Все процессы, происходящие в бизнесе, взаимосвязаны. Между ними прослеживается как прямая, так и косвенная связь. Различные экономические параметры изменяются под действием различных факторов. Факторный анализ (ФА) позволяет выявить эти показатели, проанализировать их, изучить степень влияния.

Понятие факторного анализа

Факторный анализ – это многомерная методика, позволяющая изучить взаимосвязи между параметрами переменных. В процессе происходит исследование строения ковариационных или корреляционных матриц. Факторный анализ используется в самых различных науках: психометрике, психологии, экономике. Основы этого метода были разработаны психологом Ф. Гальтоном.

Задачи проведения

Для получения достоверных результатов лицу требуется сравнить показатели по нескольким шкалам. В процессе определяется корреляция полученных значений, их сходство и различия. Рассмотрим базовые задачи факторного анализа:

  • Обнаружение существующих значений.
  • Подбор параметров для полноценного анализа значений.
  • Классификация показателей для системной работы.
  • Обнаружение взаимосвязей между результативными и факторными значениями.
  • Определение степени влияния каждого из факторов.
  • Анализ роли каждого из значений.
  • Применение факторной модели.

Исследован должен быть каждый параметр, который влияет на итоговое значение.

Методики факторного анализа

Методы ФА могут использоваться как в совокупности, так и раздельно.

Детерминированный анализ

Детерминированный анализ используется наиболее часто. Связано это с тем, что он достаточно прост. Позволяет выявить логику воздействия основных факторов компании, проанализировать их влияние в количественных значениях. В результате ДА можно понять, какие факторы следует изменить для улучшения эффективности работы компании. Преимущества метода: универсальность, легкость использования.

Стохастический анализ

Стохастический анализ позволяет проанализировать существующие косвенные связи. То есть происходит исследование опосредованных факторов. Метод используется в том случае, если невозможно найти прямые связи. Стохастический анализ считается дополнительным. Он используется только в некоторых случаях.

Что понимается под косвенными связями? При прямой связи при изменении аргумента изменятся и значение фактора. Косвенная связь предполагает изменение аргумента с последующим изменением сразу нескольких показателей. Метод считается вспомогательным. Связано это с тем, что специалисты рекомендуют изучать в первую очередь прямые связи. Они позволяют составить более объективную картину.

Этапы и особенности факторного анализа

Анализ по каждому фактору дает объективные результаты. Однако применяется он крайне редко. Связано это с тем, что в процессе выполняются сложнейшие вычисления. Для их проведения потребуется специальное программное обеспечение.

Рассмотрим этапы ФА:

  1. Установление цели проведения расчетов.
  2. Отбор значений, которые непосредственно или косвенно влияют на конечный результат.
  3. Классификации факторов для комплексного исследования.
  4. Обнаружение зависимости между выбранными параметрами и конечным показателем.
  5. Моделирование взаимных связей между результатом и факторами, влияющими на него.
  6. Определение степени воздействия значений и оценка роли каждого из параметров.
  7. Использование образованной факторной таблицы в деятельности предприятия.

К СВЕДЕНИЮ! Факторный анализ предполагает сложнейшие вычисления. Поэтому лучше доверить его проведение профессионалу.

ВАЖНО! Крайне важно при проведении расчетов правильно отобрать факторы, которые влияют на результат деятельности предприятия. Отбор факторов зависит от определенной сферы.

Факторный анализ рентабельности

ФА рентабельности проводится для анализа рациональности распределения ресурсов. В результате можно определить, какие факторы наибольшим образом влияют на конечный результат. В результате можно оставить только те факторы, которые наилучшим образом воздействуют на эффективность. На основании полученных данных можно изменить ценовую политику компании. На себестоимость продукции могут влиять следующие факторы:

  • постоянные издержки;
  • переменные издержки;
  • прибыль.

Уменьшение издержек провоцирует повышение прибыли. При этом себестоимость не изменяется. Можно сделать вывод о том, что на прибыльность влияют имеющиеся издержки, а также объем проданной продукции. Факторный анализ позволяет определить степень влияния этих параметров. Когда имеет смысл его проводить? Основной повод к проведению – уменьшение или повышение прибыльности.

Факторный анализ проводится посредством следующей формулы:

Rв= ((Вт-СБ -КРБ-УРБ)/ Вт) - (ВБ-СБ-КРБ-УРБ)/ВБ, где:

ВТ – выручка за нынешний период;

СБ – себестоимость за нынешний период;

КРБ – коммерческие траты за нынешний период;

УРБ – управленческие траты за предшествующий период;

ВБ – выручка за предшествующий период;

КРБ – коммерческие траты за предшествующий период.

Иные формулы

Рассмотрим формулу расчета степени воздействия себестоимости на прибыльность:

Rс= ((Вт-СБот -КРБ-УРБ)/ Вт) - (Вт-СБ-КРБ-УРБ)/Вт ,

СБот – это себестоимость продукции за нынешний период.

Формула для расчета влияния управленческих трат:

Rур= ((Вт-СБ -КРБ-УРот)/ Вт) - (Вт-СБ-КРБ-УРБ)/Вт ,

УРот – это управленческие траты.

Формула для вычисления степени воздействия коммерческих издержек:

Rк= ((Вт-СБ -КРо-УРБ)/ Вт) - (Вт-СБ-КРБ-УРБ)/Вт ,

КРо – это коммерческие траты за предыдущее время.

Совокупное воздействие всех факторов высчитывается по следующей формуле:

Rоб=Rв+Rс+Rур+Rк.

ВАЖНО! При расчетах имеет смысл высчитывать влияние каждого фактора в отдельности. Результаты общего ФА имеют небольшую ценность.

Пример

Рассмотрим показатели организации за два месяца (за два периода, в рублях). В июле доход организации составил 10 тысяч, себестоимость продукции – 5 тысяч, административные траты – 2 тысячи, коммерческие траты – 1 тысяча. В августе доход компании составил 12 тысяч, себестоимость продукции – 5,5 тысяч, административные траты – 1,5 тысячи, коммерческие траты – 1 тысяча. Проводятся следующие расчеты:

R=((12 тысяч-5,5 тысяч-1 тысяча-2 тысячи)/12 тысяч)-((10 тысяч- 5,5 тысяч-1 тысяча-2 тысячи)/10 тысяч)=0,29-0,15=0,14

Из этих расчетов можно сделать вывод о том, что прибыль организации повысилась на 14%.

Факторный анализ прибыли

Р = РР+ РФ + РВН, где:

Р –прибыль или убыток;

РР – прибыль от реализации;

РФ – результаты финансовой деятельности;

РВН – сальдо доходов и расходов от внереализационных действий.

Затем нужно определить результат от продажи товаров:

РР = N – S1 –S2, где:

N – выручка от продажи товаров по отпускным ценам;

S1 – себестоимость проданной продукции;

S2 – коммерческие и управленческие траты.

Ключевым фактором при расчете прибыли является оборот компании по продаже компании.

К СВЕДЕНИЮ! Факторный анализ крайне сложно проводить вручную. Для него можно использовать специальные программы. Самая простая программа для расчетов и автоматического анализа – Microsoft Excel. В ней есть инструменты для анализа.

Введение в факторный анализ

В течение последних лет факторный анализ нашел свое применение среди широкого круга исследователей в основном благодаря развитию высокоскоростных компьютеров и пакетов статистических программ (например, DATATEXT, BMD, OSIRIS, SAS и SPSS). Это также коснулось большой группы пользователей, не имеющих соответствующей математической подготовки, но, тем не менее, заинтересованных в использовании потенциальных возможностей факторного анализа в своих исследованиях (Harman, 1976; Horst, 1965; Lawley и Maxswel, 1971; Mulaik, 1972).

Факторный анализ предполагает, что изучаемые переменные представляют собой линейную комбинацию некоторых скрытых (латентных) ненаблюдаемых факторов. Иными словами, существует система факторов и система изучаемых переменных. Определенная зависимость между этими двумя системами позволяет посредством факторного анализа с учетом имеющейся зависимости получать выводы по изучаемым переменным (факторам). Логическая сущность этой зависимости состоит в том, что каузальная система факторов (система независимых и зависимых переменных) всегда имеет уникальную корреляционную систему изучаемых переменных, а не наоборот. Только при жестко ограниченных условиях, налагаемых на факторный анализ, возможна недвусмысленная интерпретация каузальных структур по факторам на наличие корреляции между изучаемыми переменными. Кроме этого, существуют проблемы и другой природы. Например, при сборе эмпирических данных возможно допущение разного рода ошибок и неточностей, что в свою очередь затрудняет работу по выделению скрытых ненаблюдаемых параметров и их дальнейшего исследования.

Что же такое факторный анализ? Факторный анализ относится к множеству статистических техник, основная задача которых состоит в представлении множества изучаемых признаков в виде сокращенной системы гипотетических переменных. Факторный анализ - исследовательский эмпирический метод, который преимущественно находит свое применение в социальных и психологических дисциплинах.

В качестве примера использования факторного анализа можно рассмотреть изучение свойств личности с помощью психологических тестов. Свойства личности не поддаются прямому измерению, о них можно судить только на основании поведения человека, ответов на те или иные вопросы и т.д. Для объяснения собранных эмпирических данных их результаты подвергаются факторному анализу, который и позволяет выявить те личностные свойства, которые оказывали влияние на поведение испытуемых в проведенных опытах.

Первым этапом факторного анализа, как правило, является выбор новых признаков, которые являются линейными комбинациями прежних и «вбирают» в себя большую часть общей изменчивости наблюдаемых данных, а поэтому передают большую часть информации, заключенной в первоначальных наблюдениях. Обычно это осуществляют с помощью метода главных компонент, хотя иногда используют и другие приемы (например, метод главных факторов, метод максимального правдоподобия).

    Метод главных компонент– статистический прием, позволяющий преобразовывать исходные переменные в их линейную комбинацию (GeorgH.Dunteman). Цель метода – получить сокращенную систему исходных данных, которая намного проще для понимания и дальнейшей статистической обработки. Этот подход был предложен Пирсоном (1901) и независимо от него получил свое дальнейшее развитие у Хотеллинга (1933). Автор пытался минимизировать использование матричной алгебры при работе с данным методом.

Основная цель метода главных компонент – выделение первичных факторов и определение минимального числа общих факторов, которые удовлетворительно воспроизводят корреляции между изучаемыми переменными. Результат данного шага – матрица коэффициентов факторных нагрузок, представляющих собой в ортогональном случае коэффициенты корреляции между переменными и факторами. При определении числа выделяемых факторов используется следующий критерий: выделяются только факторы с собственными значениями больше указанной константы (как правило, единицы).

Однако обычно факторы, полученные методом главных компонент, не поддаются достаточно наглядной интерпретации. Поэтому следующим шагом факторного анализа является преобразование (вращение) факторов таким образом, чтобы облегчить их интерпретацию. Вращение факторов состоит в нахождении наиболее простой факторной структуры, то есть такого варианта оценки факторных нагрузок и остаточных дисперсий, который и дает возможность содержательно интерпретировать общие факторы и нагрузки.

    Наиболее часто исследователями в качестве метода вращения используется метод варимакс. Это метод, позволяющий, с одной стороны, за счет минимизации разброса квадратов нагрузок для каждого фактора, получить упрощенную факторную структуру за счет увеличения больших и уменьшения малых факторных нагрузок, с другой стороны.

Итак, основные цели факторного анализа:

    сокращение числа переменных (редукция данных);

    определение структуры взаимосвязей между переменными, т.е. классификация переменных .

Поэтому факторный анализ используется или как метод сокращения данных или как метод классификации.

Практические примеры и советы по применению факторного анализа можно, найти в книге Стивенса (Stevens, 1986); более подробное описание приводят Кули и Лонес (Cooley, Lohnes, 1971); Харман (Harman, 1976); Ким и Мюллер (Kim, Mueller, 1978a, 1978b); Лоули и Максвелл (Lawley, Maxwell, 1971); Линдеман, Меренда и Голд (Lindeman, Merenda, Gold, 1980); Моррисон (Morrison, 1967) и Мулэйк (Mulaik, 1972). Интерпретация вторичных факторов в иерархическом факторном анализе, как альтернатива традиционному вращению факторов, дана Верри (Wherry, 1984).

Вопросы подготовки данных для применения

факторного анализа

Рассмотрим ряд вопросов и кратких ответов в рамках использования факторного анализа.

    Какой уровень измерений требует факторный анализ или, иными словами, в каких шкалах измерений должны представляться данные для факторного анализа?

Факторный анализ требует, чтобы переменные были представлены в интервальной шкале (Stevens, 1946) и отвечали нормальному распределению. Это требование предполагает также, что в качестве входных данных используются ковариационные или корреляционные матрицы.

    Должен ли исследователь избегать использования факторного анализа, когда метрическая основа переменных определена неточно, т.е. данные представлены в порядковой шкале?

Нет необходимости. Многие переменные, представляющие, например, измерения мнений испытуемых по большому количеству тестов, не имеют точно установленной метрической базы. Однако, в общем, предполагается, что многие «порядковые переменные» могут содержать числовые значения, не искажающие и даже сохраняющие основные свойства изучаемого признака. Задачи исследователя: а) правильно определить число рефлексивно выделяемых порядков (уровней); б) учесть, что сумма допущенных искажений будет включена в корреляционную матрицу, являющуюся основой входных данных факторного анализа; в) коэффициенты корреляции закрепляются в качестве «порядковых» искажений в измерениях (Labovitz, 1967, 1970;Kim, 1975).

Долгое время считалось, что искажения назначаются числовым значениям именно порядковых категорий. Однако это необоснованно, поскольку и для метрических величин возможны искажения, пусть даже минимальные, в процессе проведения эксперимента. В факторном анализе результаты зависят от возможного допущения ошибок, получаемых в процессе измерения, а не их происхождения и соотнесения к данным определенного типа шкал.

    Можно ли использовать факторный анализ для номинальных (дихотомических) переменных?

Многие исследователи утверждают, что использовать факторный анализ для номинальных переменных очень удобно. Во-первых, дихотомические значения (значения, равные «0» и «1») исключают выбор каких-либо иных, отличных от них. Во-вторых, как результат, коэффициент связи является эквивалентом коэффициента корреляции Пирсона, который и выступает в качестве числового значения переменной для факторного анализа.

Однако однозначно положительного ответа на данный вопрос нет. Дихотомические переменные сложно выразить в рамках аналитической факторной модели: каждая переменная имеет значение весовой нагрузки, по крайней мере, двух основных факторов - общего и частного (Kim,Muller). Даже если эти факторы имеют два значения (что довольно редко встречается в реальных факторных моделях), то итоговые результаты в наблюдаемых переменных должны содержать, как минимум, четыре различных значения, которые, в свою очередь, и оправдывают противоречивость использования номинальных переменных. Поэтому факторный анализ для таких переменных используется с целью получения ряда эвристических критериев.

    Сколько должно быть переменных для каждого гипотетически построенного фактора?

Предполагается, что для каждого фактора должно быть, по крайней мере, три переменные. Но это требование опускается, если факторный анализ используется для подтверждения какой-либо гипотезы. В общем, исследователи едины в том, что необходимо иметь, по крайней мере, вдвое больше переменных, чем факторов.

Еще один момент касательно данного вопроса. Чем больше размер выборки, тем достовернее значение критерия ХИ -квадрат. Результаты считаются статистически значимыми, если выборка включает как минимум 51 наблюдение. Таким образом:

N-n-150,(3.33)

где N – размер выборки (число измерений),

n – количество переменных (Lawley, Maxwell, 1971).

Это, конечно, только общее правило.

    Какой смысл имеет знак факторной нагрузки?

Сам знак не имеет существенного значения и не существует пути для оценки значимости связи между переменной и фактором. Однако знаки переменных, входящих в фактор, имеют специфическое значение относительно знаков других переменных. Различные знаки просто означают, что переменные связаны с фактором в противоположных направлениях.

Например, по результатам факторного анализа было получено, что для пары качеств открытый-замкнутый (многофакторный опросник Кетелла) имеют место соответственно положительная и отрицательная весовые нагрузки. Тогда говорят, что доля качестваоткрытый, в выделенном факторе больше, чем доля качествазамкнутый.

Главные компоненты и факторный анализ

    Факторный анализ как метод редукции данных

Предположим, что проводится (до некоторой степени "глупое") исследование, в котором измеряется рост ста людей в метрах и сантиметрах. Таким образом, имеются две переменные. Если далее исследовать, например, влияние разных пищевых добавок на рост, будет ли целесообразным использовать обе переменные? Вероятно, нет, т.к. рост является одной характеристикой человека, независимо от того, в каких единицах он измеряется.

Предположим, что измеряется удовлетворенность людей жизнью с помощью опросника, содержащего различные пункты. Задаются, например, вопросы: удовлетворены ли люди своим хобби (пункт 1) и как интенсивно они им занимаются (пункт 2). Результаты преобразуются так, что средние по уровню ответы (например, для удовлетворенности) соответствуют значению 100, в то время как ниже и выше средних ответов расположены меньшие и большие значения, соответственно. Две переменные (ответы на два разных пункта) коррелированы между собой. Из высокой коррелированности двух этих переменных можно сделать вывод об избыточности двух пунктов опросника. Это, в свою очередь, позволяет осуществить объединение двух переменных в один фактор.

Новая переменная (фактор) будет включать в себя наиболее существенные черты обеих переменных. Итак, фактически, выполнено сокращение исходного числа переменных и осуществлена замена двух переменных одной. Отметим, что новый фактор (переменная) в действительности является линейной комбинацией двух исходных переменных.

Пример, в котором две коррелированные переменные объединены в один фактор, показывает главную идею факторного анализа или, более точно, анализа главных компонент. Если же пример с двумя переменными распространить на большее число переменных, то вычисления становятся сложнее, однако основной принцип представления двух или более зависимых переменных одним фактором остается в силе.

    Метод главных компонент

Анализ главных компонент является методом сокращения или редукции данных, т.е. методом сокращения числа переменных. Возникает естественный вопрос: сколько факторов следует выделять? Отметим, что в процессе последовательного выделения факторов они включают в себя все меньше и меньше изменчивости. Решение о том, когда следует остановить процедуру выделения факторов, главным образом зависит от точки зрения на то, что считать малой "случайной" изменчивостью. Это решение достаточно произвольно, однако имеются некоторые рекомендации, позволяющие рационально выбрать число факторов (см. раздел Собственные значения и число выделяемых факторов ).

В случае, когда имеются более двух переменных, можно считать, что они определяют трехмерное "пространство" точно так же, как две переменные определяют плоскость. Если имеется три переменные, то можно построить трехмерную диаграмму рассеяния (см. рис. 3.10).

Рис. 3.10. Трехмерная диаграмма рассеяния признака

Для случая более трех переменных, становится невозможным представить точки на диаграмме рассеяния, однако логика вращения осей с целью максимизации дисперсии нового фактора остается прежней.

После того, как найдена линия, для которой дисперсия максимальна, вокруг нее остается некоторый разброс данных и процедуру естественно повторить. В анализе главных компонент именно так и делается: после того, как первый фактор выделен , то есть, после того, как первая линия проведена, определяется следующая линия, максимизирующая остаточную вариацию (разброс данных вокруг первой прямой), и т.д. Таким образом, факторы последовательно выделяются один за другим. Так как каждый последующий фактор определяется так, чтобы максимизировать изменчивость, оставшуюся от предыдущих, то факторы оказываются независимыми друг от друга (некоррелированными или ортогональными ).

    Собственные значения и число выделяемых факторов

Рассмотрим некоторые стандартные результаты анализа главных компонент. При повторных вычислениях выделяются факторы с все меньшей и меньшей дисперсией. Для простоты изложения считают, что обычно работа начинается с матрицы, в которой дисперсии всех переменных равны 1,0. Поэтому общая дисперсия равна числу переменных. Например, если имеется 10 переменных и дисперсия каждой из них равна 1, то наибольшая изменчивость, которая потенциально может быть выделена, равна 10 раз по 1.

Предположим, что при изучении степени удовлетворенности жизнью включено 10 пунктов для измерения различных аспектов удовлетворенности домашней жизнью и работой. Дисперсия, объясненная последовательными факторами, представлена в таблице 3.14:

Таблица 3. 14

Таблица собственных значений

STATISTICA ФАКТОРНЫЙ АНАЛИЗ

Собственные значения (factor.sta) Выделение: Главные компоненты

Значение

Собственные значения

% общей дисперсии

Кумулят. собств. знач.

Кумулят. %

Во втором столбце таблицы 3. 14. (Собственные значения) представлена дисперсия нового, только что выделенного фактора. В третьем столбце для каждого фактора приводится процент от общей дисперсии (в данном примере она равна 10) для каждого фактора. Как видно, первый фактор (значение 1) объясняет 61 процент общей дисперсии, фактор 2 (значение 2) – 18 процентов, и т.д. Четвертый столбец содержит накопленную (кумулятивную) дисперсию.

Итак, дисперсии, выделяемые факторами, названы собственными значениями . Это название происходит из использованного способа вычисления.

Как только получена информация о том, сколько дисперсии выделил каждый фактор, можно возвратиться к вопросу о том, сколько факторов следует оставить. Как говорилось выше, по своей природе это решение произвольно. Однако имеются некоторые общеупотребительные рекомендации, и на практике следование им дает наилучшие результаты.

Критерии выделения факторов

    Критерий Кайзера. Сначала отбираются только те факторы, собственные значения которых больше 1. По существу, это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается. Этот критерий предложен Кайзером (Kaiser, 1960), и является наиболее широко используемым. В приведенном выше примере (см. табл. 3.14) на основе этого критерия следует сохранить только 2 фактора (две главные компоненты).

    Критерий каменистой осыпи является графическим методом, впервые предложенным Кэттелем (Cattell, 1966). Он позволяет изобразить собственные значения в виде простого графика:

Рис. 3. 11. Критерий каменистой осыпи

Оба критерия были изучены подробно Брауном (Browne, 1968), Кэттелем и Джасперсом (Cattell, Jaspers, 1967), Хакстианом, Рожерсом и Кэттелем (Hakstian, Rogers, Cattell, 1982), Линном (Linn, 1968), Тюкером, Купманом и Линном (Tucker, Koopman, Linn, 1969). Кэттель предложил найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «факториальная осыпь» («осыпь» – геологический термин, обозначающий обломки горных пород, скапливающиеся в нижней части скалистого склона). В соответствии с этим критерием можно оставить в рассмотренном примере 2 или 3 фактора.

Какому критерию все-таки следует отдавать предпочтение на практике?Теоретически, можно вычислить характеристики путем генерации случайных данных для конкретного числа факторов. Тогда можно увидеть, обнаружено с помощью используемого критерия достаточно точное число существенных факторов или нет. С использованием этого общего метода первый критерий (критерий Кайзера ) иногда сохраняет слишком много факторов, в то время как второй критерий (критерий каменистой осыпи ) иногда сохраняет слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных.

На практике возникает важный дополнительный вопрос, а именно: когда полученное решение может быть содержательно интерпретировано. Поэтому обычно исследуется несколько решений с большим или меньшим числом факторов, и затем выбирается одно наиболее "осмысленное". Этот вопрос далее будет рассматриваться в рамках вращений факторов.

    Общности

На языке факторного анализа доля дисперсии отдельной переменной, принадлежащая общим факторам (и разделяемая с другими переменными) называется общностью . Поэтому дополнительной работой, стоящей перед исследователем при применении этой модели, является оценка общностей для каждой переменной, т.е. доли дисперсии, которая является общей для всех пунктов. Тогда доля дисперсии , за которую отвечает каждый пункт, равна суммарной дисперсии, соответствующей всем переменным, минус общность (Harman, Jones, 1966).

    Главные факторы и главные компоненты

Термин факторный анализ включает как анализ главных компонент, так и анализ главных факторов. Предполагается, что, в целом, известно сколько факторов следует выделить. Можно узнать (1) значимость факторов, (2) можно ли интерпретировать их разумным образом и (3) как это сделать. Чтобы проиллюстрировать, каким образом это может быть сделано, производятся действия "в обратном порядке", то есть, начинают с некоторой осмысленной структуры, а затем смотрят, как она отражается на результатах.

Основное различие двух моделей факторного анализа состоит в том, что в анализе главных компонент предполагается, что должна быть использована вся изменчивость переменных, тогда как в анализе главных факторов используется только изменчивость переменной, общая и для других переменных.

В большинстве случаев эти два метода приводят к весьма близким результатам. Однако анализ главных компонент часто более предпочтителен как метод сокращения данных, в то время как анализ главных факторов лучше применять с целью определения структуры данных.

Факторный анализ как метод классификации данных

    Корреляционная матрица

Первый этап факторного анализа предусматривает вычисление корреляционной матрицы (в случае нормального выборочного распределения). Вернемся к примеру об удовлетворенности и рассмотрим корреляционную матрицу для переменных, относящихся к удовлетворенности на работе и дома.

Возникновение и развитие факторного анализа тесно связано с измерениями в психологии. Длительное время факторный анализ и воспринимался как математическая модель в психологической теории интеллекта. Лишь начиная с 50-х годов ХХ столетия, одновременно с разработкой математического обоснования факторного анализа, этот метод становится общенаучным. К настоящему времени факторный анализ является неотъемлемой частью любой серьезной статистической компьютерной программы и входит в основной инструментарий всех наук, имеющих дело с многопараметрическим описанием изучаемых объектов, таких, как социология, экономика, биология, медицина и другие.

Основная идея факторного анализа была сформулирована еще Ф. Гальтоном , основоположником измерений индивидуальных различий. Она сводится к тому, что если несколько признаков, измеренных на группе индивидов, изменяются согласованно, то можно предположить существование одной общей причины этой совместной изменчивости - фактора как скрытой (латентной), непосредственно не доступной измерению переменной.

Таким образом, главная цель факторного анализа - уменьшение размерности исходных данных с целью их экономного описания при условии минимальных потерь исходной информации. Результатом факторного анализа является переход от множества исходных переменных к существенно меньшему числу новых переменных - факторов. Фактор при этом интерпретируется как причина совместной изменчивости нескольких исходных переменных.

Если исходить из предположения о том, что корреляции могут быть объяснены влиянием скрытых причин - факторов, то основное назначение факторного анализа - анализ корреляций множества признаков.

Одна из основных задач факторного анализа – интерпретация факторов. Ее решение заключается в идентификации факторов через исходные переменные. Осуществляется по результатам обработки с помощью факторных нагрузок. Факторные нагрузки – аналоги коэффициентов корреляции, показывают степень взаимосвязи соответствующих переменных и факторов. Чем больше абсолютная величина факторной нагрузки, тем сильнее связь переменной с фактором, тем больше данная переменная обусловлена действием соответствующего фактора. Каждый фактор идентифицируется по тем переменным, с которыми он в наибольшей степени связан, то есть по переменным, имеющим по этому фактору наибольшие нагрузки. Идентификация фактора заключается, как правило, в присвоении ему имени, обобщающего по смыслу наименования входящих в него переменных.

Если исследователя интересует только структура измеренных признаков, на этом факторный анализ завершается. Продолжая факторный анализ, исследователь далее может вычислить значения факторов для испытуемых, например, с целью их дифференциации по преобладанию арифметических или вербальных способностей.



Выбирая факторный анализ как средство изучения корреляций, исследователь должен отдавать себе отчет в том, что это один из самых сложных и трудоемких методов. Зачастую нет веских оснований предполагать наличие факторов как скрытых причин изучаемых корреляции, и задача заключается лишь в обнаружении группировок тесно связанных переменныx. Тогда целесообразнее вместо факторного анализа использовать кластерный анализ корреляций . Помимо простоты, кластерный анализ обладает еще одним преимуществом: его применение не связано с потерей исходной информации о связях между переменными, что неизбежно при факторном анализе. И уже после выделения групп тесно связанных переменных можно попытаться применить факторный анализ для их объяснения.

Итак, можно сформулировать основные задачи факторного анализа:

1. Исследование структуры взаимосвязей переменных. В этом случае каждая группировка переменных будет определяться фактором, по которому эти переменные имеют максимальные нагрузки.

2. Идентификация факторов как скрытых (латентных) переменных - причин взаимосвязи исходных переменных.

3. Вычисление значений факторов для испытуемых как новых, интегральных переменных. При этом число факторов существенно меньше числа исходных переменных. В этом смысле факторный анализ решает задачу сокращения количества признаков с минимальными потерями исходной информации.

МАТЕМАТИКО-СТАТИСТИЧЕСКИЕ ИДЕИ И ПРОБЛЕМЫ МЕТОДА

Модель главных компонент лежит в основе большинства методов факторного анализа и часто рассматривается как один из его самостоятельных вариантов. Анализ главных компонент преобразует набор коррелирующих исходных переменных в другой набор - некоррелирующих переменных. Проще всего понять суть этого метода, привлекая геометрические представления.

Предположим, у нас имеются две положительно коррелирующие переменные Х и У, измеренные на группе объектов. Тогда график двумерного распределения (рассеивания) этих объектов в осях измеренных признаков (координаты объектов заданы значениями признаков) будет представлять собой эллипс (рис. 1). Главная ось эллипса М 1 , - это прямая, вдоль которой будет наблюдаться наибольший разброс данных. Вдоль второй оси эллипса М 2 , перпендикулярной первой и проходящей через ее середину, будет наблюдаться наименьший разброс данных.

Рисунок 1. Рисунок 2.

Если перед нами стоит задача представления объектов (точек) в терминах только одной размерности (переменной), то главная ось эллипса является наиболее подходящей, так как вдоль нее объекты отличаются друг от друга лучше (дисперсия больше), чем вдоль любой другой прямой, в том числе и вдоль отдельно оси Х или У.

Анализ главных компонент можно представить как преобразование информации, содержащейся в исходных данных. Главную компоненту можно определить как направление, в котором наблюдается наибольший разброс объектов. Представляя объекты в единицах измерения по этой оси, мы теряем минимум информации об отличии объектов друг от друга. Чем сильнее взаимосвязь двух переменных, тем меньше исходной информации теряется при переходе от двух переменных к одной главной компоненте. Если две переменные не коррелируют, то компоненты (оси) являются равнозначными по информативности, и невозможно определить одну из них как «главную» (рис. 2).

При наличии трех и более коррелирующих переменных принцип определения главных компонент тот же, только модель будет не на плоскости, а в - мерном пространстве, и будет представлять собой - мерный эллипсоид.

Проблемы факторного анализа.

1. Проблема числа факторов. Это первая проблема при проведении факторного анализа. Обычно заранее неизвестно, сколько факторов необходимо и достаточно для представления данного набора переменных. Сама же процедура факторного анализа предполагает предварительное задание числа факторов. Следовательно, исследователь должен заранее определить или оценить их возможное количество. Для этого на первом этапе факторного анализа применяется анализ главных компонент и используется график собственных значений. Для определения числа факторов используется два критерия – критерий Кайзера и критерий отсеивания Кеттела. Эти критерии являются лишь примерным ориентиром, окончательное решение о числе факторов применяется после интерпретации факторов.

2. Проблема общности. Это вторая главная проблема факторного анализа. Общность – это часть дисперсии переменной, обусловленная действием общих факторов. Характерность – часть дисперсии, обусловленная спецификой данной переменной и ошибками измерений. Иными словами, общность – это вклад всех факторов в единичную дисперсию переменной. Проблема общностей заключается в том, что они как и число факторов, неизвестны до начала анализа, но должны каким-то образом задаваться заранее, так как величины факторных нагрузок зависят от величин общностей. В зависимости от решения этой проблемы различают разные методы факторного анализа , то есть, разные способы получения факторной структуры при заданном числе факторов. Наиболее часто применимые методы – анализ главных компонент, факторный анализ образов, метод главных осей, метод невзвешенных наименьших квадратов, обобщенный метод наименьших квадратов и метод максимального правдоподобия.

3. Проблема вращения и интерпретации . Это третья основная проблема факторного анализа, решение которой связано с геометрическим представлением факторной структуры. Факторная структура может быть представлена в виде точек-признаков в пространстве факторов. Координаты точки – это факторные нагрузки. Осуществляют поворот осей, чтобы каждая переменная в результате вращения оказалась вблизи оси фактора (варимакс-вращение). В результате вращения каждая переменная имеет нагрузку только по одному фактору. По составу переменных производят интерпретацию факторов.

4. Проблема оценки значений факторов . После интерпретации факторной структуры допустима оценка значений факторов для объектов. Это позволяет перейти к существенно меньшему числу факторов как новых переменных. Это может понадобиться исследователю как для более компактного представления различий между объектами, так и для дальнейшего анализа – регрессионного, дисперсионного и т.д. Для оценки значения фактора используется линейная комбинация значений исходных переменных. Проблема состоит в том, что невозможно точно выразить общий фактор через исходные переменные, можно получить лишь оценку с различной надежностью, так как каждая из переменных содержит кроме общей характерную часть. Факторизация оценки будет тем надежнее, чем больше исходные переменные соответствуют требованиям, предъявляемым к метрическим переменным.

В заключение обзора математических идей и проблем метода следует отметить, что факторный анализ – сложная, но изящная математическая процедура, имеющая достаточное статистическое обоснование. Факторный анализ не добавляет новой информации к эмпирическим данным, только позволяет их интерпретировать.

ПОСЛЕДОВАТЕЛЬНОСТЬ ФАКТОРНОГО АНАЛИЗА

Особенность факторного анализа заключается в неопределенности решения его основных проблем. Нет четких критериев качества, есть лишь рекомендации, которыми руководствуется исследователь. Поэтому факторный анализ – пошаговая процедура, где на каждом шаге принимается решение о дальнейших преобразованиях данных.

Весь процесс факторного анализа можно представить как выполнение шести этапов:

1. Выбор исходных данных. Основное требование – все признаки должны быть измерены в метрической шкале. Недопустима функциональная зависимость и корреляции, близкие к единице (для устранения этих переменных вычисляют матрицу интеркорреляций).

2. Решение проблемы числа факторов. Матрица интеркорреляций обрабатывается с использованием анализа главных компонент, применяются критерии отсеивания.

3. Факторизация матрицы интеркорреляций одним из методов.

4. Вращение факторов и их предварительная интерпретация.

5. Принятие решения о качестве факторной структуры.

6. Вычисление факторных коэффициентов и оценок.

До широкого распространения персональных компьютеров полновесный факторный анализ был экзотической, весьма трудоемкой многоэтапной процедурой, когда очередной шаг исследователь выбирает по результатам выполнения предыдущих этапов. В настоящее время можно контролировать процесс факторного анализа, пользуясь современным программным обеспечением. Для этого не нужны знания программиста и математика, достаточны осведомленность в основных математико-статистических идеях метода и умение «читать» промежуточные и конечные результаты факторного анализа. При этом факторный анализ может быть рекомендован для решения очень широкого круга не только исследовательских, но и практических задач. Перечислим некоторые из них:

· факторный анализ как инструмент интерпретации позволяет быстро выделить группировки (кластеры) взаимосвязанных переменных, решая проблемы корреляционного анализа: наличия множества переменных и множества статистических проверок.

· факторный анализ как альтернатива простого суммирования значений исходных переменных позволяет учитывать реальную структуру данных и избегать излишних потерь драгоценной исходной информации. Затраты времени и сил па такую обработку данных при помощи факторного анализа часто меньше, чем при суммировании баллов «вручную». При этом выигрыш весьма ощутим - в детальности и корректности получаемых результатов.

· факторный анализ как подготовительный этап для прогнозирования позволяет получить некоррелированные интегральные переменные (факторы), наиболее пригодные для применения в регрессионном или дискриминантном анализе.

· факторный анализ при исследовании индивидуальных или межгрупповых различий по множеству признаков позволяет сократить исходное множество признаков до нескольких факторов, по которым различия проявляются наиболее ярко.

Основные положения

Факторный анализ – это один из новых разделов многомерного статистического анализа. Первоначально этот метод разрабатывался для объяснения корреляции между исходными параметрами. Результатом корреляционного анализа является матрица коэффициентов корреляции. При малом числе признаков (переменных) можно провести визуальный анализ этой матрицы. С ростом числа признаков (10 и более) визуальный анализ не даст положительных результатов. Оказывается, что все многообразие корреляционных связей можно объяснить действием нескольких обобщенных факторов, которые являются функциями исследуемых параметров, при этом сами факторы могут быть неизвестны, но их можно выразить через исследуемые признаки. Основоположником факторного анализа является американский ученый Л.Терстоун.

Современные статистики под факторным анализом понимают совокупность методов, которые на основе реально существующей связи между признаками позволяет выявить латентные (скрытые) обобщающие характеристики организационной структуры и механизмы развития изучаемых явлений и процессов.

Пример: предположим, что n автомобилей оценивается по 2 признакам:

x 1 – стоимость автомобиля,

x 2 – длительность рабочего ресурса мотора.

При условии коррелированности x 1 и x 2 в системе координат появляется направленное и достаточно плотное скопление точек, формально отображаемое новыми осями и(Рис.5).

Рис.6

Характерная особенность F 1 и F 2 заключается в том, что они проходят через плотные скопления точек и в свою очередь коррелируют с x 1 x 2 .Максимальное

число новых осей будет равно числу элементарных признаков. Дальнейшие разработки факторного анализа показали, что этот метод может быть с успехом применены в задачах группировки и классификации объектов.

Представление информации в факторном анализе.

Для проведения факторного анализа информация должна быть представлена в виде матрицы размером m x n:

Строки матрицы соответствуют объектам наблюдений (i=), а столбцы – признакам (j=).

Признаки, характеризующие объект имеют разную размерность. Для того, чтобы их привести к одной размерности и обеспечить сопоставимость признаков матрицу исходных данных обычно нормируют, вводя единый масштаб. Самым распространенным способом нормировки является стандартизация. От переменных переходят к переменным

Среднее значение j признака,

Среднеквадратическое отклонение.

Такое преобразование называется стандартизацией.

Основная модель факторного анализа

Основная модель факторного анализа имеет вид:

z j – j -й признак (величина случайная);

F 1 , F 2 , …, F p – общие факторы (величины случайные, нормально распределенные);

u j – характерный фактор;

j1 , j2 , …, jp факторы нагрузки, характеризующие существенность влияния каждого фактора (параметры модели, подлежащие определению);

Общие факторы имеют существенное значение для анализа всех признаков. Характерные факторы показывают, что он относится только к данному -му признаку, это специфика признака, которая не может быть выражена через факторы. Факторные нагрузки j1 , j2 , …, jp характеризуют величину влияния того или иного общего фактора в вариации данного признака. Основная задача факторного анализа – определить факторные нагрузки. Дисперсию S j 2 каждого признака, можно разделить на 2 составляющие:

    первая часть обуславливает действие общих факторов – общность h j 2 ;

    вторая часть обуславливает действие характерного фактора –характерность - d j 2 .

Все переменные представлены в стандартизованном виде, поэтому дисперсия - гопризнака S j 2 = 1.

Если общие и характерные факторы не коррелируют между собой, то дисперсию j-го признака можно представить в виде:

где - доля дисперсии признака, приходящаяся на k -ый фактор.

Полный вклад какого-либо фактора в суммарную дисперсию равен:

Вклад всех общих факторов в суммарную дисперсию:

Результаты факторного анализа удобно представить в виде таблицы.

Факторные нагрузки

Общности

a 11 a 21 … a p1

a 12 a 22 a p2

… … … …

a 1m a 2m a pm

факторов

V 1 V 2 … V p

А - матрица факторных нагрузок. Ее можно получить различными способами, в настоящее время наиболее распространение получил метод главных компонент или главных факторов.

Вычислительная процедура метода главных факторов.

Решение задачи с помощью главных компонент сводится к поэтапному преобразованию матрицы исходных данных X :

Х - матрица исходных данных;

Z – матрица стандартизированных значений признаков,

R – матрица парных корреляций:

Диагональная матрица собственных (характеристических) чисел,

j находят решением характеристического уравнения

Е –единичная матрица,

 j – показатель дисперсии каждой главной компоненты ,

при условии стандартизации исходных данных , тогда=m

U – матрица собственных векторов, которые находят из уравнения:

Реально это означает решение m систем линейных уравнений для каждого

Т.е. каждому собственному числу соответствует система уравнений.

Затем находят V - матрицу нормированных собственных векторов.

Матрицу факторного отображения А вычисляют по формуле:

Затем находим значения главных компонент по одной из эквивалентных формул:

Совокупность из четырех промышленных предприятий оценена по трем характерным признакам:

    среднегодовая выработка на одного работника х 1 ;

    уровень рентабельности х 2 ;

Уровень фондоотдачи х 3.

Результат представлен в стандартизированной матрице Z :

По матрице Z получена матрица парных корреляций R :

    Найдем определитель матрицы парных корреляций(например методом Фаддеева):

    Построим характеристическое уравнение:

    Решая это уравнение найдем:

Таким образом исходные элементарные признаки х 1 , х 2 , х 3 могут быть обобщены значениями трех главных компонент, причем:

F 1 объясняет примерно всей вариации,

F 2 - , аF 3 -

Все три главные компоненты объясняют вариации полностью на 100%.

Решая эту систему находим:

Аналогично строятся системы для  2 и  3 . Для  2 решение системы:

Матрица собственных векторов U принимает вид:

    Каждый элемент матрицы разделим на сумму квадратов элементов j-го

столбца, получим нормированную матрицу V .

Отметим, что должно выполнятся равенство =E .

    Матрицу факторного отображения получим из матричного соотношения

=

По смыслу каждый элемент матрицы А представляет частные коэффициенты матрицы корреляции между исходным признаком x j и главными компонентами F r . Поэтому все элементы .

Из равенства следует условиеr - число компонент .

Полный вклад каждого фактора в суммарную дисперсию признаков равен:

Модель факторного анализа примет вид:

Найдем значения главных компонент (матрицу F ) по формуле

Центр распределения значений главных компонент находится в точке (0,0,0).

Далее аналитические выводы по результатам расчетов следуют уже после принятия решения о числе значащих признаков и главных компоненти определения названий главным компонентам. Задачи распознавания главных компонент, определения для них названий решают субъективно на основе весовых коэффициентовиз матрицы отображенияА .

Рассмотрим вопрос формулировки названий главных компонент.

Обозначим w 1 – множество незначимых весовых коэффициентов, в которое включаются близкие к нулю элементы,,

w 2 - множество значимых весовых коэффициентов,

w 3 – подмножество значимых весовых коэффициентов, не участвующих в формировании названия главной компоненты.

w 2 - w 3 – подмножество весовых коэффициентов, участвующих в формировании названия.

Вычисляем коэффициент информативности для каждого главного фактора

Набор объяснимых признаков считаем удовлетворительным, если значения коэффициентов информативности лежат в пределах 0,75-0,95.

a 11 =0,776 a 12 =-0,130 a 13 =0,308

a 12 =0,904 a 22 =-0,210 a 23 =-0,420

а 31 =0,616 а 32 =0,902 а 33 =0,236

Для j=1 w 1 = ,w 2 ={a 11 ,a 21 ,a 31 },

.

Для j=2 w 1 ={ a 12 , a 22 }, w 2 ={ а 32 },

Для j=3 w 1 ={ а 33 }, w 2 ={a 13 ,a 33 },

Значениями признаков x 1 , x 2 , x 3 определяется состав главной компоненты на 100%. при этом наибольший вклад признакаx 2 , смысл которого-рентабельность. корректным для названия признака F 1 будет эффективность производства .

F 2 определяется компонентой x 3 (фондоотдача), назовем ее эффективность использования основных производственных средств .

F 3 определяется компонентами x 1 ,x 2 –в анализе может не рассматриваться т.к. она объясняет всего 10% общей вариации.

Литература.

    Попов А.А.

Excel: Практическое руководство, ДЕСС КОМ.-М.-2000.

    Дьяконов В.П., Абраменкова И.В. Mathcad7 в математике, физике и в Internet. Изд-во « Номидж», М.-1998, раздел 2.13. Выполнение регрессии.

    Л.А. Сошникова, В.Н. Томашевич и др. Многомерный статистический анализ в экономике под ред. В.Н. Томашевича.- М. –Наука, 1980.

    Колемаев В.А., О.В. Староверов, В.Б. Турундаевский Теория вероятностей и математическая статистика. –М. – Высшая школа- 1991.

    К Иберла. Факторный анализ.-М. Статистика.-1980.

Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны

Пусть генеральные совокупности X и Y распределены нормально, причем их дисперсии известны (например из предшествующего опыта или найдены теоретически). По независимым выборкам объемов n и m, извлеченным из этих совокупностей, найдены выборочные средние x в и y в.

Требуется по выборочным средним при заданном уровне значимости проверить нулевую гипотезу, состоящую в том, что генеральные средние (математические ожидания) рассматриваемых совокупностей равны между собой, т. е. Н 0: М(X) = М(Y).

Учитывая, что выборочные средние являются несмещенными оценками генеральных средних, т. е. М(x в) = М(X) и М(y в) = М(Y), нулевую гипотезу можно записать так: Н 0: М(x в) = М(y в).

Таким образом, требуется проверить, что математические ожидания выборочных средних равны между собой. Такая задача ставится, потому что, как правило, выборочные средние являются различными. Возникает вопрос: значимо или незначимо различаются выборочные средние?

Если окажется, что нулевая гипотеза справедлива, т. е. генеральные средние одинаковы, то различие выборочных средних незначимо и объясняется случайными причинами и, в частности, случайным отбором объектов выборки.

Если нулевая гипотеза будет отвергнута, т. е. генеральные средние неодинаковы, то различие выборочных средних значимо и не может быть объяснено случайными причинами. А объясняется тем, что сами генеральные средние (математические ожидания) различны.

В качестве проверки нулевой гипотезы примем случайную величину.

Критерий Z – нормированная нормальная случайная величина. Действительно, величина Z распределена нормально, так как является линейной комбинацией нормально распределенных величин X и Y; сами эти величины распределены нормально как выборочные средние, найденные по выборкам, извлеченным из генеральных совокупностей; Z – нормированная величина, потому что М(Z) = 0, при справедливости нулевой гипотезы D(Z) = 1, поскольку выборки независимы.

Критическая область строится в зависимости от вида конкурирующей гипотезы.

Первый случай . Нулевая гипотеза Н 0:М(X)=М(Y). Конкурирующая гипотеза Н 1: М(X) ¹М(Y).

В этом случае строят двустороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости .

Наибольшая мощность критерия (вероятность попадания критерия в критическую область при справедливости конкурирующей гипотезы) достигается тогда, когда «левая» и «правая» критические точки выбраны так, что вероятность попадания критерия в каждый интервал критической области равна:

P(Z < zлев.кр)=a¤2,

P(Z > zправ.кр)=a¤2. (1)

Поскольку Z – нормированная нормальная величина, а распределение такой величины симметрично относительно нуля, критические точки симметричны относительно нуля.

Таким образом, если обозначить правую границу двусторонней критической области через zкр, то левая граница -zкр.

Итак, достаточно найти правую границу, чтобы найти саму двустороннюю критическую область Z < -zкр, Z > zкр и область принятия нулевой гипотезы (-zкр, zкр).

Покажем, как найти zкр – правую границу двусторонней критической области, используя функцию Лапласа Ф(Z). Известно, что функция Лапласа определяет вероятность попадания нормированной нормальной случайной величины, например Z, в интервале (0;z):

Р(0 < Z

Так как распределение Z симметрично относительно нуля, то вероятность попадания Z в интервал (0; ¥) равна 1/2. Следовательно, если разбить этот интервал точкой zкр на интервал (0, zкр) и (zкр, ¥), то по теореме сложения Р(0< Z < zкр)+Р(Z > zкр)=1/2.

В силу (1) и (2) получим Ф(zкр)+a/2=1/2. Следовательно, Ф(zкр) =(1-a)/2.

Отсюда заключаем: для того чтобы найти правую границу двусторонней критической области (zкр), достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное (1-a)/2.

Тогда двусторонняя критическая область определяется неравенствами Z < – zкр, Z > zкр, или равносильным неравенством ½Z½ > zкр, а область принятия нулевой гипотезы неравенством – zкр < Z < zкр или равносильным неравенством çZ ç< zкр.

Обозначим значение критерия, вычисленное по данным наблюдений, через zнабл и сформулируем правило проверки нулевой гипотезы.

Правило.

1. Вычислить наблюдаемое значение критерия

2. По таблице функции Лапласа найти критическую точку по равенству Ф(zкр)=(1-a)/2.

3. Если ç zнабл ç < zкр – нет оснований отвергнуть нулевую гипотезу.

Если ç zнабл ç> zкр – нулевую гипотезу отвергают.

Второй случай . Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)>M(Y).

На практике такой случай имеет место, если профессиональные соображения позволяют предположить, что генеральная средняя одной совокупности больше генеральной средней другой. Например, если введено усовершенствование технологического процесса, то естественно допустить, что оно приведет к увеличению выпуска продукции.

В этом случае строят правостороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости:

P(Z> zкр)=a. (3)

Покажем, как найти критическую точку при помощи функции Лапласа. Воспользуемся соотношением

P(0 zкр)=1/2.

В силу (2) и (3) имеем Ф(zкр)+a=1/2. Следовательно, Ф(zкр)=(1-2a)/2.

Отсюда заключаем, для того чтобы найти границу правосторонней критической области (zкр), достаточно найти значение функции Лапласа, равное (1-2a)/2. Тогда правосторонняя критическая область определяется неравенством Z > zкр, а область принятия нулевой гипотезы – неравенством Z < zкр.

Правило.

1. Вычислить наблюдаемое значение критерия zнабл.

2. По таблице функции Лапласа найти критическую точку из равенства Ф(zкр)=(1-2a)/2.

3. Если Z набл < z кр – нет оснований отвергнуть нулевую гипотезу. Если Z набл > z кр – нулевую гипотезу отвергаем.

Третий случай. Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)

В этом случае строят левостороннюю критическую область исходя из требования, вероятность попадания критерия в эту область, в пред-

положении справедливости нулевой гипотезы, была равна принятому уровню значимости P(Z < z’кр)=a, т.е. z’кр= – zкр. Таким образом, для того чтобы найти точку z’кр, достаточно сначала найти “вспомогательную точку” zкр а затем взять найденное значение со знаком минус. Тогда левосторонняя критическая область определяется неравенством Z < -zкр, а область принятия нулевой гипотезы – неравенством Z > -zкр.

Правило.

1. Вычислить Zнабл.

2. По таблице функции Лапласа найти “вспомогательную точку” zкр по равенству Ф(zкр)=(1-2a)/2, а затем положить z’кр = -zкр.

3. Если Zнабл > -zкр, – нет оснований отвергать нулевую гипотезу.

Если Zнабл < -zкр, – нулевую гипотезу отвергают.

Основные типы моделей, используемых в финансовом анализе и прогнозировании.

Прежде чем начать говорить об одном из видов финансового анализа – факторном анализе, напомним, что такое финансовый анализ и каковы его цели.

Финансовый анализ представляет собой метод оценки финансового состояния и эффективности работы хозяйствующего субъекта на основе изучения зависимости и динамики показателей финансовой отчетности.

Финансовый анализ преследует несколько целей:

  • оценку финансового положения;
  • выявление изменений в финансовом состоянии в пространственно-временном разрезе;
  • выявление основных факторов, вызвавших изменения в финансовом состоянии;
  • прогноз основных тенденций в финансовом состоянии.

Как известно, существуют следующие основные виды финансового анализа:

  • горизонтальный анализ;
  • вертикальный анализ;
  • трендовый анализ;
  • метод финансовых коэффициентов;
  • сравнительный анализ;
  • факторный анализ.

Каждый вид финансового анализа основан на применении какой-либо модели, дающей возможность оценить и проанализировать динамику основных показателей деятельности предприятия. Выделяют три основных типа моделей: дескриптивные, предикативные и нормативные.

Дескриптивные модели известны также, как модели описательного характера. Они являются основными для оценки финансового состояния предприятия. К ним относятся: построение системы отчетных балансов, представление финансовой отчетности в различных аналитических разрезах, вертикальный и горизонтальный анализ отчетности, система аналитических коэффициентов, аналитические записки к отчетности. Все эти модели основаны на использовании информации бухгалтерской отчетности.

В основе вертикального анализа лежит иное представление бухгалтерской отчетности – в виде относительных величин, характеризующих структуру обобщающих итоговых показателей. Обязательным элементом анализа являются динамические ряды этих величин, что позволяет отслеживать и прогнозировать структурные сдвиги в составе хозяйственных средств и источников их покрытия.

Горизонтальный анализ позволяет выявить тенденции изменения отдельных статей или их групп, входящих в состав бухгалтерской отчетности. В основе этого анализа лежит исчисление базисных темпов роста статей баланса и отчета о прибылях и убытках.

Система аналитических коэффициентов – основной элемент анализа финансового состояния, применяемый различными группами пользователей: менеджеры, аналитики, акционеры, инвесторы, кредиторы и др. Существуют десятки таких показателей, подразделяемых на несколько групп по основным направлениям финансового анализа:

  • показатели ликвидности;
  • показатели финансовой устойчивости;
  • показатели деловой активности;
  • показатели рентабельности.

Предикативные модели – это модели предсказательного характера. Они используются для прогнозирования доходов предприятия и его будущего финансового состояния. Наиболее распространенными из них являются: расчет точки критического объема продаж, построение прогнозных финансовых отчетов, модели динамического анализа (жестко детерминированные факторные модели и регрессионные модели), модели ситуационного анализа.

Нормативные модели. Модели этого типа позволяют сравнить фактические результаты деятельности предприятий с ожидаемыми, рассчитанными по бюджету. Эти модели используются в основном во внутреннем финансовом анализе. Их сущность сводится к установлению нормативов по каждой статье расходов по технологическим процессам, видам изделий, центрам ответственности и т. п. и к анализу отклонений фактических данных от этих нормативов. Анализ в значительной степени базируется на применении жестко детерминированных факторных моделей.

Как мы видим, моделирование и анализ факторных моделей занимают важное место в методологии финансового анализа. Рассмотрим этот аспект подробнее.

Основы моделирования.

Функционирование любой социально-экономической системы (к которым относится и действующее предприятие) происходит в условиях сложного взаимодействия комплекса внутренних и внешних факторов. Фактор - это причина, движущая сила какого-либо процесса или явления, определяющая его характер или одну из основных черт.

Классификация и систематизация факторов в анализе хозяйственной деятельности.

Классификация факторов представляет собой распределение их по группам в зависимости от общих признаков. Она позволяет глубже разобраться в причинах изменения исследуемых явлений, точнее оценить место и роль каждого фактора в формировании величины результативных показателей.

Исследуемые в анализе факторы могут быть классифицированы по разным признакам.

По своей природе факторы подразделяются на природные, социально-экономические и производственно-экономические.

Природные факторы оказывают большое влияние на результаты деятельности в сельском хозяйстве, в лесном хозяйстве и других отраслях. Учет их влияния дает возможность точнее оценить результаты работы субъектов хозяйствования.

К социально-экономическим факторам относятся жилищные условия работников, организация оздоровительной работы на предприятиях с вредным производством, общий уровень подготовки кадров и др. Они способствуют более полному использованию производственных ресурсов предприятия и повышению эффективности его работы.

Производственно-экономические факторы определяют полноту и эффективность использования производственных ресурсов предприятия и конечные результаты его деятельности.

По степени воздействия на результаты хозяйственной деятельности факторы делятся на основные и второстепенные. К основным относятся факторы, оказывающие решающее воздействие на результативный показатель. Второстепенными считаются те, которые не оказывают решающего воздействия на результаты хозяйственной деятельности в сложившихся условиях. Необходимо отметить, что в зависимости от обстоятельств один и тот же фактор может быть и основным, и второстепенным. Умение выделить из всего множества факторов главные обеспечивает правильность выводов по результатам анализа.

Факторы делятся на внутренние и внешние , в зависимости от того, влияет на них деятельность данного предприятия или нет. При анализе основное внимание уделяется внутренним факторам, на которые предприятие может воздействовать.

Факторы подразделяются на объективные , не зависящие от воли и желаний людей, и субъективные , подверженные влиянию деятельности юридических и физических лиц.

По степени распространенности факторы делятся на общие и специфические. Общие факторы действуют во всех отраслях экономики. Специфические факторы действуют в пределах отдельной отрасли или конкретного предприятия.

В процессе работы организации одни факторы оказывают воздействие на изучаемый показатель непрерывно на протяжении всего времени. Такие факторы называются постоянными . Факторы, воздействие которых проявляется периодически, называются переменными (это, например, внедрение новой технологии, новых видов продукции).

Большое значение для оценки деятельности предприятий имеет деление факторов по характеру их действия на интенсивные и экстенсивные . К экстенсивным относятся факторы, которые связаны с изменением количественных, а не качественных характеристик функционирования предприятия. В качестве примера можно привести увеличение объема производства продукции за счет увеличения числа рабочих. Интенсивные факторы характеризуют качественную сторону процесса производства. Примером может служить увеличение объема производства продукции за счет повышения уровня производительности труда.

Большинство изучаемых факторов по своему составу являются сложными, состоят из нескольких элементов. Однако есть и такие, которые не раскладываются на составные части. В связи с этим факторы делятся на сложные (комплексные) и простые (элементные) . Примером сложного фактора является производительность труда, а простого - количество рабочих дней в отчетном периоде.

По уровню соподчиненности (иерархии) различают факторы первого, второго, третьего и последующего уровней подчинения. К факторам первого уровня относятся те, которые непосредственно влияют на результативный показатель. Факторы, влияющие на результативный показатель косвенно, при помощи факторов первого уровня, называют факторами второго уровня и т. д.

Понятно, что при изучении влияния на работу предприятия какой-либо группы факторов необходимо их упорядочить, то есть проводить анализ с учетом их внутренних и внешних связей, взаимодействия и соподчиненности. Это достигается с помощью систематизации. Систематизация - это размещение изучаемых явлений или объектов в определенном порядке с выявлением их взаимосвязи и подчиненности.

Создание факторных систем является одним из способов такой систематизации факторов. Рассмотрим понятие факторной системы.

Факторные системы

Все явления и процессы хозяйственной деятельности предприятий находятся во взаимозависимости. Связь экономических явлений - это совместное изменение двух или более явлений. Среди многих форм закономерных связей важную роль играет причинно-следственная (детерминистская), при которой одно явление порождает другое.

В хозяйственной деятельности предприятия некоторые явления непосредственно связаны между собой, другие - косвенно. Например, на величину валовой продукции непосредственное влияние оказывают такие факторы, как численность рабочих и уровень производительности их труда. Множество других факторов косвенно воздействует на этот показатель.

Кроме того, каждое явление можно рассматривать как причину и как следствие. Например, производительность труда можно рассматривать, с одной стороны, как причину изменения объема производства, уровня ее себестоимости, а с другой - как результат изменения степени механизации и автоматизации производства, усовершенствования организации труда и т. д.

Количественная характеристика взаимосвязанных явлений осуществляется с помощью показателей. Показатели, характеризующие причину, называются факторными (независимыми); показатели, характеризующие следствие, называются результативными (зависимыми). Совокупность факторных и результативных признаков, связанных причинно-следственной связью, называется факторной системой .

Моделирование какого-либо явления - это построение математического выражения существующей зависимости. Моделирование - это один из важнейших методов научного познания. Существуют два типа зависимостей, изучаемых в процессе факторного анализа: функциональные и стохастические.

Связь называется функциональной, или жестко детерминированной, если каждому значению факторного признака соответствует вполне определенное неслучайное значение результативного признака.

Связь называется стохастической (вероятностной), если каждому значению факторного признака соответствует множество значений результативного признака, т. е. определенное статистическое распределение.

Модель факторной системы - это математическая формула, выражающая реальные связи между анализируемыми явлениями. В общем виде она может быть представлена так:

где - результативный признак;

Факторные признаки.

Таким образом, каждый результативный показатель зависит от многочисленных и разнообразных факторов. В основе экономического анализа и его раздела - факторного анализа - лежат выявление, оценка и прогнозирование влияния факторов на изменение результативного показателя. Чем детальнее исследуется зависимость результативного показателя от тех или иных факторов, тем точнее результаты анализа и оценка качества работы предприятий. Без глубокого и всестороннего изучения факторов нельзя сделать обоснованные выводы о результатах деятельности, выявить резервы производства, обосновать планы и управленческие решения.

Факторный анализ, его виды и задачи.

Под факторным анализом понимается методика комплексного и системного изучения и измерения воздействия факторов на величину результативных показателей.

В общем случае можно выделить следующие основные этапы факторного анализа :

  1. Постановка цели анализа.
  2. Отбор факторов, определяющих исследуемые результативные показатели.
  3. Классификация и систематизация факторов с целью обеспечения комплексного и системного подхода к исследованию их влияния на результаты хозяйственной деятельности.
  4. Определение формы зависимости между факторами и результативным показателем.
  5. Моделирование взаимосвязей между результативным и факторными показателями.
  6. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.
  7. Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

Отбор факторов для анализа того или иного показателя осуществляется на основе теоретических и практических знаний в конкретной отрасли. При этом обычно исходят из принципа: чем больший комплекс факторов исследуется, тем точнее будут результаты анализа. Вместе с тем необходимо иметь в виду, что если этот комплекс факторов рассматривается как механическая сумма, без учета их взаимодействия, без выделения главных, определяющих, то выводы могут быть ошибочными. В анализе хозяйственной деятельности (АХД) взаимосвязанное исследование влияния факторов на величину результативных показателей достигается с помощью их систематизации, что является одним из основных методологических вопросов этой науки.

Важным методологическим вопросом в факторном анализе является определение формы зависимости между факторами и результативными показателями: функциональная она или стохастическая, прямая или обратная, прямолинейная или криволинейная. Здесь используется теоретический и практический опыт, а также способы сравнения параллельных и динамичных рядов, аналитических группировок исходной информации, графический и др.

Моделирование экономических показателей также представляет собой сложную проблему в факторном анализе, решение которой требует специальных знаний и навыков.

Расчет влияния факторов - главный методологический аспект в АХД. Для определения влияния факторов на конечные показатели используется множество способов, которые будут подробнее рассмотрены ниже.

Последний этап факторного анализа - практическое использование факторной модели для подсчета резервов прироста результативного показателя, для планирования и прогнозирования его величины при изменении ситуации.

В зависимости от типа факторной модели различают два основных вида факторного анализа - детерминированный и стохастический.

представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т. е. когда результативный показатель факторной модели представлен в виде произведения, частного или алгебраической суммы факторов.

Данный вид факторного анализа наиболее распространен, поскольку, будучи достаточно простым в применении (по сравнению со стохастическим анализом), позволяет осознать логику действия основных факторов развития предприятия, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства. Подробно детерминированный факторный анализ мы рассмотрим в отдельной главе.

Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель.

Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам:

  • необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
  • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
  • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

  1. наличие совокупности;
  2. достаточный объем наблюдений;
  3. случайность и независимость наблюдений;
  4. однородность;
  5. наличие распределения признаков, близкого к нормальному;
  6. наличие специального математического аппарата.

Построение стохастической модели проводится в несколько этапов:

  • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
  • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
  • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
  • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
  • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

Кроме деления на детерминированный и стохастический, различают следующие типы факторного анализа:

    • прямой и обратный;
    • одноступенчатый и многоступенчатый;
    • статический и динамичный;
    • ретроспективный и перспективный (прогнозный).

При прямом факторном анализе исследование ведется дедуктивным способом - от общего к частному. Обратный факторный анализ осуществляет исследование причинно-следственных связей способом логичной индукции - от частных, отдельных факторов к обобщающим.

Факторный анализ может быть одноступенчатым и многоступенчатым . Первый тип используется для исследования факторов только одного уровня (одной ступени) подчинения без их детализации на составные части. Например, . При многоступенчатом факторном анализе проводится детализация факторов a и b на составные элементы с целью изучения их поведения. Детализация факторов может быть продолжена и дальше. В этом случае изучается влияние факторов различных уровней соподчиненности.

Необходимо также различать статический и динамический факторный анализ. Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике.

И, наконец, факторный анализ может быть ретроспективным, который изучает причины прироста результативных показателей за прошлые периоды, и перспективным, который исследует поведение факторов и результативных показателей в перспективе.

Детерминированный факторный анализ.

Детерминированный факторный анализ имеет достаточно жесткую последовательность выполняемых процедур:

  • построение экономически обоснованной детерминированной факторной модели;
  • выбор приема факторного анализа и подготовка условий для его выполнения;
  • реализация счетных процедур анализа модели;
  • формулирование выводов и рекомендаций по результатам анализа.

Первый этап особенно важен, так как неправильно построенная модель может привести к логически неоправданным результатам. Смысл этого этапа состоит в следующем: любое расширение жестко детерминированной факторной модели не должно противоречить логике связи “причина – следствие”. В качестве примера рассмотрим модель, связывающую объем реализации (Р), численность (Ч) и производительность труда (ПТ). Теоретически можно исследовать три модели:

Все три формулы верны с позиции арифметики, однако с позиции факторного анализа только первая имеет смысл, поскольку в ней показатели, стоящие в правой части формулы, являются факторами, т. е. причиной, порождающей и определяющей значение показателя, стоящего в левой части (следствие).

На втором этапе выбирается один из приемов факторного анализа: интегральный, цепных подстановок, логарифмический и др. Каждый из этих приемов имеет свои достоинства и недостатки. Краткую сравнительную характеристику этих способов мы рассмотрим ниже.

Виды детерминированных факторных моделей.

Существуют следующие модели детерминированного анализа:

аддитивная модель , т. е. модель, в которую факторы входят в виде алгебраической суммы, в качестве примера можно привести модель товарного баланса:

где Р - реализация;

Запасы на начало периода;

П - поступление товаров;

Запасы на конец периода;

В - прочее выбытие товаров;

мультипликативная модель , т. е. модель, в которую факторы входят в виде произведения; примером может служить простейшая двухфакторная модель:

где Р - реализация;

Ч - численность;

ПТ - производительность труда;

кратная модель , т. е. модель, представляющая собой отношение факторов, например:

где - фондовооруженность;

ОС

Ч - численность;

смешанная модель , т. е. модель, в которую факторы входят в различных комбинациях, например:

,

где Р - реализация;

Рентабельность;

ОС - стоимость основных средств;
Об - стоимость оборотных средств.

Жестко детерминированная модель, имеющая более двух факторов, называется многофакторной .

Типовые задачи детерминированного факторного анализа.

В детерминированном факторном анализе можно выделить четыре типовые задачи:

  1. Оценка влияния относительного изменения факторов на относительное изменение результативного показателя.
  2. Оценка влияния абсолютного изменения i-го фактора на абсолютное изменение результативного показателя.
  3. Определение отношения величины изменения результативного показателя, вызванного изменением i-го фактора, к базовой величине результативного показателя.
  4. Определение доли абсолютного изменения результативного показателя, вызванного изменением i-го фактора, в общем изменении результативного показателя.

Охарактеризуем эти задачи и рассмотрим решение каждой из них на конкретном простом примере.

Пример.

Объем валовой продукции (ВП) зависит от двух основных факторов первого уровня: численности работников (ЧР) и среднегодовой выработки (ГВ). Имеем двухфакторную мультипликативную модель: . Рассмотрим ситуацию, когда и выработка, и численность рабочих в отчетном периоде отклонились от запланированных значений.

Данные для расчетов приведены в таблице 1.

Таблица 1. Данные для факторного анализа объема валовой продукции.

Задача 1.

Задача имеет смысл для мультипликативных и кратных моделей. Рассмотрим простейшую двухфакторную модель . Очевидно, что при анализе динамики этих показателей будет выполняться следующее соотношение между индексами:

где значение индекса находится отношением значения показателя в отчетном периоде к базисному.

Рассчитаем индексы валовой продукции, численности работников и среднегодовой выработки для нашего примера:

;

.

Согласно вышеприведенному правилу, индекс валовой продукции равен произведению индексов численности работников и среднегодовой выработки, т. е.

Очевидно, что если мы рассчитаем непосредственно индекс валовой продукции, то получим то же самое значение:

.

Мы можем сделать вывод: в результате увеличения численности работников в 1,2 раза и увеличения среднегодовой выработки в 1,25 раза объем валовой продукции увеличился в 1,5 раза.

Таким образом, относительные изменения факторных и результативного показателей связаны той же зависимостью, что и показатели в исходной модели. Данная задача решается при ответе на вопросы типа: "Что будет, если i-й показатель изменится на n%, а j-й показатель изменится на k%?".

Задача 2.

Является основной задачей детерминированного факторного анализа; ее общая постановка имеет вид:

Пусть - жестко детерминированная модель, характеризующая изменение результативного показателя y от n факторов; все показатели получили приращение (например, в динамике, по сравнению с планом, по сравнению с эталоном):

Требуется определить, какой частью приращение результативного показателя y обязано приращению i-го фактора, т. е. расписать следующую зависимость:

где - общее изменение результативного показателя, складывающееся под одновременным влиянием всех факторных признаков;

Изменение результативного показателя под влиянием только фактора .

В зависимости от того, какой метод анализа модели выбран, факторные разложения могут различаться. Поэтому рассмотрим в контексте данной задачи основные методы анализа факторных моделей.

Основные методы детерминированного факторного анализа.

Одним из важнейших методологических в АХД является определение величины влияния отдельных факторов на прирост результативных показателей. В детерминированном факторном анализе (ДФА) для этого используются следующие способы: выявления изолированного влияния факторов, цепной подстановки, абсолютных разниц, относительных разниц, пропорционального деления, интегральный, логарифмирования и др.

Первые три способа основываются на методе элиминирования. Элиминировать - значит устранить, отклонить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т. д., при неизменности остальных. Это позволяет определить влияние каждого фактора на величину исследуемого показателя в отдельности.

Дадим краткую характеристику наиболее распространенным способам.

Способ цепной подстановки является весьма простым и наглядным методом, наиболее универсальным из всех. Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных. Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, затем трех и т. д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или иного фактора позволяет определить воздействие конкретного фактора на прирост результативного показателя, исключив влияние остальных факторов. При использовании этого метода достигается полное разложение.

Напомним, что при использовании этого способа большое значение имеет очередность изменения значений факторов, так как от этого зависит количественная оценка влияния каждого фактора.

Прежде всего нужно отметить, что не существует и не может существовать единой методики определения этого порядка - существуют модели, в которых он может быть определен произвольно. Лишь для небольшого числа моделей можно использовать формализованные подходы. На практике эта проблема не имеет большого значения, поскольку в ретроспективном анализе важны тенденции и относительная значимость того или иного фактора, а не точные оценки их влияния.

Тем не менее для соблюдения более или менее единого подхода к определению порядка замены факторов в модели можно сформулировать общие принципы. Введем некоторые определения.

Признак, непосредственно относящийся к изучаемому явлению и характеризующий его количественную сторону, называется первичным или количественным . Эти признаки: а) абсолютные (объемные); б) их можно суммировать в пространстве и времени. В качестве примера можно привести объем реализации, численность, стоимость оборотных средств и т. д.

Признаки, относящиеся к изучаемому явлению не непосредственно, а через один или несколько других признаков и характеризующие качественную сторону изучаемого явления, называются вторичными или качественными . Эти признаки: а) относительные; б) их нельзя суммировать в пространстве и времени. Примерами могут служить фондовооруженность, рентабельность и др. В анализе выделяют вторичные факторы 1-го, 2-го и т. д. порядков, получаемые путем последовательной детализации.

Жестко детерминированная факторная модель называется полной, если результативный показатель количественный, и неполной, если результативный показатель качественный. В полной двухфакторной модели один фактор всегда количественный, второй - качественный. В этом случае замену факторов рекомендуют начинать с количественного показателя. Если же имеется несколько количественных и несколько качественных показателей, то сначала следует изменить величину факторов первого уровня подчинения, а потом более низкого. Таким образом, применение способа цепной подстановки требует знания взаимосвязи факторов, их соподчиненности, умения правильно их классифицировать и систематизировать.

Теперь рассмотрим на нашем примере порядок применения способа цепных подстановок.

Алгоритм расчета способом цепной подстановки для данной модели выглядит следующим образом:

Как видим, второй показатель валовой продукции отличается от первого тем, что при его расчете принята фактическая численность рабочих вместо запланированной. Среднегодовая выработка одним рабочим в том и другом случае плановая. Значит, за счет увеличения количества рабочих выпуск продукции увеличился на 32 000 млн. руб. (192 000 - 160 000).

Третий показатель отличается от второго тем, что при расчете его величины выработка рабочих принята по фактическому уровню вместо плановой. Количество же работников в обоих случаях фактическое. Отсюда за счет повышения производительности труда объем валовой продукции увеличился на 48 000 млн. руб. (240 000 - 192 000).

Таким образом, перевыполнение плана по объему валовой продукции явилось результатом влияния следующих факторов:

Алгебраическая сумма факторов при использовании данного метода обязательно должна быть равна общему приросту результативного показателя:

Отсутствие такого равенства свидетельствует о допущенных ошибках в расчетах.

Другие методы анализа, такие как интегральный и логарифмический, позволяют достичь более высокой точности расчетов, однако эти методы имеют более ограниченную сферу применения и требуют проведения большого объема вычислений, что неудобно для проведения оперативного анализа.

Задача 3.

Является в определенном смысле следствием второй типовой задачи, поскольку базируется на полученном факторном разложении. Необходимость решения этой задачи обусловлена тем обстоятельством, что элементы факторного разложения составляют абсолютные величины, которые трудно использовать для пространственно-временных сопоставлений. При решении задачи 3 факторное разложение дополняется относительными показателями:

.

Экономическая интерпретация: коэффициент показывает, на сколько процентов к базисному уровню изменился результативный показатель под влиянием i-го фактора.

Рассчитаем коэффициенты α для нашего примера, используя факторное разложение, полученное ранее методом цепных подстановок:

;

Таким образом, объем валовой продукции повысился на 20% за счет увеличения численности рабочих и на 30% за счет увеличения выработки. Суммарный прирост валовой продукции составил 50%.

Задача 4.

Также решается на основе базовой задачи 2 и сводится к расчету показателей:

.

Экономическая интерпретация: коэффициент показывает долю прироста результативного показателя, обусловленную изменением i-го фактора. Здесь не возникает вопроса, если все факторные признаки изменяются однонаправленно (либо возрастают, либо убывают). Если это условие не выполняется, решение задачи может быть осложнено. В частности, в наиболее простой двухфакторной модели в подобном случае расчет по приведенной формуле не выполняется и считается, что 100% прироста результативного показателя обусловлены изменением доминирующего факторного признака, т. е. признака, изменяющегося однонаправленно с результативным показателем.

Рассчитаем коэффициенты γ для нашего примера, используя факторное разложение, полученное методом цепных подстановок:

Таким образом, увеличение численности работников обусловило 40% общего повышения объема валовой продукции, а увеличение выработки - 60%. Значит, увеличение выработки в данной ситуации является определяющим фактором.