n - количество узлов.

Задача интерполяции - найти функцию , принимающую в точках те же значения .

При этом предполагается, что среди значений нет одинаковых. Точки называют узлами интерполяции. Узлы интерполяции не обязательно должны располагаться равномерно на отрезке [ .

Функция называется интерполянтом функции .

Если значение ищется на интервале [ , то эту задачу принято называть задачей интерполяции, а если за пределами этого интервала, то это задачей экстраполяции.

Задача имеет много решений, т.к. через заданные точки, i=0, 1,..., n, можно провести бесконечно много кривых, каждая из которых будет графиком функции, для которой выполнены все условия (1.2).

В зависимости от цели приближения используют либо интерполяцию (точечную аппроксимацию), либо аппроксимацию. Аппроксимация – это замена таблично заданной функции функцией , которая на рассматриваемом отрезке имеет ограниченное отклонение от функции .

Условие интерполяции:

(1.2)

Где а – вектор неизвестных коэффициентов.

Обычно вид известен заранее. Чтобы решить задачу интерполяции необходим коэффициент .

Решить задачу интерполяции - значит найти при заданных и .

В общем виде система представляет систему нелинейных уравнений и при больших n часто не имеет решений.

Первым методом решений задачи интерполяции является метод Лагранжа.

Простейшим и наиболее часто применяемым функцией является полином:

(1.3)

где , , , …, – коэффициент полинома,

m – степень аппроксимирующего многочлена.

Интерполирование состоит в приближённой замене функции , заданной таблично, функцией , которая принимает те же значения, что и функция .

Все методы интерполяции можно разделить на локальные и глобальные. В случае глобальной интерполяции отыскивается единый полином на всем интервале [ . Методы глобальной интерполяции обычно применяют для функций, заданных небольшим количеством точек, т. к. при увеличении количества точек увеличивается порядок интерполирующего многочлена, что отрицательно сказывается на гладкости получаемой функции. Многочленная аппроксимация, использующая сразу все узлы таблицы (глобальная интерполяция) имеет существенный недостаток – возможность появления больших экстремумов в промежутках между узлами сетки. Т.е. интерполяционный полином может иметь колебания, не свойственные исходным данным. Кроме того, с ростом степени полинома происходит быстрое накопление ошибок округления. Чтобы избежать этих нежелательных эффектов, на практике применяют локальную интерполяцию. . В случае локальной интерполяции на каждом интервале строится отдельный полином. Для локальной интерполяции количество узлов большого значения не имеет.

Рассмотрим некоторые виды локальной и глобальной интерполяции.

Локальная интерполяция:

1. Кусочно-линейная интерполяция

2. Интерполяция сплайнами

Глобальная интерполяция:

1. Полином Лагранжа

2. Многочлен Ньютона

ГЛОБАЛЬНАЯ ИНТЕРПОЛЯЦИЯ

Интерполяция полиномом Лагранжа

При глобальной интерполяции на всем интервале строится единый многочлен. Одной из форм записи интерполяционного многочлена для глобальной интерполяции является многочлен Лагранжа:

Интерполяционный полином Лагранжа n-ой степени есть линейная комбинация базисных полиномов Лагранжа:

То есть многочлен Лагранжа:

(2.3)

Многочлен удовлетворяет условию

Это условие означает, что многочлен равен нулю при каждом кроме , то есть , , … , – корни этого многочлена. Таким образом, степень многочлена равна n и при в сумме обращаются в нуль все слагаемые, кроме слагаемого с номером i=j, равного .

Принимает значение 1 в точке и 0 в остальных узлах интерполяции. Следовательно в точке исходный полином принимает значение

(2.4)

Выражение (2.1) применимо как для равноотстоящих, так и для не равноотстоящих узлов.

Многочлен Лагранжа в явном виде содержит значения функций в узлах интерполяции, поэтому он удобен, когда значения функций меняются, а узлы интерполяции неизменны. Число арифметических операции, необходимых для построения многочлена Лагранжа, пропорционально и является наименьшим для всех форм записи. К недостаткам этой формы записи можно отнести то, что с изменением числа узлов приходится все вычисление проводить заново.

2.2. Многочлен Ньютона

Пусть функция g(x) задана с произвольным шагом и точки таблицы значений занумерованы в произвольном порядке.

Многочлен Ньютона во многом опирается на понятие разделенных разностей.

Разделенные разности нулевого порядка совпадают со значениями функции в узлах. Разделенные разности первого порядка определяются через разделенные разности нулевого порядка:

Разделенные разности k-го порядка определяются через разделенную разность порядка :

Для повышения точности интерполяции в сумму могут быть добавлены новые члены, что требует подключения дополнительных узлов. При этом для формулы Ньютона безразлично, в каком порядке подключаются новые узлы, в то время как для многочлена Лагранжа при добавлении новых узлов все расчеты надо производить заново.

Предположим, что необходимо увеличить степень многочлена на единицу, добавив в таблицу еще один узел . Для вычисления достаточно добавить к лишь одно слагаемое

ЛОКАЛЬНАЯ ИНТЕРПОЛЯЦИЯ

3.1. Кусочно-линейная интерполяция.

Одним из самых используемых и простейших видов локальной интерполяции, является кусочно-линейная интерполяция, при которой каждые две точки и табличной функции соединяются отрезками прямой (т.е. проводится полином первой степени)

(3.3)
(3.4)

Кусочно-линейная интерполяция является самой простой, и поэтому довольно часто применяется для расчета значений между узлами интерполяции. Для построения интерполирующей зависимости, используемой в дальнейших научных и инженерных расчетах, обычно используются более сложные методы интерполяции.

3.2. Интерполяция сплайнами

Иногда требуется обеспечить непрерывность не только интерполирующей функции, но и нужного количества её производных для этого прибегают к интерполяции сплайнами.

Сплайн – функция, область определения которой разбита на конечное число отрезков, на каждом из которых сплайн совпадает с алгебраическим многочленом. Максимальная степень из использованных полиномов называется степенью сплайна.

Преимущества интерполяции сплайнами по сравнению с обычными методами интерполяции – в сходимости и устойчивости вычислительного процесса. На практике наиболее часто используются кубические сплайны – сплайны третьей степени с непрерывной, по крайней мере, первой производной. При этом величина , называется наклоном сплайна в точке (узле) .

Разобьём отрезок на N равных отрезков [ , ], где , i=0,1,…,N-1.

Если в узлах , , заданы значения , которые принимает кубический сплайн, то на частичном отрезке [ , ] он принимает вид:

(3.3)

В самом деле, это легко проверить, рассчитав и в точках ,

Можно доказать, что если многочлен третьей степени, принимает в точках , значения , и имеет в этих точках производные, соответственно, , , то он совпадает с многочленом (3.3).

Таким образом, для того, чтобы задать кубический сплайн на отрезке, необходимо задать значения , i=0,1…,N в N+1 в узле .

ОШИБКА ИНТЕРПОЛЯЦИИ

При интерполяции функции всегда получают ошибку состоящую из погрешности самого метода и ошибок округления.

Ошибка приближения функции интерполяционным полиномом n-й степени в точке xопределяется разностью.

Здесь – производная (n+1) порядка функции в некоторой точке, а функция определена как

то для погрешности интерполяции следует оценка.

(4.4)

Конкретная величина погрешности в точке x зависит, очевидно, от значения функции в этой точке. Качественный характер зависимости показан на рисунке 2.

Из рисунка видно, что погрешность интерполяции тем выше, чем ближе точка x лежит к концам отрезка. За пределами отрезка интерполяции (т.е.

при экстраполяции) быстро растет, поэтому погрешность возрастает существенно.

Рисунок 2

Вследствие описанного поведения погрешности, глобальная интерполяция в некоторых случаях может давать совершенно неудовлетворительный результат.

5. ПРИМЕР ИНТЕРПОЛЯЦИИ ФУНКЦИИ МНОГОЧЛЕНАМИ ЛАГРАНЖА И НЬЮТОНА

Для нахождения многочлена, принимающего в конкретных точках нужные значения, может использоваться пакет Mathcad. В качестве примера рассмотрим задачу на нахождение многочлена Лагранжа удовлетворяющего приведенным исходным данным.

Построим многочлен Лагранжа в пакете Mathcad:

Исходные данные:

В вычислительной практике часто приходится иметь дело с функциями , заданными таблицами их значений для некоторого конечного множества значенийх : .

В процессе же решения задачи необходимо использовать значения
для промежуточных значений аргумента. В этом случае строят функцию Ф(x), достаточно простую для вычислений, которая в заданных точкахx 0 , x 1 ,...,x n , называемых узлами интерполяции, принимает значения, а в остальных точках отрезка (x 0 ,x n), принадлежащего области определения
, приближенно представляет функцию
с той или иной степенью точности.

При решении задачи в этом случае вместо функции
оперируют с функцией Ф(x). Задача построения такой функции Ф(x) называется задачей интерполирования. Чаще всего интерполирующую функцию Ф(x) отыскивают в виде алгебраического полинома.

    1. Интерполяционный полином

Для каждой функции
, определенной на [a,b ], и любого набора узлов x 0 , x 1 ,....,x n (x i
[a,b ], x i x j при ij) среди алгебраических многочленов степени не выше n существует единственный интерполяционный многочлен Ф(x), который может быть записан в форме:

, (3.1)

где
- многочлен n-ой степени, обладающий следующим свойством:

Для интерполяционного полинома многочлен
имеет вид:

Этот многочлен (3.1) и решает задачу интерполирования и называется интерполяционным полиномом Лагранжа.

В качестве примера рассмотрим функцию вида
на интервале
заданную табличным способом.

Необходимо определить значение функции в точке x-2.5. Воспользуемся для этого полином Лагранжа. Исходя из формул (3.1 и 3.3) запишем этот полином в явном виде:

(3.4).

Тогда подставляя в формулу (3.4) исходные значения из нашей таблицы получим

Полученный результат соответствует теории т.е. .

    1. Интерполяционная формула Лагранжа

Интерполяционный полином Лагранжа может быть записан в другой форме:

(3.5)

Запись полинома в виде (3.5) более удобна для программирования.

При решении задачи интерполяции величина n называется порядком интерполирующего полинома. При этом, как видно из формул (3.1) и (3.5), число узлов интерполирования всегда будет равно n+1 и значение x, для которого определяется величина
,
должно лежать внутри области определения узлов интерполяции т.е.

. (3.6)

В некоторых практических случаях общее известное число узлов интерполяции m может быть больше, чем порядок интерполирующего полинома n .

В этом случае, прежде чем реализовывать процедуру интерполяции согласно формуле (3.5), необходимо определить те узлы интерполяции, для которых справедливо условие (3.6). При этом следует помнить, что наименьшая погрешность достигается при нахождении значения x в центре области интерполяции. Для обеспечения этого предлагается следующая процедура:


Основное назначение интерполяции – это вычисление значений табулированной функции для не узловых (промежуточных) значений аргумента, поэтому интерполяцию часто называют «искусством чтения таблиц между строками».

4.3 Интерполяция функции многочленами Лагранжа

Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке и известны значения этой функции в некоторой системе узлов x i Î , i = 0, 1, … , n. Например, эти значения получены в эксперименте при наблюдении некоторой величины в определенных точках или в определенные моменты времени x 0 , x 1 , … , x n . Обозначим эти значения следующим образом: y i = f(x i), i = 0, 1, … , n. Требуется найти такой многочлен P(x) степени m,

P(x) = a 0 + a 1 x + a 2 x 2 + … + a m x m , (4.5)

который бы в узлах x i , i = 0, 1, … , n принимал те же значения, что и исходная функция y = f(x), т. е.

P(x i) = y i , i = 0, 1, … , n. (4.6)

Многочлен (4.5), удовлетворяющий условию (4.6), называется интерполяционным многочленом.

Другими словами, ставится задача построения функции y = P(x), график которой проходит через заданные точки (x i , y i), i = 0, 1, … , n (рис. 4.1).

Объединяя (4.5) и (4.6), получим:

a 0 + a 1 x i + a 2 x + … + a m x = y i ,i = 0, 1, … , n. (4.7)

В искомом многочлене P(x) неизвестными являются m +1 коэффициент a 0 , a 1 , a 2 , …, a m . Поэтому систему (4.7) можно рассматривать как систему из n +1 уравнений с m +1 неизвестными. Известно, что для существования единственного решения такой системы необходимо, чтобы выполнялось условие: m = n. Таким образом, систему (4.7) можно переписать в развернутом виде:

a 0 + a 1 x 0 + a 2 x + … + a n x = y 0

a 0 + a 1 x 1 + a 2 x + … + a n x = y 1

a 0 + a 1 x 2 + a 2 x + … + a n x = y 2 (4.8)

a 0 + a 1 x n + a 2 x + … + a n x = y n


Вопрос о существовании и единственности интерполяционного многочлена решает следующая теорема:

Теорема 4.1. Существует единственный интерполяционный многочлен степени n, удовлетворяющий условиям (4.6).

Имеются различные формы записи интерполяционного многочлена. Широко распространенной формой записи является многочлен Лагранжа

L n (x) = = . (4.9)

В частности, для линейной и квадратичной интерполяции по Лагранжу получим следующие интерполяционные многочлены:

L 1 (x) = y 0+ y 1,

L 2 (x) = y 0 +y 1 + y 2 .

Пример 4.3.

Построим интерполяционный многочлен Лагранжа по следующим данным:

0 2 3 5
1 3 2 5

Степень многочлена Лагранжа для n +1 узла равна n. Для нашего примера многочлен Лагранжа имеет третью степень. В соответствии с (4.9)


L 3 (x) = 1+3 + 2 + 5 = 1 + x – x 2 + x 3 .

Пример 4.4.

Рассмотрим пример использования интерполяционного многочлена Лагранжа для вычисления значения заданной функции в промежуточной точке. Эта задача возникает, например, когда заданы табличные значения функции с крупным шагом, а требуется составить таблицу значений с маленьким шагом.

Для функции y = sinx известны следующие данные.

0 p/6 p/3 p/2
0 ½ 1

Вычислим y(0.25).

Найдем многочлен Лагранжа третьей степени:

L 3 (x) = 0 + +

+ 1.

При x = 0.25 получим y(0.25) = sin 0.25 » 0.249.

Погрешность интерполяции. Пусть интерполяционный многочлен Лагранжа построен для известной функции f(x). Необходимо выяснить, насколько этот многочлен близок к функции в точках отрезка , отличных от узлов. Погрешность интерполяции равна |f(x) – P n (x)|. Оценку погрешности можно получить на основании следующей теоремы.

Теорема 4.2. Пусть функция f(x) дифференцируема n +1 раз на отрезке , содержащем узлы интерполяции x i Î , i = 0, 1, … , n. Тогда для погрешности интерполяции в точке x Î справедлива оценка:

|f(x) – L n (x)|£ |w n+ 1 (x)|, (4.10)

M n+ 1 = |f (n+1) (x)|,

w n+ 1 (x) = (x – x 0)(x – x 1)…. (x – x n).

Для максимальной погрешности интерполяции на всем отрезке справедлива оценка:

|f(x) – L n (x)| £ |w n (x)| (4.11)

Пример 4.5.

Оценим погрешность приближения функции f(x) = в точке x = 116 и на всем отрезке , где a = 100, b = 144, с помощью интерполяционного много члена Лагранжа L 2 (x) второй степени, построенного с узлами x 0 = 100, x 2 = 144.

Найдем первую, вторую и третью производные функции f(x):

f "(x)= x – 1/2 , f "(x)= – x –3/2 , f"""(x)= x –5/2 .

M 3 = | f"""(x)| = 100 –5/2 = 10 –5 .

В соответствии с (4.9) получим оценку погрешности в точке x = 116.

Пусть на отрезке в некоторой последовательностиузловзадана функциясвоими значениями, где. Задача алгебраического интерполирования состоит в построении многочленастепени, удовлетворяющего условию интерполирования:.

Известно, что существует единственный полином степени не выше , принимающий в исходных точках заданные значения. Коэффициентыполиномаможно определить из системы уравнений:

Определитель этой системы есть определитель Вандермонда, и, следовательно, система имеет единственное решение.

Пример. Построить интерполяционный многочлен , совпадающий с функциейв точках.

Решение. Пусть , поэтому имеем

Поэтому при.

Многочлен Лагранжа

Будем искать многочлен в виде линейной комбинации множеств степени :.

При этом потребуем, чтобы каждый многочлен во всех узлах интерполяции, за исключением одного, где он равен 1. Легко проверить, что этим условиям отвечает многочлен вида

.

Действительно, . Причислитель выражения равен 0. По аналогии получим:

,

Подставив эти формулы в исходный многочлен, получим:

Эта формула называется интерполяционным многочленом Лагранжа.

Пример. Построить интерполяционный многочлен Лагранжа , совпадающий с функциейв точках

.

Решение. Составим таблицу

Подставляя эти значения в формулу Лагранжа, получим:

Если функция непрерывно дифференцируема до-го порядка включительно, то остаточный член интерполяционного многочлена в форме Лагранжа имеет вид

где – внутренняя точка минимального отрезка, содержащего узлы интерполированияи точку.

Многочлен Ньютона с конечными разностями

Рассмотрим случай равноотстоящих узлов интерполяции, т. е. – называется шагом.

Введем понятие конечных разностей. Пусть известны значения функции в узлах . Составим разности значений функции:

Эти разности называются разностями первого порядка.

Можно составить разности второго порядка:

Аналогично составляются разности k-го порядка:

Выразим конечные разности непосредственно через значение функции:

Таким образом, для любого k можно записать:

Запишем эту формулу для значений разности в узле :

Используя конечные разности, можно определить

Перейдем к построению интерполяционного многочлена Ньютона. Этот многочлен будем искать в виде

График многочлена должен проходить через заданные узлы, то есть . Используем эти условия для нахождения коэффициентов многочлена:

Найдем отсюда коэффициенты :

Таким образом, для любого -го коэффициента формула примет вид

.

Подставляя эти формулы в выражение многочлена Ньютона, получим его следующий вид:

Полученную формулу можно записать в другом виде. Для этого введем переменную .

В этом случае

С учетом этих соотношений формулу многочлена Ньютона можно записать в виде

Полученное выражение может аппроксимировать данную функцию на всем отрезке изменения аргумента. Однако более целесообразно (с точки зрения повышения точности расчетов и уменьшения числа слагаемых в полученой формуле) ограничиться случаем, то есть использовать эту формулу для всех. Для других случаев вместопринять, еслипри. В этом случае интерполяционный многочлен можно записать в виде

Полученная формула называется первым интерполяционным многочленом Ньютона для интерполяции вперед. Эту интерполяционную формулу обычно используют для вычисления значений функции в точках левой половины рассматриваемого отрезка. Это объясняется следующим: разности вычисляются через значения функции, причем. Из-за этого при больших значенияхмы не можем вычислить высших порядков.

Для правой половины рассматриваемого отрезка разности лучше вычислять справа налево. В этом случае , то есть, и интерполяционный многочлен Ньютона можно получить в виде:

Полученная формула называется вторым интерполяционным многочленом назад.

Пример. Используя интерполяционный полином Ньютона, вычислить , где функциязадана таблицей

Решение. Составляем таблицу конечных разностей.

Для вычисления положим в интерполяционном многочлене Ньютона впередтогдаи

Пример. Задана таблица. Найти .

При вычислении положим

.

При вычислении положим

.

Оценим погрешности формул Ньютона вперед и назад:

Формулы приближенного дифференцирования основаны на первой интерполяционной формуле Ньютона. Интерполяционный многочлен Ньютона имеет вид

Производя перемножение биномов, получим

так как , то

Аналогично можно вычислять производные функции любого порядка.

В некоторых случаях требуется находить производные функций в основных табличных точках. Так как табличное значение можно считать за начальное, то положив, имеем

Для производной многочлена Ньютона первого порядка погрешность может быть вычислена по формуле ,

где – число конечных разностей в многочлене Ньютона.

Пример. Найти функции, заданной таблично.

Решение.

Вычисляя погрешность, получим:

.

Действительно, .

Таким образом, результаты совпадают до четвертого знака.

Пусть на отрезке функция у=f(x) задана таблично, т.е. (x i , y i), (i=0,1,..,n), где y i =f(x i). Так заданную функцию называют «сеточной ».

Постановка задачи : найти алгебраический многочлен (полином ):

степени не выше n такой, чтобы

L n (x i)=y i , при i= 0,1,..,n, (5.6)

т.е. имеющий в заданных узлах x i , (i =0,1,..,n ) те же значения, что и сеточная функция у =f(x) .

Сам многочлен L n (x) называется интерполяционным полиномом , а задача – полиномиальной интерполяцией .

Найти многочлен L n (x) – это значит найти его коэффициенты a 0 , a 1 ,…,a n . Для этого имеется n+ 1 условие (5.6), которые записываются в виде системы линейных алгебраических уравнений относительно неизвестных a i , (i =0, 1,…,n ):

где x i и y i (i =0,1,…,n ) – табличные значения аргумента и функции.

Из курса алгебры известно, что определитель этой системы, называемый определителем Вандермонда:

отличен от нуля и, следовательно, система (5.7) имеет единственное решение .

Определив коэффициенты a 0 , a 1 ,…,a n , решая систему (5.7), получаем так называемый интерполяционный полином Лагранжа для функции f(x) :

(5.8)

который можно записать в виде:

Доказывается , что по заданным n +1 значениям функции можно построить единственный интерполяционный многочлен Лагранжа (5.8).

На практике широко используются интерполяционные многочлены Лагранжа первой (n= 1) и второй (n= 2) степени.

При n= 1 информация об интерполируемой функции у=f(x) задается в двух точках: (x 0 , y 0 ) и (x 1 , y 1 ), и многочлен Лагранжа имеет вид

Для n= 2 многочлен Лагранжа строится по трехточечной таблице

Решение: Подставляем исходные данные в формулу (5.8). Степень полученного многочлена Лагранжа не выше третьей, так как функция задается четырьмя значениями:

Пользуясь интерполяционным полиномом Лагранжа, можно найти значение функции в любой промежуточной точке, например при х =4:

= 43

Интерполяционные полиномы Лагранжа используются в методе конечных элементов, широко применяемом при решении задач строительства.

Известны и другие формулы интерполяции, например, интерполяционная формула Ньютона , применяемая при интерполяции в случае равноотстоящих узлов или интерполяционный полином Эрмита .

Сплайн-интерполяция . При использовании большого числа узлов интерполяции используют специальный прием – кусочно-полиномиальную интерполяцию , когда функция интерполируется полиномом степени т между любыми соседними узлами сетки.

Среднеквадратичное приближение функций

Постановка задачи

Среднеквадратичное приближение функций – это другой подход к получению аналитических выражений для аппроксимирующих функций. Особенностью таких задач является тот факт, что исходные данные для построения тех или иных закономерностей имеют заведомо приближенный характер .

Эти данные получены в результате какого-либо эксперимента или в результате какого-либо вычислительного процесса. Соответственно эти данные содержат погрешности эксперимента (погрешности измерительной аппаратуры и условий, случайные ошибки и пр.) или погрешности округления.

Допустим, исследуется какое либо явление или процесс. В общем виде объект исследования можно представить кибернетической системой («черный ящик»), приведенной на рисунке.

Переменная х – это независимая, управляемая переменная (входной параметр).

Переменная Y – это реакция (отклик) объекта исследования на воздействие входного параметра. Это зависимая переменная.

Предположим, что при обработке результатов этого эксперимента обнаружена некая функциональная зависимость у=f(x) между независимой переменной х и зависимой переменной у. Эта зависимость представлена в виде табл. 5.1 значений x i , y i (i =1,2,…,n ), полученных в ходе эксперимента.

Таблица 5.1

x i x 1 x 2 x n
y i y 1 y 2 y n

Если аналитическое выражение функции у=f(x) неизвестно или весьма сложно, то возникает задача найти функцию y= j(х), значения которой при x=x i , возможно мало отличалось бы от опытных данных y i , (i =1,..,n ). Таким образом, исследуемая зависимость аппроксимируется функцией y= j(х) на отрезке [x 1 ,x n ]:

f(x) @ j(х) . (5.9)

Аппроксимирующая функция y= j(х) называется эмпирической формулой (ЭФ) или уравнением регрессии (УР) .

Эмпирические формулы не претендует на роль законов природы, а являются лишь гипотезами, более или менее адекватно описывающими опытные данные. Однако значение их весьма велико. В истории науки известны случаи, когда полученная удачная эмпирическая формула приводила к большим научным открытиям.

Эмпирическая формула является адекватной , если ее можно использовать для описания исследуемого объекта с достаточной для практики точностью.

Для чего же нужна эта зависимость?

Если приближение (5.9) найдено, то возможно:

Сделать прогноз о поведении исследуемого объекта вне отрезка (экстраполяция );

Выбрать оптимальное направление развития исследуемого процесса.

Уравнение регрессии может иметь различный вид и различный уровень сложности в зависимости от особенностей исследуемого объекта и необходимой точности представления.

Геометрически задачапостроения уравнения регрессии состоит в проведении кривой L : y= j(х) «возможно ближе » примыкающей к системе экспериментальных точек M i (x i , y i), i= 1,2,..,n , заданной табл. 5.1 (рис.5.2).

Построение уравнения регрессии (эмпирической функции) состоит из 2 этапов:

1. выбора общего вида уравнения регрессии,

2. определения его параметров .

Удачный выбор уравнения регрессии во многом зависит от опыта экспериментатора, исследующего какой-либо процесс или явление.

Часто в качестве уравнения регрессии выбирают полином (многочлен):

Вторая задача, нахождение параметров уравнения регрессии решается регулярными методами, например, методом наименьших квадратов (МНК), который широко используется при изучении какой-либо закономерности на основе наблюдений или экспериментов.

Разработка этого метода связана с именами известных математиков прошлого – К.Гаусса и А.Лежандра.

Метод наименьших квадратов

Допустим, что результаты эксперимента представлены в виде табл. 5.1. И уравнение регрессии записывается в виде (5.11), т.е. зависит от (m +1) параметра

Эти параметры и определяют расположение графика уравнения регрессии относительно экспериментальных точек M i (x i , y i), i= 1,2,..,n (рис.5.2).

Однако эти параметры определяются не однозначно. Требуется подобрать параметры так, чтобы график уравнения регрессии был расположен «как можно ближе » к системе этих экспериментальных точек.

Введем понятие отклонения значения уравнения регрессии (5.11) от табличного значения y i для x i : , i= 1,2,..,n.

Рассмотрим сумму квадратов отклонений, которая зависит от(m +1) параметра

Согласно МНК наилучшими коэффициентами a i (i =0,1,..,m ) являются те, которые минимизирует сумму квадратов отклонений, т.е. функцию .

Используя необходимые условия экстремума функции нескольких переменных, получим так называемую нормальную систему для определения неизвестных коэффициентов :

Для аппроксимирующей функции (5.11) система (5.14) является системой линейных алгебраических уравнений относительно неизвестных .

Возможны случаи:

1. Если , то существует бесконечно много многочленов (5.11), минимизирующих функцию (5.13).

2. Если m=n –1, то существует только один многочлен (5.11), минимизирующий функцию (5.13).

Чем меньше m , тем проще эмпирическая формула, но это не всегда лучше. Необходимо помнить, что полученная эмпирическая формула должна быть адекватной изучаемому объекту.