из ВМС, и будет основой для будущих изделий.

Основными материалами, изготовленными из полимеров, являются:

  • пластмассы;
  • полипропилены;
  • полиуретаны;
  • полистиролы;
  • полиакрилаты;
  • фенолформальдегидные смолы;
  • эпоксидные смолы;
  • капроны;
  • вискозы;
  • нейлоны;
  • клеи;
  • пленки;
  • дубильные вещества и прочие.

Это только небольшой список из того многообразия, что предлагает современная химия. Ну а здесь уже становится понятным, какие предметы и изделия изготавливаются из полимеров - практически любые предметы быта, медицины и прочих областей (пластиковые окна, трубы, посуда, инструменты, мебель, игрушки, пленки и прочее).

Полимеры в различных отраслях науки и техники

Мы уже затрагивали вопрос о том, в каких областях применяются полимеры. Примеры, показывающие их значение в науке и технике, можно привести следующие:

  • антистатические покрытия;
  • электромагнитные экраны;
  • корпусы практически всей бытовой техники;
  • транзисторы;
  • светодиоды и так далее.

Нет никаких ограничений фантазии по применению полимерных материалов в современном мире.

Производство полимеров

Полимер. Что это такое? Это практически все, что нас окружает. Где же они производятся?

  1. Нефтехимическая (нефтеперерабатывающая) промышленность.
  2. Специальные заводы по производству полимерных материалов и изделий из них.

Это основные базы, на основе которых получают (синтезируют) полимерные материалы.

Большая часть современных строительных материалов, лекарственных средств, тканей, предметов быта, упаковочных и расходных веществ является полимерами. Это целая группа соединений, имеющих характерные отличительные признаки. Их очень много, но несмотря на это, число полимеров продолжает расти. Ведь химики-синтетики ежегодно открывают все новые и новые вещества. При этом особенное значение во все времена имел именно природный полимер. Что же собой представляют эти удивительные молекулы? Каковы их свойства и в чем заключаются особенности? Ответим на эти вопросы в ходе статьи.

Полимеры: общая характеристика

С точки зрения химии, полимером принято считать молекулу, имеющую огромную молекулярную массу: от нескольких тысяч до миллионов единиц. Однако, помимо этого признака, существует и еще несколько, по которым вещества можно классифицировать именно как природные и синтетические полимеры. Это:

  • постоянно повторяющиеся мономерные звенья, которые соединяются при помощи разных взаимодействий;
  • степень полимеразии (то есть число мономеров) должна быть очень высокой, иначе соединение будет считаться олигомером;
  • определенная пространственная ориентация макромолекулы;
  • набор важных физико-химических свойств, характерных только для данной группы.

В целом вещество полимерной природы отличить от других достаточно легко. Стоит лишь взглянуть на его формулу, чтобы понять это. Типичным примером может служить всем известный полиэтилен, широко применяемый в быту и промышленности. Он является продуктом в которую вступает этен или этилен. Реакция в общем виде записывается следующим образом:

nCH 2 =CH 2 →(-СН-СН-) n , где n - это степень полимеризации молекул, показывающая, сколько мономерных звеньев входит в ее состав.

Также в качестве примера можно привести природный полимер, который всем хорошо известен, это крахмал. Кроме того, к данной группе соединений принадлежат амилопектин, целлюлоза, куриный белок и многие другие вещества.

Реакции, в результате которых могут образоваться макромолекулы, бывают двух типов:

  • полимеризации;
  • поликонденсации.

Разница в том, что во втором случае продукты взаимодействия являются низкомолекулярными. Строение полимера может быть различным, это зависит от тех атомов, что его образуют. Часто встречаются линейные формы, но есть и трехмерные сетчатые, очень сложные.

Если же говорить о силах и взаимодействиях, которые удерживают мономерные звенья вместе, то можно обозначить несколько основных:

  • Ван-Дер-Ваальсовы силы;
  • химические связи (ковалентные, ионные);
  • электроностатическое взаимодействие.

Все полимеры нельзя объединять в одну категорию, так как они имеют совершенно различную природу, способ образования и выполняют неодинаковые функции. Свойства их также разнятся. Поэтому существует классификация, которая позволяет делить всех представителей этой группы веществ на разные категории. В ее основе может лежать несколько признаков.

Классификация полимеров

Если брать за основу качественный состав молекул, то все рассматриваемые вещества можно определить в три группы.

  1. Органические - это те, в состав которых входят атомы углерода, водорода, серы, кислорода, фосфора, азота. То есть те элементы, которые являются биогенными. Примеров можно привести массу: полиэтилен, поливинилхлорид, полипропилен, вискоза, нейлон, природный полимер - белок, нуклеиновые кислоты и так далее.
  2. Элементорганические - такие, в состав которых входит какой-то посторонний неорганический и не Чаще всего это кремний, алюминий или титан. Примеры подобных макромолекул: стеклополимеры, композиционные материалы.
  3. Неорганические - в основе цепи лежат атомы кремния, а не углерода. Радикалы же могут быть частью боковых ответвлений. Они открыты совсем недавно, в середине XX века. Используются в медицине, строительстве, технике и прочих отраслях. Примеры: силикон, киноварь.

Если разделять полимеры по происхождению, то можно выделить три их группы.

  1. Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие.
  2. Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный
  3. Синтетические - это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, и прочее.

Есть и еще один признак, который лежит в основе разделения рассматриваемых веществ на группы. Это реакционная способность и термоустойчивость. Выделяют две категории по этому параметру:

  • термопластичные;
  • термореактивные.

Самым древним, важным и особенно ценным является все же природный полимер. Его свойства уникальны. Поэтому дальше рассмотрим именно эту категорию макромолекул.

Какое вещество является природным полимером?

Чтобы ответить на этот вопрос, сначала оглянемся вокруг себя. Что нас окружает? Живые организмы вокруг нас, которые питаются, дышат, размножаются, цветут и дают плоды и семена. А что они представляют собой с молекулярной точки зрения? Это такие соединения, как:

  • белки;
  • нуклеиновые кислоты;
  • полисахариды.

Так вот, природным полимером является каждое из приведенных соединений. Таким образом, выходит, что жизнь вокруг нас существует только благодаря наличию этих молекул. С самых древних времен люди использовали глину, строительные смеси и растворы для укрепления и создания жилища, ткали пряжу из шерсти, применяли для создания одежды хлопок, шелк, шерсть и кожу животных. Природные органические полимеры сопровождали человека на всех ступенях его становления и развития и во многом помогли ему добиться тех результатов, что мы имеем сегодня.

Сама природа давала все для того, чтобы жизнь людей была максимально комфортной. Со временем был открыт каучук, выяснены его замечательные свойства. Человек научился использовать в пищевых целях крахмал, в технических - целлюлозу. Природным полимером является и камфора, которая также известна с древних времен. Смолы, белки, нуклеиновые кислоты - все это примеры рассматриваемых соединений.

Строение природных полимеров

Не все представители данного класса веществ устроены одинаково. Так, природные и синтетические полимеры могут существенно различаться. Их молекулы ориентируется так, чтобы максимально выгодно и удобно существовать с энергетической точки зрения. При этом многие природные виды способны набухать и структура их в процессе меняется. Можно выделить несколько самых распространенных вариантов строения цепи:

  • линейные;
  • разветвленные;
  • звездчатые;
  • плоские;
  • сетчатые;
  • ленточные;
  • гребневидные.

Искусственные и синтетические представители макромолекул имеют очень большую массу, огромное число атомов. Их создают со специально заданными свойствами. Поэтому и строение их изначально планируется человеком. Натуральные же полимеры чаще всего либо линейные, либо сетчатые по своей структуре.

Примеры природных макромолекул

Природные и искусственные полимеры очень близки друг другу. Ведь первые становятся основой для создания вторых. Примеров подобных превращений много. Приведем некоторые из них.

  1. Обычная пластмасса молочно-белого цвета - это продукт, получаемый при обработке азотной кислотой целлюлозы с добавлением природной камфоры. Реакция полимеризации приводит к затвердеванию полученного полимера и превращению в нужный продукт. А пластификатор - камфора, делает его способным размягчаться при нагревании и менять свою форму.
  2. Ацетатный шелк, медно-аммиачное волокно, вискоза - все это примеры тех нитей, волокон, которые получают на основе целлюлозы. Ткани из и льна не так прочны, не блестящи, легко сминаемы. А вот искусственные аналоги их этих недостатков лишены, что и делает их использование весьма привлекательным.
  3. Искусственные камни, строительные материалы, смеси, кожзаменители - это также примеры полимеров, полученных на основе натурального сырья.

Вещество, являющееся природным полимером, может использоваться и в истинном виде. Таких примеров тоже немало:

  • канифоль;
  • янтарь;
  • крахмал;
  • амилопектин;
  • целлюлоза;
  • шерсть;
  • хлопок;
  • шелк;
  • цемент;
  • глина;
  • известь;
  • белки;
  • нуклеиновые кислоты и так далее.

Очевидно, что рассматриваемый нами класс соединений очень многочисленный, практически важный и значимый для людей. Теперь рассмотрим более подробно несколько представителей природных полимеров, которые являются очень востребованными в настоящее время.

Шелк и шерсть

Формула природного полимера шелка сложна, ведь его химический состав выражается следующими компонентами:

  • фиброин;
  • серицин;
  • воски;
  • жиры.

Сам главный белок - фиброин, насчитывает в своем составе несколько разновидностей аминокислот. Если представить его полипептидную цепочку, то она будет выглядеть примерно так: (-NH-CH 2 -CO-NH-CH(CH 3)-CO-NH-CH 2 -CO-) n. И это лишь ее часть. Если представить, что к данной структуре при помощи сил Ван-Дер-Ваальса присоединяется не менее сложная молекула белка серицина, вместе они смешиваются в единую конформацию с воском и жирами, то понятно, почему сложно изобразить формулу натурального шелка.

На сегодняшний день большую часть данного продукта поставляет Китай, ведь на его просторах существует естественная среда обитания основного производителя - тутового шелкопряда. Раньше, начиная с самых древних времен, натуральный шелк очень ценился. Позволить себе одежду из него могли лишь знатные, богатые люди. Сегодня многие характеристики этой ткани оставляют желать лучшего. Например, он сильно намагничивается и мнется, кроме того, от пребывания на солнце теряет блеск и тускнеет. Поэтому больше в обиходе искусственные производные на его основе.

Шерсть - это тоже природный полимер, так как является продуктом жизнедеятельности кожи и сальных желез животных. На основе этого белкового продукта изготавливают трикотаж, который, как и шелк, является ценным материалом.

Крахмал

Природный полимер крахмал является продуктом жизнедеятельности растений. Они производят его в результате процесса фотосинтеза и накапливают в разных частях тела. Его химический состав:

  • амилопектин;
  • амилоза;
  • альфа-глюкоза.

Пространственная структура крахмала очень разветвленная, неупорядоченная. Благодаря входящему в состав амилопектину, он способен набухать в воде, превращаясь в так называемый клейстер. Этот используется в технике и промышленности. Медицина, пищевая отрасль, изготовление обойных клеев - это также области использования данного вещества.

Среди растений, содержащих максимальное количество крахмала, можно выделить:

  • кукурузу;
  • картофель;
  • пшеницу;
  • маниок;
  • овес;
  • гречиху;
  • бананы;
  • сорго.

На основе этого биополимера выпекают хлеб, изготавливают макаронные изделия, варят кисели, каши и прочие пищевые продукты.

Целлюлоза

С точки зрения химии, данное вещество - это полимер, состав которого выражается формулой (С 6 Н 5 О 5) n . Мономерным звеном цепи является бета-глюкоза. Основные места содержания целлюлозы - это клеточные стенки растений. Именно поэтому древесина - ценный источник этого соединения.

Целлюлоза - природный полимер, который имеет линейное пространственное строение. Она используется для производства следующих видов изделий:

  • целлюлозно-бумажной продукции;
  • искусственного меха;
  • разных видов искусственных волокон;
  • хлопка;
  • пластмассы;
  • бездымного пороха;
  • кинопленок и так далее.

Очевидно, что промышленное значение ее велико. Чтобы данное соединение возможно было использовать в производстве, его следует для начала извлечь из растений. Это делают путем длительной варки древесины в специальных устройствах. Дальнейшая обработка, а также реагенты, используемые для вываривания, различаются. Есть несколько способов:

  • сульфитный;
  • азотнокислый;
  • натронный;
  • сульфатный.

После подобной обработки продукт все еще содержит примеси. В основе это лигнин и гемицеллюлоза. Чтобы избавиться от них, массу обрабатывают хлором или щелочью.

В организме человека не существует таких биологических катализаторов, которые сумели бы расщепить этот сложный биополимер. Однако некоторые животные (травоядные) приспособились к этому. В их желудке поселяются определенные бактерии, которые делают это за них. Взамен микроорганизмы получают энергию для жизни и среду обитания. Такая форма симбиоза является крайне выгодной для обеих сторон.

Каучук

Это природный полимер, имеющий ценное хозяйственное значение. Впервые он был описан еще Робертом Куком, который в одном из своих путешествий его обнаружил. Произошло это так. Высадившись на острове, на котором жили неизвестные ему туземцы, он был гостеприимно встречен ими. Его внимание привлекли местные дети, которые играли необычным предметом. Это шарообразное тело отталкивалось от пола и подпрыгивало высоко вверх, затем возвращалось.

Поинтересовавшись у местного населения о том, из чего сделана эта игрушка, Кук узнал, что так застывает сок одного из деревьев - гевеи. Много позже было выяснено, что это и есть биополимер каучук.

Химическая природа данного соединения известна - это изопрен, подвергшийся естественной полимеризации. Формула каучука (С 5 Н 8) n . Его свойства, благодаря которым он так высоко ценится, следующие:

  • эластичность;
  • износостойкость;
  • электроизоляция;
  • водонепроницаемость.

Однако есть и недостатки. На холоде он становится хрупким и ломким, а на жаре - липким и тягучим. Именно поэтому появилась необходимость синтеза аналогов искусственной или синтетической основы. Сегодня каучуки широко используются в технических и промышленных целях. Самые главные продукты на их основе:

  • резины;
  • эбониты.

Янтарь

Является природным полимером, поскольку по своей структуре представляет смолу, ископаемую ее форму. Пространственная структура - каркасный аморфный полимер. Очень горюч, зажечь его можно пламенем спички. Обладает свойствами люминесценции. Это очень важное и ценное качество, которое используется в ювелирном деле. Украшения на основе янтаря очень красивы и востребованы.

Кроме того, этот биополимер используют и в медицинских целях. Из него же изготовляют наждачную бумагу, лаковые покрытия для различных поверхностей.

Первые упоминания о синтетических полимерах отно­сятся к 1838 (поливинилиденхлорид) и 1839 (полистирол). Ряд полимеров, возможно, был получен еще в первой половине 19 века. Но в те времена химики пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е. к образованию полимеров (полимеры и сейчас часто называют “смолами”)

В 1833 И.Берцелиусом для обозначения особого вида изомерии впервые был применен термин “поли­мерия”. В этой изомерии вещества (полимеры), имеющие одинаковый состав, обладали различной молекулярной массой, например этилен и бутилен, кислород и озон. Однако тот термина имел несколько другой смысл, чем современные представления о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.

А.М.Бутлеров изучал связь между строением и относительной устойчивостью мо­лекул, проявляющейся в реакциях поли­меризации. После создания А.М.Бутлеровым теории химического строения возникла химия полимеров. Наука о полимерах по­лучила свое развитие главным образом благодаря интенсивным поискам способов синтеза каучука. В этих исследованиях принимали участие учёные многих стран, такие как: Г.Бушарда, У.Тилден, немецкий учёный К Гарриес, И.Л.Кондаков, С.В.Лебедев и другие. Большую роль в развитии представлений о поликонденса­ции сыграли работы У.Карозерса

В 30-х годах было до­казано существование свободнорадикального и ионного механиз­мов полимеризации

С начала 20-х годов 20 века Г.Штаудингер стал автором принципиально но­вого представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы. До этого предполагалось, что такие био­полимеры, как целлюлоза, крахмал, кау­чук, белки, а также некоторые син­тетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способ­ностью ассоциировать в растворе в комп­лексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Однако открытие Г.Штаудингера заставила рассматривать полимеры как качественно новый объект исследования химии и физики

Полимеры – это химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромо­лекулы) состоят из большого числа повто­ряющихся группировок (мономерных звеньев). Атомы, входящие в состав мак­ромолекул, соединены друг с другом силами главных и (или) координационных валентностей

Классификация полимеров.

Полимеры можно классифицировать по происхождению полимеры. Они делятся на природные (биополимеры) и синтети­ческие. К биополимерам можно отнести белки, нуклеиновые кислоты, природные смолы, а к синтетическим полимерам - полиэтилен, полипропилен, феноло-формальдегидные смолы

Полимеры классифицируются еще и по расположению атомов в макромолекуле. Атомы или атомные группы могут распо­лагаться в макромолекуле в виде:

откры­той цепи или вытянутой в линию после­довательности циклов (линейные полимеры, например каучук натуральный);

цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы)

Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (к ним относят: поливинилхлорид, поликапроамид, целлюлоза)

С точки зрения химической структуры полим ров, испо ьзуемых в тепличных хозяйствах такого рода, можно отм тить преимущественное использован ие полиэтилена непластифицированного поливинилхлорида и в м ен ь ше й м ре пол и амидов. Полиэтиленовы пл нки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко

Другая область широкого применения полимерных материалов в сельском хозяйстве - мелиорация. Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, например, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб, особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем

Два остальных главных направления использования полимерных материалов в сельском хозяйстве - строительство, особенно животноводческих помещений, и машиностроение

Овцы в синтетических шубах

Овца, как известно, животное неразумное. Особенно - меринос. Знает ведь, что шерсть нужна хозяину чистой, а все-таки то в пыли изваляется, то, продираясь по кустам, колючек на себя нацепляет. Мыть и чистить овечью шерсть после стрижки - процесс сложный и трудо е к й. Чтобы упростить его, чтобы защитить шерсть от за грязнений, австралийские овцеводы изобрели попону из полиэтиленовой ткани. Надева ют е на ов цу сра з по сле стрижки, затягивают ре иновыми застежками. Овца рас­тет, и шерсть на ней растет, распирает попону, а резинки слабеют, попона все время как по мерке сшита. Но вот беда: под австралийским солнцем сам полиэтилен хруп­ким становится. И с этим справились с помощью аминных стабилизаторов. Осталось еще приучить ов­цу не рвать полиэтиленовую ткань о колючки и заборы

Нумерованные животные

Начиная с 1975 года весь крупный рогатый скот, а также овцы и козы в государственных хозяйствах Чехословакии должны носить в ушах свое­образные сережки - пластмассовые таблички с указа­нием основных данных о животных. Эта новая форма регистрации животных должна заменить пр менявшееся ранее клеймение, что признано специалистами негигие­ничным. Миллионы пластмассовых табличек должны вы­пускать артели местной промышленности

Микроб - кормилец

Комплексную задачу очистки сточных вод целлю­лозно-бумажного производства и одновременного произ­водства кормов для животноводства решили финские ученые. Специальную культуру микробов выращивают на отработанных сульфитных щелоках в специальных ферментаторах при 38° С, одновременно добавляя туда аммиак. Выход кормового белка составляет 50-55%; его с аппетитом поедают свиньи и домашняя птица

Синтетическая травка

Традиционно принято многие спортивные мероприя­тия проводить на площадках с травяным покрытием. Футбол, теннис, крокет... К сожалению, динамичное раз­витие спорта, пиковые нагрузки у ворот или у сетки при­водят к тому, что трава не успевает подрасти от одного состязания до другого. И никакие ухищрения садовников не могут с этим

справиться. Можно, конечно, прово­дить аналогичные состязания на площадках, скажем, с асфальтовым покрытием, но как же быть с традицион­ными видами спорта? На помощь пришли синтетические материалы. Полиамидную пленку толщиной 1/40 мм (25 мкм) нарезают на полоски шириной 1,27 мм, вытя­гивают их, извивают, а затем переплетают так, чтобы получить легкую объемную массу, имитирующую траву. Во избежание пожара к полимеру загодя добавля­ют огнезащитные средства, а чтобы из-под ног у спортсменов не посыпались электрическое искры -антиста­тик. Коврики из синтетической травы наклеивают на подготовленное основание - и вот зам готов травяной корт или футбольное поле, или иная спортивная пло­щадка. А по мере износа отдельные участки игрового поля можно заменять новыми ковриками, изготовленны­ми по той же технологии и того же зеленого цвета.

Полимеры в машиностроении

Ничего удивительного в том, что эта отрасль - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. маши­ностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. - всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37-38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали при­менять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно

При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли. Полимерам стали доверять все более и более ответственные задачи. Из полимеров ста­ли изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпус­ных деталей машин и механизмов, несущих значитель­ные нагрузки. Ниже будет подробнее рассказано о при­менении полимеров в автомобильной и авиационной промышленности, здесь же упомянем лишь один при­мечательный факт: несколько лет назад по Москве ходил цельнопластмассовый трамвай. А вот другой факт: чет­верть всех мелких судов - катеров, шлюпок, лодок - теперь строится из пластических масс

До недавних пор широкому использованию полимерных материалов в машиностроении препятствовали два, казалось бы, общепризнанных недостатка полимеров: их низкая (по сравнению с марочными сталями) прочность и низкая теплостойкость. Рубеж прочностных свойств полимерных материалов удалось преодолеть переходом к композиционным материалам, главным образом стекло и углепластикам. Так что теперь выражение “пластмасса прочнее стали” звучит вполне обоснованно. В то же время полимеры сохранили свои позиции при массовом изготовлении огромного числа тех деталей, от которых не требуется особенно высокая прочность: заглушек, штуцеров, колпачков, рукояток, шкал и корпусов измерительных приборов. Еще одна область, специфическая именно для полимеров, где четче всего проявляются их преимущества перед любыми иными материалами, - это область внутренней и внешней отделки

То же самое можно сказать и о машиностроении. Почти три четверти внутренней отделки салонов легковых автомобилей, автобусов, самолетов, речных и морских судов и пассажирских вагонов выполняется ныне из декоративных пластиков, синтетических пленок, тканей, искусственной кожи. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию. К примеру, многократное использование изделия в экстремальных физико-технических условиях (космосе) обеспечивается, в частности, тем, что вся его внешняя поверхность покрыта синтетическими плитками, к тому же приклеенными синтетическим полиуретановым или полиэпоксидным клеем. А аппараты для химического производства? У них внутри бывают такие агрессивные среды, что никакая марочная сталь не выдержала бы. Единственный выход - сделать внутреннюю облицовку из платины или из пленки фторопласта. Гальванические ванны могут работать только при условии, что они сами и конструкции подвески покрыты синтетическими смолами и пластиками

Широко применяются полимерные материалы и в такой отрасли народного хозяйства, как приборостроение. Здесь получен самый высокий экономический эффект в среднем в 1,5-2,0 раза выше, чем в других отраслях машиностроения. Объясняется это, в частности тем, что большая часть полимеров перерабатывается в приборостроении самыми прогрессивными способами, что повышает уровень полезного использования (и безотходность отходность) термопластов, увеличивает коэффициент замены дорогостоящих материалов. Наряду с этим значительно снижаются затраты живого труда. Простейшим и весьма убедительным примером может служить изготовление печатных схем: процесс, не мыслимый без полимерных материалов, а с ними и полностью автоматизированный

Есть и другие подотрасли, где использование полимерных материалов обеспечивает и экономию материальных и энергетических ресурсов, и рост производительности труда. Почти полную автоматизацию обеспечило применение полимеров в производстве тормозных систем для транспорта. Неспроста практически все функциональные детали тормозных систем для автомобилей и около 45% для железнодорожного подвижного состава делаются из синтетических пресс-материалов. Около 50% деталей вращения и зубчатых колес изготовляется из прочных конструкционных полимеров. В последнем случае можно отметить две различных тенденции. С одной стороны, все чаще появляются сообщения об изготовлении зубчатых колес для тракторов из капрона. Обрывки отслуживших свое рыболовных сетей, старые чулки и путанку капроновых волокон переплавляют и формуют в шестерни. Эти шестерни могут работать по­чти без износа в контакте со стальными, вдобавок такая система не нуждается в смазке и почти бесшумна. Дру­гая тенденция - полная замена металлических деталей в редукторах на детали из углепластиков. У них тоже отмечается резкое снижение механических потерь, долговременность срока службы

Еще одна область применения полимерных материалов в машиностроении, достойная отдельного упомина­ния, - изготовление металлорежущего инструмента. По мере расширения использования прочных сталей и спла­вов все более жесткие требования предъявляются к об­рабатывающему инструменту. И здесь тоже на выручку инструментальщику и станочнику приходят пластмассы. Но не совсем обычные пластмассы сверхвысокой твердости, такие, которые смеют поспорить даже с алмазом. Король твердости, алмаз, еще не свергнут со своего трона, но дело идет к тому. Некоторые окислы (например, из рода фианитов), нитриды, карбиды, уже сегодня де­монстрируют не меньшую твердость, да к тому же и большую термостойкость. Вся беда в том, что они пока еще более дороги, чем природные и синтетические алма­зы, да к тому же им свойствен “королевский порок” - они в большинстве своем хрупки. Вот и приходится, чтобы удержать их от растрескивания, каждое зернышко такого абразива окружать полимерной упаковкой чаще всего из фенолформальдегидных смол. Поэтому сегодня три четверти абразивного инструмента выпу­скается с применением синтетических смол

Первое место по темпам рос­та применения пластмасс занимает сейчас автомобильная промышлен­ность. К концу 70-х го­дов число используемых видов пластмасс составляло более 30

Перечень деталей автомо­биля, которые в наши дни изготовляют из полимеров, очень широк. Ку­зова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шлан­ги, сиденья, дверцы, капот

Не­сколько разных фирм за рубежом объявили о нача­ле производства цельнопластмассовых автомобилей

По хими­ческой структуре, первые места по объему занимают стирольные пластики, поливинилхлорид и полиолефины. Их активно догоняют полиуретаны, полиэфиры, акрилаты и другие полимеры. На­иболее характерные тенденции в применении пластмасс для автомобилестроения:

Во-первых, это экономия материалов: безотходное или малоотходное формование больших блоков и узлов

Во-вторых, благодаря использованию легких и облегченных полимерных материалов снижает­ся общий вес автомобиля, а значит, будет экономиться горючее при его эксплуатации

В-третьих, выполненные как единое целое, блоки пластмассовых деталей суще­ственно упрощают сборку и позволяют экономить живой труд

Полимерные материалы очень широко применяются в авиационной про­мышленности. К примеру: замена алюминиевого сплава графитопластиком, при изготовлении предкрылка кры­ла самолета, сокращает количество деталей с 47 до 14. Крепеж упрощается - с 1464 до 8 болтов, вес снижается на 22%, а стоимость - на 25%. При этом запас прочности изделия составляет 178%

Лопатки вентиляторов реактивных двигателей, лопасти вертолета рекомендуется делать из поликонденсационных смол, наполненных алюмосиликатными волокнами. Это позволяет снизить вес самолета при сохранении прочности и надежности

При проектировании первого сверхзвукового пассажир­ского самолета “Конкорд” перед англо-французскими конструкторами стояла непростая задача: при тре­нии об атмосферу внешняя поверхность самолета будет разогреваться до 120-150 °С. При таком разогреве требова­лось, чтобы поверхность не поддавалась эрозии в течение, по меньшей мере, 20000 часов. Довольно оригинальное решение проблемы было найдено с помощью покрытия поверхностного слоя обшивки самолета тончайшей пленкой фторопласта

По английскому патенту № 2047188 покрытие несущих поверхностей самолетов или лопастей роторов вертоле­тов слоем полиуретана толщиной всего 0,65 мм в 1,5-2 раза повышает их стойкость к дождевой эрозии

Ракета из пластмассы

Углепластик применяется для изготовления оболочки двигателя ракет. Такая оболочка имеет достаточную прочность на растяжение и изгиб, стойкость к вибрациям и пульсации. На трубу наматывается специальная лента из углеволокна. Для этого она предварительно пропитывается эпоксидными смолами. По­сле того, как смола затвердеет, вспомогательный сердечник убирается и получается труба с содержанием углеволокна более двух третей. Далее заготовку наполняется ракетным топливом, к ней присоединяется отсек для приборов и фотокамер, и ракета готова к полету

Первый шлюз из пластмассы.

Он установлен на одном из каналов в районе Быгдощи в Польше. Это первый мировой опыт применения цельнопластмассового шлюза. Шлюз очень хорошо зарекомендовал себя в эксплуатации. Пластмассовые элементы могут использоваться без замены более 20-лет, а конструкции из дубовых балок, применяемые ранее, приходилось менять каждые 6 лет

Соединение полимерных материалов.

Соединение двух пластмассовых панелей – непростая задача. Их можно при­винтить или приклепать, но для этого необходимо заранее сверлить отверстия Их можно приклеить, но тогда необходимо оборудо­вать рабочее место системой вентиляции. Если обе панели термопластичны, то их можно приварить, но и тут необходима вентиляция, тем более, из-за локальных перегревов соединение может оказаться продеструктировавшим и непрочным

Очень хороший способ, а также оборудование для его реализации, предложила французская фирма “Брансон”. Для этого используется генератор ультразвука мощностью 3 кВт, частотой 20 Кгц, а также “звуководы” и сонотроды. Наконечник сонотрода, вибрируя, прони­кает сквозь верхнюю деталь, толщина которой может достигать 8 мм. Входя в нижнюю деталь, он «захватывает» с собой расплав верхнего полимера. При этом энергия ультразвуковых ко­лебаний преобразуется в тепло лишь на небольших участках, поэтому получается точечная сварка

Полимеры

Однако существует много направлений, позволяющих использовать молекулы-гиганты в мирных целях. Так, если полностью нитрованная целлюлоза - это взрывчатое вещество и может применяться только как таковое, то частично нитрованная целлюлоза (пироксилин ) более безопасна в обращении, и ее можно применять не только в военных целях.

Американский изобретатель Джон Уэсли Хайятт (1837-1920), пытаясь завоевать приз, установленный за создание заменителя слоновой кости для биллиардных шаров, прежде всего обратил внимание именно на частично нитрованную целлюлозу. Он растворил ее в смеси спирта и эфира, добавил камфору, чтобы новое вещество легче было обрабатывать. К 1869 г. Хайятт получил то, что он назвал целлулоидом , и завоевал приз . Целлулоид был первой синтетической пластмассой - материалом, который можно отливать в формы .

Однако, как выяснилось, частично нитрованную целлюлозу можно не только формовать в шары, но и вытягивать в волокна и пленки. Французский химик Луи Мари Гиляр Берниго, граф Шар-донне (1839-1924), получил такие волокна, продавливая раствор нитроцеллюлозы через тончайшие отверстия. Растворитель при этом почти сразу же испарялся.

Из полученных волокон можно было ткать материал, который своим блеском напоминал шелк. В 1884 г. Шардонне запатентовал полученный им искусственный шелк . Шардонне назвал эту ткань рейон - излучающая свет, так как ткань блестела и казалось, что она излучает свет.

Появлением пластмассовых пленок мы обязаны американскому изобретателю Джорджу Истмену (1854-1932). Истмен увлекался фотографией. Пытаясь упростить процесс проявления, он начал смешивать эмульсию соединений серебра с желатиной, чтобы сделать эту эмульсию сухой. Полученную таким образом смесь можно было хранить, а следовательно, и готовить впрок. В 1884 г. Истмен заменил стеклянные пластинки на целлулоидные.

Целлулоид невзрывоопасен, но он легко воспламеняется, что может быть причиной пожара, поэтому Истмен начал поиски менее горючих материалов. Когда в целлюлозу вместо нитрогрупп ввели ацетильные группы, полученный продукт остался столь же пластичным, как и нитроцеллюлоза, но он уже не был легко воспламеняющимся. С 1924 г. ацетилцеллюлозные пленки начали использовать в производстве кинофильмов, так как развивающаяся кинопромышленность особенно остро нуждалась в заменителе целлулоида.

Изучая высокомолекулярные природные соединения, химики рассчитывали не только получить их синтетические аналоги, но и открыть новые типы соединений. Одним из методов синтеза молекул-гигантов является полимеризация мономеров (мономер - вещество, молекулы которого способны реагировать между собой или с молекулами других веществ с образованием полимера).

Способ объединения мономеров в гигантскую молекулу можно пояснить хотя бы на примере этилена С 2 Н 4 . Напишем структурные формулы двух молекул этилена:


Представим себе, что атом водорода переместился из одной молекулы в другую, в результате в этой молекуле вместо двойной связи появилась свободная одинарная связь. Свободная связь появилась и у первой молекулы, из которой ушел водород. Поэтому эти две молекулы могут соединиться друг с другом.


Такая молекула содержит уже четыре углеродных атома и одну двойную связь, как и молекула исходного этилена. Следовательно, при взаимодействии этой молекулы с еще одной молекулой этилена также может произойти перемещение атома водорода и разрыв двойной связи. Образующаяся в результате молекула будет содержать шесть атомов углерода и одну двойную связь. Таким способом можно получить последовательно молекулу с восемью, десятью и более атомами углерода. Фактически так можно получать молекулы почти любой заданной длины.

Американский химик Лео Хендрик Бакеланд (1863-1944) искал заменитель шеллака - воскоподобного вещества, выделяемого некоторыми видами тропических насекомых. Для этой цели ему необходим был раствор клейкого дегтеобразного вещества. Бакеланд начал с того, что провел полимеризацию фенола и формальдегида и получил полимер, для которого не смог подобрать растворитель. Этот факт привел его к мысли, что такой твердый, практически нерастворимый и, как выяснилось, не проводящий электричество полимер может оказаться ценным материалом. Так, например, из него можно отливать детали, которые легко будет обрабатывать на станках. В 1909 г. Бакеланд сообщил о полученном им материале, который он назвал бакелит . Эта фенолформальдегидная смола была первой синтетической пластмассой , которая по ряду свойств осталась непревзойденной.

Нашли применение и синтетические волокна. Это направление возглавил американский химик Уоллес Хьюм Карозерс (1896-1937). Вместе с американским химиком Джулиусом Артуром Ньюлендом (1878-1936) он исследовал родственные каучуку эластомеры . Результатом его работ было получение в 1932 г. неопрена - одного из синтетических каучуков .

Продолжая изучение полимеров, Карозерс попытался полимеризовать смесь диаминов и дикарбоновых кислот и получил волокнистый полимер. Длинные молекулы этого полимера содержат комбинации атомов, подобные пептидным связям (см. разд. «Белки») в белке шелка. Вытягивая эти волокна, получают то, что мы сегодня называем найлоном . Карозерс завершил эту работу буквально накануне преждевременной смерти. Разразившаяся вторая мировая война заставила химиков на время забыть об открытии Карозерса. Однако после окончания войны найлон начал вытеснять шелк и вскоре пришел ему на смену (в частности, в производстве чулочного трикотажа).

Первые синтетические полимеры были получены, как правило, случайно, методом проб и ошибок, поскольку и о строении молекул-гигантов, и о механизме полимеризации было в ту пору мало что известно. Первым за изучение строения полимеров взялся немецкий химик Герман Штаудингер (1881-1965) и сделал в этой области немало. Штаудингеру удалось раскрыть общий принцип построения многих высокомолекулярных природных и искусственных веществ и наметить пути их исследования и синтеза. Благодаря работам Штаудингера выяснилось, что присоединение мономеров друг к другу может происходить беспорядочно и приводить к образованию разветвленных цепей, прочность которых значительно ниже.

Начались интенсивные поиски способов получения линейных неразветвленных полимеров. И в 1953 г. немецкий химик Карл Циглер (1898-1973) открыл свой знаменитый титан-алюминиевый катализатор, на котором был получен полиэтилен с регулярной структурой.

Итальянский химик Джулио Натта (1903-1979) модифицировал катализатор Циглера и разработал метод получения нового класса синтетических высокомолекулярных соединений - стерео-регулярных полимеров . Был разработан метод получения полимеров с заданными свойствами.

Одним из главных источников основных органических соединений, необходимых для производства новых синтетических продуктов, является нефть . Эта жидкость известна с античных времен, но чтобы использовать ее в больших количествах, необходимо было открыть способ выкачивания нефти из обширных подземных месторождений. Американский изобретатель Эдвин Лаурентин Дрейк (1819-1880) первым в 1859 г. начал бурить нефтяные скважины. Столетие спустя нефть стала основным источником органических соединений, источником тепла и энергии.

Еще более важным источником органических продуктов является каменный уголь, хотя в век двигателей внутреннего сгорания мы обычно забываем о нем. Русский химик Владимир Николаевич Ипатьев (1867-1952) на рубеже веков начал исследовать сложные углеводороды, содержащиеся в нефти и каменноугольном дегте, и, в частности, изучать их реакции, идущие при высоких температурах. Немецкий химик Фридрих Карл Рудольф Бергиус (1884-1949), используя данные Ипатьева, разработал в 1912 г. практические способы обработки каменного угля и нефти водородом с целью получения бензина.

Однако мировые запасы ископаемого топлива (каменный уголь плюс нефть) ограничены и невосполнимы. Все прогнозы говорят о том, что наступит день, когда запасы ископаемого топлива будут исчерпаны, и что этот день не за горами, особенно если учесть, что численность населения земли быстро увеличивается, а, следовательно, увеличивается и потребность в энергии .

Термин "полимерия" был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. "Истинные" синтетические полимеры к тому времени ещё не были известны.

Ряд полимеров был, по-видимому, получен ещё в первой половине XIX в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е., собственно, к образованию полимеров (до сих пор полимеры часто называли "смолами"). Первые упоминания о синтетических полимерах относятся к 1838 () и 1839 (полистирол).

Химия полимеров возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 1860-х гг.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. А.М. Бутлеров предложил рассматривать способность непредельных соединений к полимеризации в качестве критерия их реакционной способности. Отсюда берут свое начало классические работы в области полимеризационных и изомеризационных процессов А. Е. Фаворского, В. Н. Ипатьева и С. В. Лебедева. От исследований нефтяных углеводородов В. В. Марковниковым и затем Н. Д. Зелинским протягиваются нити к современным работам по синтезу всевозможных мономеров из нефтяного сырья.

Здесь следует отметить, что с самого начала промышленне производство полимеров развивалось по двум направлениям: путем переработки природных полимеров в искусственные полимерные материалы и получения синтетических полимеров из органических низкомолекулярных соединений. В первом случае крупнотоннажное производство базируется на целлюлозе, первый материал из физически модифицированной целлюлозы – целлофан, был получен в 1908 г.

Наука о синтезе полимеров из мономеров оказалась куда более масштабным явлением в плане стоящих перед учеными задач.

Несмотря на изобретение в начале XX века способа получения фенолформальдегидных смол Бакеландом не существовало понимания процесса полимеризации. Лишь в 1922 г. немецкий химик Герман Штаудингер выдвинул определение макромолекула – длинной конструкции из атомов, связанных ковалентными связями. Он же первым установил взаимосвязь между молекулярной массой полимера и вязкостью его раствора. Впоследствие американский химик Герман Марк исследовал форму и размер макромолекул в растворе.

Тогда же в 1920-1930-е гг. благодаря передовым работам Н. Н. Семенова в области цепных реакций было обнаружено глубокое сходство механизма полимеризации с цепными реакциями, которые изучал Н. Н. Семенов.

В 30-х гг. было доказано существование свободнорадикального (Г.Штаудингер и др.) и ионного (Ф.Уитмор и др.) механизмов полимеризации.

В СССР в середине 1930-х гг. С.С. Медведев сформулировал понятие «инициирование» полимеризации как результатк распада перекисных соединений с образованием радикалов. Им же были оценены количественно реакции передачи цепи как процессы регулирования молекулярной массы. Исследования механизмов свободнорадикальной полимеризации проводились вплоть до 1950-х гг.

Большую роль в развитии представлений о поликонденсации сыграли работы У.Карозерса, который ввел в химию высокомолекулярных соединений понятия функциональности мономера, линейной и трехмерной поликонденсации. Он же в 1931 синтезировал совместно с Дж.А.Ньюландом хлоропреновый каучук (неопрен) и в 1937 разработал метод получения полиамида для формования волокна типа найлон.

В 1930-е гг. развивалось и учение о структуре полимеров, А.П.Александров впервые развил в 30-х гг. представления о релаксационной природе деформации полимерных тел; В.А.Каргин установил в конце 30-х гг. факт термодинамической обратимости растворов полимеров и сформулировал систему представлений о трех физических состояниях аморфных высокомолекулярных соединений.

До Второй мировой войны наиболее развитые страны освоили промышленное производство СК, полистирола, поливинилхлорида и полиметилметакрилата.

В 1940-е гг. американский физико-химик Флори внес значительный вклад в теорию растворов полимеров и статистическую механику макромолекул, Флори создал методы определения строения и свойств макромолекул из измерений вязкости, седиментации и диффузии.

Эпохальным событием в химии полимеров стало открытие К. Циглером в 1950-е гг. металлокомплексных катализаторов, что привело к появлению полимеров на основе полиолефинов: полиэтилена и полипропилена, которые стали получать при атмосферном давлении. Затем были внедрены в массовое производство полиуретаны (в частности поролон), а также полисилоксаны.

В 1960-1970-е гг. получены уникальные полимеры – ароматические полиамиды, полиимиды, полиэфиркетоны, содержащие в своей структуре ароматические циклы, и характеризующиеся огромной прочностью и термостойкостью. В частности, в 1960-е гг. Каргин В.А. и Кабанов В.А. положили начало новому виду полимерообразования – комплексно-родикальной полимеризации. Ими было показано, что активность непредельных мономеров в реакциях радикальной полимеризации может быть значительно повышена путем связывания их в комплексы с неорганическими солями. Так были получены полимеры неактивных мономеров: пиридина, хинолина и др.

Первое знакомство человека с каучуком произошло в XV веке. На о. Гаити Х. Колумб и его спутники видели ритуальные игры туземцев с мячами из эластичной древесной смолы. По запискам Шарлю Мари де ля Кондамина, опубликованным в 1735 г. европейцы узнали, что дерево, из которого добывается каучук, на языке перуанских индейцев называется «Heve». При надрезании коры дерева выделяется сок, который по-испански назван латексом. Латекс применяли для пропитки тканей.

Во начале XIX века началось исследование каучука. В 1823 г. англичанин Карл Макинтош организовал производство непромокаемых прорезиненных тканей и плащей на их основе. Англичанин Томас Гэнкок в 1826 г. открыл явление пластикации каучука. Потом в пластифицированный каучук стали вводить различные добавки и возникла технология наполненных резиновых смесей. В 1839 г. Американец Чарльз Гудьир открыл способ получения нелипкой прочной резины путем нагревания каучука с оксидом свинца и серой. Процесс был назван вулканизацией. Во второй половине XIX века спрос на натуральный каучук быстро нарастает. В 1890-е гг. появляются первые каучуковые шины. Возникает большое количество каучуковых плантаций в различных жарких странах (в настоящее время Индонезия и Малайзия) лидируют в производстве натурального каучука.

В 1825 г. Майкл Фарадей, исследуя пиролиз натурального каучука, установил, что его простейшая формула C 5 H 8 . В 1835 г. немецкий химик Ф.К. Химмли впервые выделил изопрен C 5 H 8 . В 1866 г. французский химик Пьер Бертло получил бутадиен, пропуская через нагретую железную трубку смесь этилена и ацетилена.

В 1860-1870-х гг. А.М. Бутлеров выяснил структуру многих олефинов и многие из них заполимеризовал, в частности изобутилен под действием серной кислоты.

В 1878 г. русский химик А.А. Кракау открыл способность полимеризации непредельных соединений под действием щелочных металлов.

В 1884 г английский химик У. Тилден доказал, что получал изопрен при термическом разложении скипидара, он же установил состав и строение изопрена, высказал мысль о том, что склонность изопрена к полимеризации может быть использована для полученя синтетического каучука. В 1870-е гг. французский химик Г. Бушарда выделил из продуктов термического разложения каучука изопрен, действием на него высокой температуры и соляной кислоты он получил каучукообразный продукт.

В 1901-1905 гг. В. Н. Ипатьев синтезировал бутадиен из этилового спирта при высоких 400-500 атм давлениях. Он же сумел первым в 1913 г. заполимеризовать этилен, что не удавалось до этого никому из исследователей.

В 1908 г. М.К. Кучеров получил натрий-изопреновый каучук (результат опубликовал в 1913 г.).

В 1909 г. С.В. Лебедев впервые продемонстрировал каучук полученный из дивинила.

Еще в 1899 г И. Л. Кондаков разработал метод получения диметилбутадиена и доказал, что последний способен превращаться в каучукоподобное вещество под воздействием света, а также некоторых реагентов, например натрия. На основе работ Кондакова в Германии в 1916 г. Фриц Гофман организовал производство т.н. метилкаучука: твёрдого ("Н") и мягкого ("W") синтетического каучука.

В 1910 г Карл Дитрих Гарриес запатентовал способ полимеризации изопрена под воздействием металлического натрия. Он же в 1902 г. разработал метод озонирования каучука и этим методом установил строение различных видов каучуков.

В 1911 г. И. И. Остромысленский получил бутадиен из ацетальдегида. В 1915 г. Бызов Б. В. получил патент на получение бутадиена пиролизом нефти.

Начиная еще со второй половины XIX века, усилия многих химиков разных стран были направлены на изучение способов получения мономеров и способов их полимеризации в каучукообразные соединения. В 1911 г И. И. Остромысленский предложил получение бутадиена из спирта в три стадии с выходом 12%. В России эта работа была оценена очень высоко. Дело в том, что российские химики в противовес западным химикам стремились получить синтетический каучук из бутадиена, а не изопрена. Возможно, что именно благодаря этому и наличию в России большой спиртовой базы, в России стало возможно создание технической базы по производству синтетического каучука.

В 1926 г. ВСНХ СССР объявил конкурс на разработку технологии получения синтетического каучука, в соответствии с условиями которого 1 января 1928 г. необходимо было представить описание процесса и не менее 2 кг каучука полученного по этому способу. Наиболее разработанными оказались проекты Лебедева С. В. и Бызова Б.В. И в той, и в другой проектных работах предусматривалось получение синтетического каучука из бутадиена. Лебедев предлагал получение бутадиена из спирта в одну стадию на разработанном им катализаторе, обладающим дегидрирующими и дегитратирующими свойствами. Бызов предлагал получение бутадиена из углеводородов нефти. Несмотря на большие достижения российских и советских химиков в области переработки нефти, сырьевой базы для производства бутадиена по методу Бызова не было. Поэтому в январе 1931 года Совет труда и обороны принял решение построить три больших однотипных завода СК по методу Лебедева. Был создан Ленинградский опытный завод «Литер Б» (ныне ВНИИСК) на котором в 1931 году была получена первая партия дивинильного каучука. В 1932-1933 гг. заработали заводы СК в Ярославле, Воронеже, Ефремове, Казани.

В 1941 г. был пущен завод хлоропренового каучука в Ереване.

В 1935 г. наступила новая эра в про­изводстве синтетических каучуков - их стали делать из сополимеров, полу­чаемых радикальной полимеризацией 1,3-бутадиена в присутствии стирола, акрилонитрила и других соединений. В 1938 было организовано промышленное производство бутадиен-стирольных каучуков в Германии, в 1942 - крупное производство синтетического каучука в США.

Здесь следует отметить, что после 1945 г. наметился постепенный отход от получения бутадиена из пищевого спирта с постепенным переходом к получению мономеров из нефти.

В 1948 г. Коротков установил, что физико-механические свойства полимера улучшаются с увеличением содержания звеньев присоединения в положения цис-1,4, наибольшее количество цис-звеньев образуется в присутствии литийорганических соединений.

В 1955 г. К. Циглер открыл новые каталитические системы, ведущие процесс полимеризации по ионному механизму с получением полимерных материалов, подобных тем, которые получены в присутствии лития. В дальнейшем эти исследования были углублены в Италии в лаборатории Джулио Натта.

Отечественный промышленный полиизопрен, полученный на литиевых катализаторах, был назван СКИ, а полученный в присутствии каталитических систем Циглера-Натта был известен под аббревиатурой СКИ-3.

В 1956 г. был предложен метод получения стереорегулярных полибутадиеновых каучуков (СКД), которые по морозостойкости, устойчивости к истиранию превосходили резины, полученные из натурального каучука и СКИ-3.

Были получены полимеры на основе двойных сополимеров этилена и пропилена – СКЭПы (1955-1957). В этих каучуках отсутствуют двойные связи в структуре полимера, по этой причеине резины на их основе оказываются очень устойчивыми в агрессивных средах, вдобавок они прочны на истирание.

В 1960-е гг. был освоен промышленный выпуск каучуков СКД и СКИ-3 в Стерлитамаке, Тольятти, Волжске. В целом все эти предприятия использовали в качестве исходного сырья мономеры, полученные уже из нефти, а не из спирта.

Сополимеры бутадиена и изопрена начали быст­ро вытеснять натуральный каучук в произ­водстве автомобильных шин. Так, если в 1950 доля К. с. в общем объёме производства натурального и синтетического каучуков составляла около 22%, в 1960 около 48%, то к 1971 она возросла до ~60% (5 млн. т синтетического и 3 млн. т натурального каучука), в 1985 г. в мире было произведено 12 млн т синтетического каучука и толь­ко 4 млн т натурального. К началу 1970-х гг. сложилось мнение, что синтетические каучуки вытеснят натуральные. Однако в результате нефтяного эмбарго в 1973 г. цены на нефть резко возрасли и одновременно в Малайзии были достигнуты большие успехи в производстве натурального каучука, позволявшие резко снизить его цену. И по сей день избавиться от натурального каучука в шинной промышленности не удается. Так, Японии, не имеющей собственных природных запасов нефти, выгоднее закупать натуральный каучук в Малайзии и Индонезии. России же, располагающей большими запасами нефти, ни в коем случае не следует пренебрегать имеющимися технологиями и мощностями по производству синтетического каучука.

Напряженные разработки в области технологии СК в СССР и Германии до Второй мировой войны объснялись тем, что указанные страны понимали, что в случае войны они будут отрезаны от поставок натурального каучука. США подходило к вопросу по другому, США стремилось создать у себя стратегический запас натурального каучука. Как показала жизнь, запасов оказалось недостаточно, когда Япония вторглась в 1941 г. в Юго-Восточную Азию. Из уже написанного ясно, что каучук играл важную роль в мировой политике.

Фенолформальдегидные смолы.

Первый в мире процесс промышленного производства полностью синтетического полимера был запатентован Л. Бакеландом в 1907 г. Л. Бакеланд запатентовал т.н. бакелитовую смолу – продукт конденсации фенола и формальдегида, превращающийся при нагревании в трехмерный полимер. В течение десятилетий бакелит использовался в качестве материала для корпусов электротехнических приборов, сейчас используется как связующее и адгезив. Первооткрывателем же реакции между фенолом и формальдегидом был А. Байер, наблюдавший образование смолы в этой реакции еще в 1872 г, но он результатом не заинтересовался. Начиная с 1940-х и до середины 1970-х гг. в связи с появлением новых видов пластмасс доля фенольных смол быстро сокращалась. Но начиная с 1975 г. вновь начался стремительный рост производства этих полимеров для нужд авиации, ракетной техники, космонавтики и др., а также в связи с падением запасов нефти. Дело в том, что фенол получают из каменного угля, запасы которого несравненно превосходят запасы нефти. Кроме того, на основе фенолформальдегидных смол существовал(ет) большой ассортимент материалов для нужд теплоизоляции (ДСП, ДВП), что стало актуальным в борьбе с энергетическим кризисом.

Полиэтилен и полипропилен.

Этилен чрезвычайно тяжело полимеризуется. Впервые полимеризация этилена наблюдалась в 1933 г. как побочная реакция. Уже в 1937 г. английские химики разработали первый промышленный способ производства полиэтилена, а в 1946 г. начался выпуск полиэтиленовых бутылок.

В 1954 г. Карл Циглер и Джулио Натта открыли новый металлоорганический катализатор, благодаря че­му им удалось осуществить ионную полимеризацию полиэтилена при ат­мосферном давлении и температуре 60 °С.

Они же получили стереорегулярный полипропилен, используя металлокомплексный катализатор.

Политетрафторэтилен (тефлон).

Был случайно открыт в 1938 г Р. Планкеттом, который наблюдал спонтанное образование в баллонах с тетрафторэтиленом белой порошкообразной массы. В 1941 г. он запатентовал свою технологию (США, фирма DuPont). В 1954 г. французский инженер Марк Грегор предложил использовать тефлон в качестве покрытий для посуды. Тефлон чрезвычайно инертен химически, а его температура размягчения почти достигает 300 0 С.

Полистирол.

В 1866 г. М. Бертло идентифицировал образование твердой массы из стирола при нагревании как процесс полимеризации. В 1946 г. Г. Штаудингер установил механизм этой реакции. Впервые полистирол начали выпускать в Германии в 1931 г.

Полиметилметакрилат.

Полиметилметакрилат (ПММА) или плексиглас или оргстекло был создан в 1928 г. В 1933 г. началось производство ПММА в Германии, в 1936 г. ПММА был получен в СССР в НИИ Пластмасс. Полимер широко применяется в авиационной промышленности, в автомобильной промышленности, в строительстве.

Поливинилхлорид.

Впервые полимеризацию винилхлорида осуще­ствил в 1872 г. немецкий химик Эйген Бауман. Заслугой этого исследователя стала разработка спо­соба радикальной полимеризации винилхлорида в присутствии органиче­ских пероксидов. Активное практическое использо­вание поливинилхлорида (ПВХ) началось только с середины XX в. Проблема была в том, что чистый ПВХ обладает многими недостатками. При комнатной температуре он очень хру­пок и неэластичен. Кроме того, его трудно растворить или расплавить, а это сильно затрудняет переработку полимера. В 30-х гг. учёным удалось найти стаби­лизаторы, увеличивающие стойкость ПВХ к действию тепла и света. Новый материал - пластифицированный поливинилхлорид получил широкое распространение.

Первое химическое волокно было получено в 1884 г. французским химиком Н. Шардоне. Основные его исследования связаны с разработкой технологии нитроцеллюлозных волокон (нитрошелка). В 1892 г. был освоен вискозный метод производства волокон. Первые ацетатные волокна начали выпускаться в это же время в Англии и США.

Поливинилхлоридные волокна начали выпускаться в 1934 г., а волокна на основе сополимера винилхлорида с винилацетатом (виньон) с 1937 г. В 1939г. появились полиамидные волокна, а в 1943 г. полиакрилонитрильные (орлон).

Создание технологии волокон связано с именами таких ученых как Клоте, еще в 1913 г. предсказавшим возможность получения волокон из поливинилхлорида и Г. Штаудингера, получившего в 1927 г. волокна из расплава полиоксиметилена и полиэтиленоксида.

В СССР независимо от США и Германии в 1947 г.были опубликованы результаты исследований Кнунянца, Роговина и Ромашевского по получению полиамидных волокон.

В 1936 г была создана технология синтетического полигексаметиленадипамида, на основе которой в 1939 г. началось производство волокна «найлон».

В США в 1939 г. началось производство волокна «найлон-6,6» на основе капролактама.

Технология полиакрилонитрильных волокон разрабатывалась одновременно и независимо в США и Германии, с 1934 г США на заводе фирмы Дюпон начали производство полиамидного волокна. В ФРГ его выпуск начали несколько лет спустя.

В СССР первая партия волокна «капрон» была выпущена в 1948 г., в 1957 г. начала работать первая установка по получению волокна «лавсан», в 1960-е гг. началось производство волокна «нитрон» на основе полиакрилонитрила.

В самом начале предприятия по выпуску химических волокон были узкоспециализированными, но по мере наращивания ассортимента волокон расширялся и профиль заводов химических волокон, они выпускали уже по 3-4 вида волокон.

До середины 1930-х гг. все производство лакокрасочных материалов в нашей стране базировалось на импортном сырье. Только в 1936 г. начало осваиваться производство глифталевых смол для производства соответствующих лаков. Синтез алкидных смол путем взаимодействия глицерина, канифоли и тунгового масла освободил страну от импорта копалов (копал – твердая, похожая на янтарь природная смола).

В 1947-1948 гг. были пущены цеха по получению мочевино-, меламино-, фенолформальдегидных смол в Москве и Ярославле. Началось освоение пентафталевых смол в которых глицерин был заменен на пентаэритрит.

Начиная с 1951 г. началось производство лаков на основе перхлорвиниловых смол для авиационной промышленности и железнодорожного транспорта. В 1950-е гг. были созданы спирторастворимые лаки на основе сополимеров бутилметакрилата с метилметакрилатом, метакриламидом, акрилонитрилом, метакриловой кислотой. Было создано несколько десятков марок лаков, грунтовок и эмалей, в т.ч. лак ДС-583, который выпускают и по сей день. Тогда же было освоено производство А-15 – сополимера хлористого винила с винилацетатом. Сочетание А-15 с эпоксидными смолами позволило создать антикоррозионные краски, сократить количество слоев краски при нанесении.

С 1956 г. автомобильные нитроэмали были полностью заменены на алкидномеламиновые.

В 1963 г. освоено производство эпоксидных смол для нужд лакокрасочной промышленности, а также противообрастающих покрытий на основе хлорированного поливинилхлорида.

В 1976-1980 гг. созданы научно-производственные объединения, самостоятельный научно-исследовательский и проектный институт неорганических пигментов и судовых покрытий.

В настоящее время для изготовления лакокрасочных композиций различного назначения используются почти все виды полимерных материалов: эпоксидные смолы, уретановые эластомеры, хлоропреновые каучуки, фторкаучуки, полиакрилаты, полиорганосилоксаны и др.

1. Энциклопедия полимеров в 3 т. М.: Изд-во «Советская энциклопедия», 1974-1977.

2. Химическая энциклопедия в 5 т. М.: Большая Российская энцикл., 1992.

3. К. Маналов Великие химики в 2 т., М.: Мир, 1986.

4. О. И. Тужиков История и методология развития полимерной науки и промышленности, Волгоград: 1999.

5. В. Штрубе. Пути развития химии в 2 т. т.2., М.: Мир, 1984.

6. Дж. Х. Бристон, Л. Л. Катан Полимерные пленки М.: Химия, 1993.

7. Ю. Д. Семчиков Высокомолекулярные соединения М.: Издательский центр «Академия», 2003.