По новым атмосферным данным газовых гигантов, углерод в своей кристаллической форме - не редкость на этих планетах. Более того, Юпитер и Сатурн содержат большие объемы этого вещества.

Разряды молний превращают метан в углерод, который во время падения твердеет, превращаясь через 1 600 км в глыбы графита (наподобие того, что мы используем в карандашах), а спустя еще 6 000 км эти глыбы становятся алмазами. Последние продолжают падать еще в течение 30 000 км.

В конце концов, алмазы достигают такой глубины, что высокие температуры горячих ядер планет просто плавят их и, возможно (хотя это пока нельзя утверждать) создается море жидкого углерода, сообщили на конференции ученые.

Самые большие алмазы имеют диаметр примерно 1 см, сообщил Доктор Кевин Бэйнс (Dr Kevin Baines) из Висконсинского университета в Мадисоне (University of Wisconsin-Madison) и Лаборатория Реактивного Движения НАСА (Nasa"s Jet Propulsion Laboratory).

За 1 год на Сатурне создаются более 1 000 тонн алмазов.

Вместе со своим соавтором Моной Делинцки (Mona Delitsky) Бэйнс обнародовал пока еще не опубликованную находку на ежегодном собрании Отделения Американского астрономического общества в области планетарных наук в Денвере, штат Колорадо.

Юпитер и Сатурн

Бэенс и Делинцки проанализировали последние прогнозы по температуре и давлению внутри Юпитера и Сатурна, а также новую информацию о поведении углерода в разных условиях.

Они пришли к выводу, что кристаллы алмаза падают особенно много на Сатурне, где в итоге плавятся из-за высокой температуры ядра.

На Юпитере и Сатурне алмазы не вечны, чего нельзя сказать об Уране и Нептуне, у которых довольно низкие температуры ядер.

Данные еще будут проверены, но пока сторонние специалисты по изучению планет говорят о том, что нельзя исключать возможность алмазного дождя.

Уран и Нептун

Нептун и Уран могут стать самыми желанными пунктами назначения для мечтающих побывать на других планетах, и не только из научного интереса, но и чисто меркантильного. Именно на этих планетах находятся океаны жидкого алмаза, на которых, как айсберги, плавают острова твердых алмазов. Статья, утверждающая, что это возможно, была опубликована недавно в журнале "Естественная физика".

Недавнее исследование, в результате которого нашли точку плавления алмаза, показало, что он обладает теми же свойствами при плавлении и замерзании, что и вода: затвердевшая часть плавает по поверхности. Это открытие дало новое представление об отдаленных планетах Солнечной системы.

"Алмазы относительно часто встречаются на Земле, но никто не смог измерить их точку плавления. Для этого недостаточно просто повысить температуру, нужно еще увеличить давление. Именно поэтому сложно измерить температуру", – говорит доктор Эггерт. Алмазы плавили и раньше, но не смогли измерить температуру и давление.

Алмаз – очень твердый материал, и именно поэтому его сложно плавить. Но есть еще одна характеристика, которая затрудняет определение точки плавления: он меняется, будучи подверженным высоким температурам, и превращается в графит. И именно графит, а не сам алмаз, плавится до жидкого состояния. Задачей ученых было нагреть алмаз, и в то же время предотвратить его превращение в графит.

Планеты-гиганты Нептун и Уран – некоторые их мест, на которых можно встретить необходимое сочетание ультравысокого давления и ультравысокой температуры. Эггерт и его коллеги воздействовали лазерами при ультравысоком давлении на алмаз весом 0, 1 карат и толщиной 0,5 мм. Ученые превратили алмаз в жидкость при давлении в 40 миллионов раз больше испытываемым человеком, находящемся на уровне моря, а затем медленно уменьшили температуру и давление.

Когда давление упало до давления, в 11 миллионов раз больше атмосферного давления на уровне моря на Земле, а температура снизилась до 50000 градусов, начали появляться затвердевшие куски алмазов. При уменьшении давления, но при той же температуре, появлялось все больше твердых алмазов. А после этого алмазы повели себя неожиданно: затвердевшие куски не тонули, а плавали по поверхности: алмазные айсберги в алмазном море. Вода проявляет такие же свойства.

По словам Эггерта, влиянием алмазных океанов можно объяснить направление магнитных полей планеты. То есть, магнитные полюса Земли совпадают с географическими полюсами, а на Уране и Нептуне наблюдается отклонение до 60 градусов. Если бы у Земли было подобное отклонение, то северный магнитный полюс находился бы в Техасе, а не на канадском острове. Считается, что Уран и Нептун примерно на 10 процентов состоят из углерода. Океан жидкого алмаза, расположенный в определенном месте, может повлиять на отклонение магнитного поля этих планет.

По словам ученого из Принстонского университета Тома Даффи, идея о существовании алмазных океанов на этих планетах далеко не нова, а эта статья делает такую вероятность более возможной. Но перед тем, как сделать окончательные выводы, нужно изучить состав Нептуна и Урана, а проводить такие исследования нелегко.

Где находят алмазы на Земле

Алмазы, так же как и другие драгоценные камни находят в тех частях Земли, где для их образования существуют необходимые условия.


Месторождение алмазов нуждается в присутствии определенных веществ и явлений, включая углерод, температуру, давление и большое количество времени.

Ученые из Бристольского университета в Великобритании и Института Карнеги в США обнаружили, что в формировании алмазов участвует весь Земной шар, кроме ядра.

В месторождении Жуна-5, которое находится в Бразилии, в 2010 году были найдены кристаллы, которые, вероятно образовались на глубине около 400-660 километров.

За последние несколько лет ученые находили так называемые "ультраглубокие" алмазы, и места, где обнаруживали такие алмазы, были сосредоточены в разных частях света.


Стоит отметить, что до сих пор неизвестно, откуда алмазы появляются на нашей планете, и это несмотря на то, что алмаз - это один из самых востребованных минералов на нашей планете.

Существует несколько гипотез, которые пытаются объяснить появление алмазов на Земле. Уже известно, что некоторые алмазы появились на нашей планете благодаря метеоритам (либо она сами принесли, либо способствовали появлению).

Но самая распространенная версия гласит, что львиная доля всех алмазов, все же, имеют земное происхождение - они формируются из углерода, находящегося в верхней части мантии.

Мы живем на Земле и даже не удивляемся, когда с неба начинает капать вода . Мы привыкли к большим кучевым облакам, которые сначала формируются из водяного пара, а потом распадаются, обрушивая на нас ливни.

На других планетах Солнечной системы тоже образуются облака и бывают дожди. Но эти облака, как правило, состоят отнюдь не из воды. На каждой планете своя уникальная атмосфера, которая обусловливает не менее уникальную погоду.

Дожди на Меркурие

Меркурий - самая ближайшая к Солнцу планета - это покрытый кратерами безжизненный мир, на поверхности которого дневная температура достигает 430 градусов Цельсия. Атмосфера Меркурия настолько разрежена, что ее практически невозможно обнаружить. На Меркурии не бывает ни облаков, ни дождей.

Материалы по теме:

Самые большие планеты Солнечной системы

Дожди на Венере

А вот Венера , наша ближайшая соседка по космосу, имеет богатый и могучий облачный покров, который пронзают зигзаги молний. Пока ученые не увидели поверхность Венеры, они думали, что на ней очень много влажных и болотистых мест, сплошь покрытых растительностью. Это теперь мы знаем, что нет там никакой растительности, а есть скалы и жара до 480 градусов Цельсия в полдень.

На Венере бывают настоящие кислотные дожди , так как облака Венеры состоят из смертоносной серной кислоты, а не из живительной воды. Но при температуре 480 градусов Цельсия, видимо, невозможен даже такой дождь . Капли серной кислоты испаряются, прежде чем успевают достичь поверхности Венеры.

Материалы по теме:

Как образуется град?

Дожди на Марсе

Марс - четвертая планета Солнечной системы. Ученые считают, что в древние времена Марс, возможно, по природным условиям был похож на Землю. В настоящее время Марс имеет весьма разреженную атмосферу, а его поверхность, если судить по фотографиям, подобна пустыням юго – запада Соединенных Штатов Америки. Когда на Марсе наступает зима, над красными равнинами появляются тонкие облака из замерзшей двуокиси углерода и иней покрывает скалы. По утрам в долинах бывает туман, иногда такой густой, что кажется вот – вот пойдет дождь.

Однако речные русла, избороздившие поверхность Марса, ныне сухи. Ученые считают, что по этим руслам некогда действительно текла вода. Миллиарды лет назад, по их мнению, атмосфера на Марсе была плотнее, может быть выпадали обильные дожди. То, что сегодня осталось от этого водного изобилия, тонким слоем покрывает полярную область и скудно скапливается в расщелинах скал и в трещинах грунта.

Материалы по теме:

Как возникают капли во время дождя?

Дожди на Юпитере

Юпитер - пятая от Солнца планета - во всем отличается от Марса. Юпитер - это гигантский вращающийся газовый шар, состоящий в основном из водорода и гелия. Возможно, глубоко внутри имеется небольшое твердое ядро, покрытое океаном из жидкого водорода.

Юпитер окружен цветными полосами облаков. Есть и облака, состоящие из воды, но большинство облаков Юпитера из кристалликов застывшего аммиака. На Юпитере бывают бури, даже сильные ураганы, а также, по мнению ученых, дожди и снегопады из аммиака. Но эти «снежинки» плавятся и испаряются, прежде чем достигают поверхности водородного океана.

Понедельник, 02 Ноя. 2015

Если человек когда-нибудь доберётся до крупнейших планет Солнечной системы - Юпитера и Сатурна, то собственными глазами сможет увидеть “небо в алмазах”.

Согласно последним исследованиям планетологов, на газовых гигантах идут алмазные дожди.

Исследователи инопланетных миров давно задаются вопросом: может ли высокое давление внутри гигантских планет превращать углерод в алмазы? Планетологи Мона Делитски (Mona Delitsky) из калифорнийской компании Specialty Engineering и Кевин Бейнс (Kevin Baines) из университета Висконсина в Мэдисоне подтвердили давние предположения своих коллег.

Согласно модели, построенной по наблюдениям астрофизиков, когда разряд молнии появляется в верхних слоях атмосферы газовых гигантов и затрагивает молекулы метана, то высвобождаются атомы углерода. Эти атомы в большом количестве соединяются друг с другом, после чего начинают длительное путешествие к каменному ядру планеты. Эти "сборища" атомов углерода представляют собой довольно массивные частицы, то есть по сути представляют собой сажу. Вероятнее всего, именно их увидел аппарат "Кассини" в составе тёмных туч Сатурна.

Частицы сажи медленно спускаются к центру планеты, минуя последовательно все слои её атмосферы. Чем дальше они проходят сквозь слои газообразного и жидкого водорода к ядру, тем большее давление и нагрев испытывают. Постепенно сажа сжимается до состояния графита, а затем преобразуется в ультраплотные алмазы. Но на этом испытания не заканчиваются, инопланетные драгоценные камни нагреваются до температуры 8 тысяч градусов по Цельсию (то есть достигают температуры плавления) и падают на поверхность ядра в виде жидких алмазных капель.

"Внутри Сатурна наблюдаются подходящие условия для града из алмазов. Наиболее благоприятная зона находится на отрезке, начиная с глубины в шесть тысяч километров и заканчивая глубиной в 30 тысяч километров. По нашим расчётам Сатурн может содержать до 10 миллионов тонн этих драгоценных камней, при этом большинство из них не более миллиметра в диаметре, но есть и образцы диаметром около 10 сантиметров", — говорит Бейнс.

В связи с новым открытием планетологи предложили интересную идею: на Сатурн можно отправить робота, который будет собирать капли "драгоценного" дождя. Интересно, что это исследование является своеобразным повторение сюжета научно-фантастической книги "Инопланетные моря" (Alien Seas), согласно которому в 2469 году на Сатурне будут собирать алмазы для строительства корпуса добывающего судна, которое отправится к ядру планеты и будет собирать гелий-3, необходимый для создания термоядерного топлива.

Мысль заманчивая, но учёные предупреждают: алмазы стоит оставить на Сатурне, чтобы предотвратить финансовый хаос на Земле.

Делитски и Бейнс заключили, что алмазы будут оставаться стабильными внутри гигантских планет. К такому выводу они пришли в результате сравнительного анализа последних астрофизических исследований. Эти работы экспериментально подтвердили конкретные температуры и уровень давления, при которых углерод принимает различные аллотропные модификации, такие как твёрдый алмаз. Для этого учёные моделировали условия (прежде всего температуру и давление) в разных слоях атмосфер гигантских планет.

"Мы собрали результаты нескольких исследований и пришли к выводу, что алмазы действительно могут падать с небес Юпитера и Сатурна", — утверждает Делитски.

Необходимо учитывать, что до тех пор, пока некое открытие не подтвердится результатами наблюдений или экспериментов, оно так и останется на уровне гипотезы. Пока модели формирования алмазных капель на газовых гигантах ничто не противоречит. Однако коллеги Бейнса и Делитски высказали свои сомнения о правдоподобности описанной ныне модели.

Так, Дэвид Стивенсон (David Stevenson), планетолог из Калифорнийского технологического института, утверждает, что Бейнс и Делитски неверно использовали в своих расчётах законы термодинамики.

"Метан составляет очень малую долю водородной атмосферы Юпитера и Сатурна — 0,2% и 0,5% соответственно. Думаю, там происходит процесс, похожий на растворение в воде соли и сахара при высоких температурах. Даже если бы вы напрямую создали углеродную пыль и поместили её в верхние слои атмосферы Сатурна, то она бы попросту растворилась во всех этих слоях, стремительно опускаясь к ядру планеты", — утверждает Стивенсон, не принимавший участия в исследовании.

Похожей работой занимался несколько лет назад физик Лука Гирингелли (Luca Ghiringhelli) из Института имени Фрица Габера. К выводам Бейнса и Делитски он также отнёсся скептически. В своей работе он исследовал Нептун и Уран, которые намного богаче углеродом, чем Сатурн и Юпитер, но даже их углерода недостаточно для формирования кристаллов атом за атомом.

Коллеги Бейнса и Делитски советуют им продолжить своё исследование, дополнив модель большим количеством реальных данных и результатами наблюдений.

Доклад об открытии Делитски и Бейнса (PDF-документ) прозвучал на заседании Отделения Американского астрономического общества в области планетарных наук (AAS Division for Planetary Sciences), которое проходит в Денвере с 6 по 11 октября 2015 года.

Такое предположение выдвинули недавно учёные США. По их подсчётам и теориям на Юпитере и Сатурне могут идти градом огромные алмазы. Согласено новым данным газовых гигантов, углерод в своей кристаллической форме - не редкость на этих планетах. Кроме этого Сатурн и Юпитер содержат большие объемы этого вещества. Так что, если теория подтвердится, алмазы можно будет добывать не только на нашей планете!



Разряды молний превращают метан в углерод, который во время падения твердеет, превращаясь через 1 600 км в глыбы графита(наподобие того, что мы используем в карандашах), а спустя еще 6 000 км эти глыбы становятся алмазами. Это море безумной красоты, такой же, как. Алмазы эти продолжают падать еще в течение 30 000 км.

В конце концов, алмазы достигают такой глубины, что высокие температуры горячих ядер планет просто плавят их и, возможно (хотя это пока нельзя утверждать) создается море жидкого углерода, сообщили на конференции ученые.


Самые большие алмазы имеют диаметр примерно 1 см, сообщил Доктор Кевин Бэйнс (Dr Kevin Baines) из Висконсинского университета в Мадисоне (University of Wisconsin-Madison) и Лаборатория Реактивного Движения НАСА (Nasa’s Jet Propulsion Laboratory).

За 1 год на Сатурне создаются более 1 000 тон алмазов.


Вместе со своим соавтором Моной Делинцки (Mona Delitsky) Бэйнс обнародовал пока еще не опубликованную находку на ежегодном собрании Отделения Американского астрономического общества в области планетарных наук в Денвере, штат Колорадо.

Оправдаются ли научно-фантастические прогнозы, согласно которым сверхпрочные роботы будут собирать алмазы на Сатурне?..


Выражение «небо в алмазах» может оказаться не просто иносказанием, считают ученые. Планетологи Мона Делитски и Кевин Бейнс представили аргументы в пользу того, что высокое давление внутри планет-гигантов может превратить углерод в алмаз.

Согласно предложенному сценарию, молнии в верхних слоях атмосферы газовых гигантов разбивают молекулы метана, высвобождая углерод, который собирается в частицы сажи. Космический аппарат Cassini заметил такие частицы внутри грозовых облаков Сатурна. Углерод, погружающийся все глубже в атмосферу планеты, минует уплотняющиеся слои газообразного и жидкого водорода и приближается к твердому ядру планеты, подвергаясь все большему давлению. Сажа превращается в графит, а затем — в алмаз. При температуре около 8000 °C алмаз плавится, образуя капли.

На Сатурне, начиная от 6000 км от внешней границы атмосферы и еще на 30 000 км вглубь, есть все условия для алмазного «града», говорит Бейнс. По его оценкам, на Сатурне может быть около 10 млн тонн алмазов, сформировавшихся таким образом, причем большинство из них не крупнее 1 мм в поперечнике. Однако могут встречаться и настоящие «булыжники» — алмазы величиной до 10 см.

Предположения ученых основываются на экспериментальных данных, описывающих фазовые превращения углерода, и моделировании условий внутри атмосфер газовых гигантов. «Мы собрали информацию из различных источников и сделали вывод, что алмазы могут существовать в глубине атмосфер Сатурна и Юпитера», — говорит Делитски.

Однако у Бейнса и Делитски есть оппоненты, которые приводят вполне весомые возражения. Планетолог Дэвид Стивенсон говорит, что в подобных системах нельзя пренебрегать термодинамикой. Доля метана в атмосферах Сатурна и Юпитера, состоящих преимущественно из водорода, очень мала — 0,2% и 0,5% соответственно. Термодинамика систем с таким разбавлением, по мнению Стивенсона, будет способствовать растворению. Как пара кристалликов сахара или соли в стакане воды, сажа скорее растворится в атмосфере планеты, чем опустится до тех глубин, где сможет превратиться в алмаз.

Физик Лука Гирингелли, занимавшийся моделированием подобных процессов для Урана и Нептуна, также скептически относится к представленным данным. Он показал, что концентрация углерода на этих планетах (кстати, в несколько раз более богатых этим элементом, чем Сатурн и Юпитер) недостаточна, чтобы построить алмаз «с нуля», атом за атомом. Конечно, появление алмаза из уж сформировавшихся хлопьев сажи — совсем не тот же самый процесс, но Гирингелли говорит, что говорить об «алмазных дождях» на Сатурне несколько преждевременно.

Что ж, финансисты пока могут не беспокоиться: в ближайшие столетия инопланетные алмазы вряд ли обрушат наши земные рынки.