Во время сильной солнечной бури Земля теряет около 100 тонн атмосферы .

Факты космической погоды

  1. Солнечные вспышки, могут иногда нагревать солнечную поверхность до температуры 80 миллионов F, что горячее ядра ​​солнца!
  2. Самый быстрый выброс корональной массы был зарегистрирован 4 августа 1972 года и он путешествовал от Солнца до Земли 14,6 часа - скорость около 10 миллионов километров в час или 2778 км/сек.
  3. 8 апреля 1947 года зафиксировано крупнейшие пятно в новейшей истории, с максимальным размером, превышающим в 330 раз площадь Земли.
  4. Самая мощная солнечная вспышка за последние 500 лет произошло 2 сентября 1859 г. и была обнаружена двумя астрономами, которым повезло, глянуть на солнце в нужное время!
  5. В период с 10 по 12 мая 1999 года, давление солнечного ветра практически исчезло, в результате чего магнитосфера Земли расширилась в объеме более чем в 100 раз!
  6. Типичные выбросы корональной массы могут иметь размеры в миллионы километров, но масса соответствует небольшой горе!
  7. Некоторые пятна на Солнце настолько прохладны, что водяные пары могут образовываться при температуре 1550 С.
  8. Самые мощные полярные сияния могут генерировать более 1 трлн ватт, что сравнимо с землетрясением средней мощности.
  9. 13 марта 1989 в Квебеке(Канада) в результате крупной геомагнитной бури произошла крупная авария в электросетях, вызвавшая отключение энергии в течении 6 часов. Ущерб для экономики Канады составил 6 миллиардов долларов
  10. Во время интенсивных солнечных вспышек космонавты могут видеть яркие мигающие полосы света от воздействия частиц высокой энергии на глазные яблоки.
  11. Самой большой проблемой путешествия космонавтов на Марс будет преодоление воздействия солнечных бурь и радиации.
  12. Прогнозирования космической погоды стоит всего $ 5 млн в год, но сохраняет более 500 миллиардов долларов ежегодного дохода от спутников и электротехнической промышленности.
  13. В течение последнего цикла солнечной активности было повреждено или уничтожено спутниковых технологий на 2 млрд $.
  14. Повторение кэррингтоновского события, как в 1859 году, может стоить 30 миллиардов долларов в день для электросетей США и до 70 млрд. $ для спутниковой индустрии.
  15. 4 августа 1972 солнечная вспышка была настолько сильна, что, по некоторым оценкам, космонавт во время полета получил бы смертельную дозу излучения.
  16. В течение минимума Маундера (1645-1715), сопровождавшегося наступлением малого ледникового периода , 11-летний цикл солнечных пятен не был обнаружен.
  17. За одну секунду солнце превращает 4 миллиона тонн материи в чистую энергию.
  18. Ядро Солнца, почти столь же плотное, как свинец и имеет температуру 15 млн. градусов C.
  19. Во время сильной солнечной бури Земля теряет около 100 тонн атмосферы.
  20. Магнитные игрушки на редкоземельные элементах могут иметь магнитное поле в 5 раз сильнее, чем магнитное поле солнечных пятен.

Одна из ярких особенностей Солнечной системы - разнообразие планетных атмосфер. Земля и Венера схожи по размеру и массе, однако поверхность Венеры раскалена до 460° C под океаном из диоксида углерода, который давит на поверхность как километровый слой воды. Каллисто и Титан - крупные спутники, соответственно, Юпитера и Сатурна; они почти одного размера, но Титан имеет обширную азотную атмосферу, гораздо большую, чем у Земли, а Каллисто практически лишена атмосферы.

Откуда берутся такие крайности? Если бы мы это знали, то смогли бы объяснить, почему Земля полна жизни, тогда как другие планеты рядом с ней выглядят безжизненными. Поняв, как эволюционируют атмосферы, мы могли бы определить, какие планеты вне Солнечной системы могут быть обитаемы.

Планета приобретает газовый покров разными путями. Она может извергать пар из своих недр, может захватить летучие вещества у комет и астероидов при столкновении с ними, или же ее гравитация может притянуть газы из межпланетного пространства. К тому же планетологи приходят к выводу, что потеря газа играет столь же важную роль, как и его приобретение. Даже земная атмосфера, которая выглядит незыблемой, постепенно утекает в космическое пространство. Темп утечки в настоящее время очень мал: около 3 кг водорода и 50 г гелия (два легчайших газа) в секунду; но даже такая струйка может стать существенной за геологический период, а темп потери мог быть когда-то значительно выше. Как писал Бенджамин Франклин, "маленькая течь может потопить большой корабль". Нынешние атмосферы планет земной группы и спутников планет-гигантов напоминают руины средневековых замков - это остатки былой роскоши, ставшей жертвой грабежа и обветшания. Атмосферы же еще меньших тел похожи на разрушенные форты - беззащитные и легко ранимые.

Осознав важность утечки атмосфер, мы меняем свое представление о будущем Солнечной системы. Десятилетиями ученые пытались понять, почему у Марса столь тонкая атмосфера, но теперь мы удивлены, что у него вообще сохранилась хоть какая-то атмосфера. Не обусловлено ли различие между Титаном и Каллисто тем, что Каллисто потеряла свою атмосферу прежде,чем на Титане появился воздух? Была ли раньше атмосфера Титана более плотной, чем сегодня? Как Венера сохранила азот и диоксид углерода, но полностью потеряла воду? Способствовала ли утечка водорода зарождению жизни на Земле? Превратится ли когда-нибудь наша планета во вторую Венеру?

Когда становится жарко

Если ракета набрала вторую космическую скорость, то она движется так быстро, что способна преодолеть притяжение планеты. То же самое можно сказать об атомах и молекулах, хотя обычно они достигают скорости убегания, не имея определенной цели. При тепловом испарении газы становятся настолько горячими, что их невозможно удержать. В нетепловых процессах атомы и молекулы выбрасываются в результате химических реакций или взаимодействия заряженных частиц. Наконец, при столкновении с астероидами и кометами отрываются целые куски атмосферы.

Самый распространенный процесс из этих трех - тепловое испарение. Все тела в Солнечной системе нагреваются солнечным светом. Избавляются от этого тепла они двумя путями: испусканием инфракрасного излучения и испарением вещества. У долгоживущих объектов, таких как Земля, доминирует первый процесс, а, например, у комет - второй. Если нарушится баланс между нагревом и охлаждением, то даже крупное тело размером с Землю может довольно быстро нагреться, и при этом его атмосфера, обычно содержащая малую долю массы планеты, может весьма быстро испариться. Наша Солнечная система заполнена телами, лишенными воздуха, по-видимому, в основном по причине теплового испарения. Тело становится безвоздушным, если солнечный нагрев превосходит определенный порог, зависящий от силы гравитации тела.
Тепловое испарение происходит двумя путями. Первый называют испарением Джинса в честь английского астрофизика Джеймса Джинса (James Jeans), описавшего это явление в начале XX в. При этом воздух из верхнего слоя атмосферы испаряется буквально атом за атомом, молекула за молекулой. В более низких слоях взаимные соударения удерживают частицы, но выше уровня, называемого экзобазой (у Земли он лежит на высоте 500 км от поверхности), воздух настолько разрежен, что частицы газа почти никогда не сталкиваются. Выше экзобазы уже ничто не может остановить атом или молекулу, имеющие достаточную скорость для вылета в космос.

Водород как самый легкий газ проще других преодолевает притяжение планеты. Но сначала он должен добраться до экзобазы, а на Земле это долгий процесс. Молекулы с водородом обычно не поднимаются выше нижних слоев атмосферы: водяной пар (H2O) конденсируется и падает вниз в виде дождя, а метан (CH4) окисляется и превращается в диоксид углерода (CO2). Некоторые молекулы воды и метана добираются до стратосферы и разрушаются, выделяя водород, который медленно диффундирует вверх, пока не доберется до экзобазы. Некоторая часть водорода утекает, о чем свидетельствуют ультрафиолетовые снимки, демонстрирующие гало из атомов водорода вокруг нашей планеты.

Температура на высоте экзобазы Земли колеблется вблизи 1000 К, что соответствует средней скорости атомов водорода около 5 км/с. Это меньше второй космической скорости для Земли на этой высоте (10,8 км/с); но скорости атомов вокруг среднего значения распределены широко, поэтому некоторые атомы водорода имеют шанс преодолеть притяжение планеты. Утечка частиц из высокоскоростного "хвоста" в их распределении по скоростям объясняет от 10 до 40 % потерь Землей водорода. Испарением Джинса частично объясняется и отсутствие атмосферы у Луны: газы, выходящие из-под поверхности Луны, легко испаряются в космос.

Второй путь теплового испарения более эффектен. В то время как при испарении Джинса газ улетает молекула за молекулой, нагретый газ может улетать целиком. Верхние слои атмосферы могут поглощать ультрафиолетовое излучение Солнца, нагреваться и, расширяясь, выталкивать воздух вверх. Поднимаясь, воздух ускоряется, преодолевает скорость звука и достигает скорости убегания. Эта форма теплового испарения называется гидродинамическим оттоком, или планетным ветром (по аналогии с солнечным ветром - потоком заряженных частиц, выбрасываемых Солнцем в космос).

Основные положения

Многие газы, составляющие атмосферу Земли и других планет, медленно утекают в космос. Горячие газы, в особенности легкие, испаряются, химические реакции и столкновения частиц приводят к выбросу атомов и молекул, а кометы и астероиды иногда отрывают большие куски атмосферы.
Утечкой объясняются многие загадки Солнечной системы. Например, Марс красный из-за того, что его водяной пар расщепился на водород и кислород; водород улетел в космос, а кислород окислил (покрыл ржавчиной) грунт. Подобный процесс на Венере привел к появлению плотной атмосферы из диоксида углерода. Удивительно, но могучая атмосфера Венеры - результат утечки газа.

Дэвид Кетлинг и Кевин Цанле
Журнал «В мире науки»

Земля теряет атмосферу! Грозит ли нам кислородное голодание?

Исследователи были поражены недавним открытием: оказалось, что наша планета теряет свою атмосферу быстрее, чем Венера и Марс из-за того, что обладает гораздо более значительным и мощным магнитным полем.

Это может означать, что магнитное поле Земли – не такой уж и хороший защитный экран, как это предполагалось ранее. Ученые были уверены в том, что именно благодаря действию магнитного поля Земли атмосфера хорошо защищена от губительного воздействия Солнца. А оказалось, что магнитосфера Земли способствует истончению земной атмосферы за счет ускоренной потери кислорода.

По словам Кристофера Рассела, профессора геофизики и специалиста по космической физике университета Калифорнии, ученые привыкли считать, что человечеству крайне повезло с земной "пропиской": замечательное магнитное поле Земли, мол, отлично защищает нас от солнечных "атак" – космических лучей, вспышек на Солнце и солнечного ветра. Теперь же выясняется, что магнитное поле земли – не только защитник, но и враг.

Группа специалистов во главе с Расселом пришли к этому выводу во время совместной работы на Конференции сравнительной планетологии.

СТРАННОСТИ ИСПАРЯЮЩЕЙСЯ ПЛАНЕТЫ: ВЗГЛЯД В АТМОСФЕРУ

Впервые удалось наблюдать процессы, протекающие в атмосфере планеты далеко за пределами Солнечной системы.

Судя по всему, процессы эти вызваны яркой вспышкой на материнской звезде планеты – впрочем, обо всем по порядку.

Экзопланета HD 189733b является газовым гигантом наподобие Юпитера, хотя примерно на 14% крупнее и несколько тяжелее него. Планета вращается вокруг звезды HD 189733, на расстоянии от нее порядка 4,8 млн км (и 63 световых лет от нас), то есть примерно в 30 раз ближе, чем Земля к Солнцу. Полный оборот вокруг своей материнской звезды она совершает за 2,2 земных дня, температура на ее поверхности достигает свыше 1000 О С. Сама же звезда относится к солнечному типу, имея в размерах и весе примерно 80% солнечных.

Время от времени HD 189733b проходит между звездой и нами, что и позволило по изменению светимости звезды не только обнаружить присутствие планеты, но и показать наличие у нее атмосферы, а в атмосфере – водяного пара (читайте: «Есть вода »). Обнаружилось также, что она постоянно теряет водород, фактически, являясь «испаряющейся» планетой. С этим «испарением» получилась довольно запутанная история.

Весной 2010 г. за одним из транзитов – прохождений планеты между своей звездой и нами –наблюдал космический телескоп Hubble , который не обнаружил признаков ни атмосферы, ни ее испарения. А осенью 2011 г. он же, наблюдая за транзитом той же HD 189733b, наоборот, предоставил весьма красноречивые свидетельства и того, и другого, зафиксировав целый газовый «хвост», покидающий планету: подсчитанная на этой основе скорость «испарения» составила не менее 1 тыс. т вещества в секунду. К тому же, поток развивал миллионы километров в час.

Чтобы разобраться в этом, к делу подключили рентгеновский телескоп Swift . Именно их совместная работа позволила впервые зафиксировать взаимодействия между далекой звездой и ее планетой. Swift наблюдал за тем же транзитом сентября 2011 г., и примерно за восемь часов до начала работы Hubble зафиксировал на поверхности звезды HD 189733 мощнейшую вспышку. В рентгеновском диапазоне излучение звезды подскочило в 3,6 раза.

Выводы ученых логичны: расположенная весьма близко к звезде, газовая планета получила в результате вспышки изрядный удар – в рентгеновском диапазоне он был в десятки тысяч раз мощнее всего того, что получает Земля даже при самых мощных (Х-класса) вспышках на Солнце. А если учесть огромные размеры HD 189733b, получается, что планета испытала воздействие рентгена в миллионы раз большее, чем это возможно при вспышке Х-класса на Солнце. Именно это воздействие привело к тому, что она начала стремительно терять вещество.

Испаряющаяся под действием близкой звезды атмосфера HD 189733b: взгляд художника
Так выглядела HD 189733b 14 сентября 2011 г. в объективе зонда Swift (кобминированное изображение в видимом и рентгеновском диапазоне)
То же изображение, но только в рентгеновских лучах

Планеты, относящиеся к земной группе - Меркурий, Венера, Земля, Марс, Плутон - имеют небольшие размеры и массы, средняя плотность этих планет в несколько раз превосходит плотность воды; они медленно вращаются вокруг своих осей; у них мало спутников (у Меркурия и Венеры их вообще нет, у Марса - два, у Земли - один).

Сходство планет земной группы не исключает и некоторого различия. Например, Венера, в отличие от других планет, вращается в направлении, обратном ее движению вокруг Солнца, причем в 243 раза медленнее Земли.. Период обращения Меркурия (т. е. год этой планеты) только на 1/3 больше периода его вращения вокруг оси.
Углы наклона осей к плоскостям их орбит у Земли и у Марса примерно одинаковы, но совсем иные у Меркурия и Венеры. Такие же, как у Земли, времена года есть, следовательно, на Марсе, хотя почти в два раза продолжительнее, чем на Земле.

Возможно к планетам земной группы отнести и далекий Плутон - самую маленькую из 9 планет. Средний диаметр Плутона около 2260 км. Лишь вдвое меньше диаметр Харона - спутника Плутона. Поэтому не исключено, что система Плутон - Харон, как и система Земля - Луна, представляет собой "двойную планету".

Сходства и различия обнаруживаются также в атмосферах планет земной группы. В отличие от Меркурия, который, как и Луна, практически лишен атмосферы, Венера и Марс обладают ею.. Венера имеет очень плотную атмосферу, в основном состоящую из углекислого газа и сернистых соединений. Атмосфера Марса наоборот чрезвычайно разрежена и также бедна кислородом, азотом. Давление у поверхности Венеры почти в 100 раз больше, а у Марса почти в 150 раз меньше, чем у поверхности Земли.

Температура у поверхности Венеры очень высокая (около 500°С) и остается все время почти одинаковой. Высокая температура поверхности Венеры обусловлена парниковым эффектом. Густая плотная атмосфера пропускает лучи Солнца, но задерживает инфракрасное тепловое излучение, идущее от нагретой поверхности.. Газ в атмосферах планет земной группы находится в непрерывном движении. Нередко во время пылевых бурь, которые длятся по нескольку месяцев, огромное количество пыли поднимается в атмосферу Марса. Ураганные ветры зафиксированы в атмосфере Венеры на высотах, где расположен облачный слой (от 50 до 70 км над поверхностью планеты), но вблизи поверхности этой планеты скорость ветра достигает всего лишь нескольких метров в секунду.

Планеты земной группы, подобно Земле и Луне, имеют твердые поверхности. Поверхность Меркурия, изобилующая кратерами, очень напоминает лунную. "Морей" там меньше, чем на Луне, причем они небольшие. Как и на Луне, большинство кратеров образовались в результате падений метеоритов. Там, где кратеров немного, мы видим сравнительно молодые участки поверхности.

Каменистая пустыня и множество отдельных камней видны на первых фототелевизионных панорамах, переданных с поверхности Венеры автоматическими станциями серии "Венера".. Радиолокационные наземные наблюдения обнаружили на этой планете множество неглубоких кратеров, диаметры которых от 30 до 700 км. В целом эта планета оказалась наиболее гладкой из всех планет земной группы, хотя и на ней есть большие горные массивы и протяженные возвышенности, вдвое превышающие по размерам земной Тибет.

Почти 2/3 поверхности Земли занимают океаны, но на поверхности Венеры и Меркурия воды нет.

Изобилует кратерами и поверхность Марса. Особенно много их в южном полушарии планеты. Темные области, занимающие значительную часть поверхности планеты, получили название морей. Диаметры некоторых морей превышают 2000 км. Возвышенности, напоминающие земные континенты, представляющие собой светлые поля оранжево-красного цвета, названы материками. Как и на Венере, здесь есть огромные вулканические конусы. Высота наибольшего из них - Олимпуса - превышает 25 км, диаметр кратера 90 км. Диаметр основания этой гигантской конусообразной горы более 500 км. О том, что миллионы лет назад на Марсе происходили мощные вулканические извержения и смещались поверхностные пласты, свидетельствуют остатки лавовых потоков, огромные разломы поверхности (один из них - Маринер - тянется на 4000 км), многочисленные ущелья и каньоны


4,6 миллиардов лет назад в нашей Галактике из облаков звёздной материи начали образовываться сгущения. Всё, более уплотняясь и сгущаясь, газы нагревались, излучая тепло. С увеличением плотности и температуры начались ядерные реакции, превращая водород в гелий. Таким образом, возник очень мощный источник энергии - Солнце.

Одновременно с увеличением температуры и объёма Солнца, в результате объединения фрагментов межзвёздной пыли в плоскости, перпендикулярной к оси вращения Звезды, создавались планеты и их спутники. Формирование Солнечной Системы завершилось около 4 миллиардов лет назад.



На данный момент Солнечная Система имеет восемь планет. Это Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептон. Плутон — карликовая планета, крупнейший известный объект пояса Койпера (является большим поясом осколков, подобным поясу астероидов). После обнаружения в 1930 году считался девятой планетой. Положение изменилось в 2006 году с принятием формального определения планеты.




На самой ближайшей к Солнцу планете - Меркурии дождей не бывает никогда. Это обусловлено тем фактором, что атмосфера у планеты настолько разрежена, что ее просто невозможно зафиксировать. Да и откуда там взяться дождям, если дневная температура на поверхности планеты порой достигает 430º по Цельсию. Да уж, не хотелось бы там оказаться:)




А вот на Венере постоянно идут кислотные дожди, поскольку облака над этой планетой состоят не из живительной воды, а из смертоносной серной кислоты. Правда, поскольку температура на поверхности третьей по счету планеты достигает 480º по Цельсию, то капли кислоты испаряются раньше, чем долетят к планете. Небо над Венерой пронзают большие и страшные молнии, но света и грохота от них больше, чем дождя.




На Марсе, по мнению ученых, давным-давно природные условия были такими же, как и на Земле. Миллиарды лет назад атмосфера над планетой была намного плотнее, и вполне возможно, что обильные дожди наполняли эти реки. Но сейчас над планетой очень разреженная атмосфера, а фотографии, переданные спутниками-разведчиками, свидетельствуют о том, что поверхность планеты напоминает пустыни юго-запада США или Сухие долины в Антарктиде. Когда часть Марса укутывает зимняя пора, над красной планетой появляются тонкие облака, содержащие двуокись углерода, а иней покрывает мертвые скалы. Ранним утром в долинах бывают такие густые туманы, что кажется, что вот-вот пойдет дождь, но напрасны такие ожидания.

Кстати температура воздуха днём на Мрсе 20º по Цельсию. Правда ночью может опускаться до - 140:(




Юпитер - самая большая из планет и является гигантским газовым шаром! Этот шар почти полностью состоит из гелия и водорода, но не исключено, что глубоко внутри планеты находится маленькое твердое ядро, окутанное океаном из жидкого водорода. Тем не менее, Юпитер со всех сторон окружают цветные полосы облаков. Некоторые из этих облаков состоят даже из воды, но, как правило, в подавляющем большинстве их образуют застывшие кристаллики аммиака. Время от времени над планетой пролетают сильнейшие ураганы и бури, несущие за собой снегопады и дожди из аммиака. Вот где бы провести Магический цветок.

На вопрос А на каких планетах солнечной системы ЕСТЬ атмосфера? Какой её состав? заданный автором . лучший ответ это Атмосферу имеют Солнце, восемь из девяти планет (кроме Меркурия) и три из шестидесяти трех спутников. Каждая атмосфера имеет свой особый химический состав и тип поведения, называемый «погодой». Атмосферы делят на две группы: у планет земного типа плотная поверхность материков или океана определяет условия на нижней границе атмосферы, а у газовых гигантов атмосфера практически бездонная.
О планетах в отдельности:
1.У Меркурия практически нет атмосферы–лишь крайне разреженная гелиевая оболочка с плотностью земной атмосферы на высоте 200 км.Вероятно,гелий образуется при распаде радиоактивных элементов в недрах планеты.У Меркурия есть слабое магнитное поле и нет спутников.
2.Атмосфера Венеры состоит в основном из углекислого газа (CO2),а также небольшого количества азота (N2)и паров воды (H2O).В виде малых примесей обнаружены соляная кислота (HCl)и плавиковая кислота (HF).Давление у поверхности 90 бар (как в земных морях на глубине 900 м);температура около 750 К по всей поверхности и днем,и ночью.Причина столь высокой температуры у поверхности Венеры в том,что не совсем точно называют«парниковым эффектом»:солнечные лучи сравнительно легко проходят сквозь облака ее атмосферы и нагревают поверхность планеты,но тепловое инфракрасное излучение самой поверхности выходит сквозь атмосферу обратно в космос с большим трудом.
3.Разреженная атмосфера Марса состоит на 95% из углекислого газа и на 3% из азота.В малом количестве присутствуют водяной пар,кислород и аргон. Среднее давление у поверхности 6 мбар(т. е. 0,6% земного).При таком низком давлении не может быть жидкой воды.Средняя дневная температура 240 К, а максимальная летом на экваторе достигает 290 К.Суточные колебания температуры около 100 К.Таким образом,климат Марса–это климат холодной,обезвоженной высокогорной пустыни.
4. В телескоп на Юпитере видны облачные полосы,параллельные экватору;светлые зоны в них перемежаются красноватыми поясами.Вероятно,светлые зоны–это области восходящих потоков,где видны верхушки аммиачных облаков;красноватые пояса связаны с нисходящими потоками,яркий цвет которых определяют гидросульфат аммония,а также соединения красного фосфора,серы и органические полимеры.Кроме водорода и гелия в атмосфере Юпитера спектроскопически обнаружены CH4,NH3,H2O,C2H2,C2H6,HCN,CO,CO2,PH3 и GeH4.
5.В телескоп диск Сатурна выглядит не так эффектно, как Юпитер: он имеет коричневато-оранжевую окраску и слабо выраженные пояса и зоны.Причина в том, что верхние области его атмосферы заполнены рассеивающим свет аммиачным (NH3) туманом.Сатурн дальше от Солнца,поэтому температура его верхней атмосферы (90 К) на 35 К ниже, чем у Юпитера, и аммиак находится в сконденсированном состоянии.С глубиной температура атмосферы возрастает на 1,2 К/км,поэтому облачная структура напоминает юпитерианскую: под слоем облаков из гидросульфата аммония находится слой водяных облаков. Кроме водорода и гелия в атмосфере Сатурна спектроскопически обнаружены CH4, NH3, C2H2, C2H6, C3H4, C3H8 и PH3.
6.Атмосфера Урана содержит в основном водород, 12–15% гелия и немного других газов.Температура атмосферы около 50 К,хотя в верхних разреженных слоях она поднимается до 750 К днем и 100 К ночью.
7.В атмосфере Нептуна были открыты Большое Темное Пятно и сложная система вихревых потоков.
8.У Плутона сильно вытянутая и наклоненная орбита;в перигелии он приближается к Солнцу на 29,6 а.е.и удаляется в афелии на 49,3 а.е. В 1989 Плутон прошел перигелий; с 1979 по 1999 он был ближе к Солнцу, чем Нептун. Однако из-за большого наклона орбиты Плутона его путь никогда не пересекается с Нептуном.Средняя температура поверхности Плутона 50 К,она изменяется от афелия к перигелию на 15 К, что весьма заметно при таких низких температурах.В частности,это приводит к появлению разреженной метановой атмосферы в период прохождения планетой перигелия,но ее давление в 100 000 раз меньше давления земной атмосферы.Плутон не может долго удерживать атмосферу-ведь он меньше Луны.
Источник: О земле не стал писать!))) Землю в телескоп не видно!!))

Ответ от Egor Vedrov [новичек]
есть на земле


Ответ от Ирина Серикова МАДОУ №21 Ивушка [активный]
Плутон теперь не планета


Ответ от Беляев В.Н. [гуру]
На Венере. Углекислого газа много. На Сатурне, тоже. Там много метана. Про Плутон не помню.


Ответ от Машинист [гуру]
Состав сложный, но воздух только на Земле.


Ответ от Директор околоземной орбиты [гуру]
меркурий слабая атм.
венера очень мощная и плотная
марс слабая
ганимед, каллисто ио европа так же имеют атмосферы.


Ответ от Лёка [гуру]
Звездочет, копипастить тоже нужно с умом и указанием источника...)))
Хотя, похоже, вопрос именно Вам и предназначался... ну что ж, от меня не убудет.
У Меркурия практически нет атмосферы – лишь крайне разреженная гелиевая оболочка с плотностью земной атмосферы на высоте 200 км. Вероятно, гелий образуется при распаде радиоактивных элементов в недрах планеты. Кроме того, её составляют атомы, захваченные из солнечного ветра или выбитые солнечным ветром с поверхности - натрий, кислород, калий, аргон, водород.
Атмосфера Венеры состоит в основном из углекислого газа (CO2), а также небольшого количества азота (N2) и паров воды (H2O). В виде малых примесей обнаружены соляная кислота (HCl) и плавиковая кислота (HF). Давление у поверхности 90 бар (как в земных морях на глубине 900 м). Облака Венеры состоят из микроскопических капелек концентрированной серной кислоты (H2SO4).
Разреженная атмосфера Марса состоит на 95% из углекислого газа и на 3% из азота. В малом количестве присутствуют водяной пар, кислород и аргон. Среднее давление у поверхности 6 мбар (т. е. 0,6% земного) .
Низкая средняя плотность Юпитера (1,3 г/см3) указывает на состав, близкий к солнечному: в основном это водород и гелий.
В телескоп на Юпитере видны облачные полосы, параллельные экватору; светлые зоны в них перемежаются красноватыми поясами. Вероятно, светлые зоны – это области восходящих потоков, где видны верхушки аммиачных облаков; красноватые пояса связаны с нисходящими потоками, яркий цвет которых определяют гидросульфат аммония, а также соединения красного фосфора, серы и органические полимеры. Кроме водорода и гелия в атмосфере Юпитера спектроскопически обнаружены CH4, NH3, H2O, C2H2, C2H6, HCN, CO, CO2, PH3 и GeH4. На глубине 60 км должен быть слой водяных облаков.
Его спутник Ио имеет крайне разреженную атмосферу из диоксида серы (вулканического происхождения) SO2.
Кислородная атмосфера Европы так разрежена, что давление на поверхности составляет одну стомиллиардную часть от земного.
Сатурн тоже водородно-гелиевая планета, однако относительное содержание гелия у Сатурна меньше, чем у Юпитера; ниже и его средняя плотность. Верхние области его атмосферы заполнены рассеивающим свет аммиачным (NH3) туманом. Кроме водорода и гелия в атмосфере Сатурна спектроскопически обнаружены CH4, C2H2, C2H6, C3H4, C3H8 и PH3.
Титан второй по размеру спутник в Солнечной системе, уникален тем, что имеет постоянную мощную атмосферу, состоящую в основном из азота и небольшого количества метана.
Атмосфера Урана содержит в основном водород, 12–15% гелия и немного других газов.
В спектре Нептуна также доминируют полосы метана и водорода.
Плутон уже давно планетой не является...
И в качестве бонуса:


Ответ от Любовь Касперович(Машкова) [активный]
Такой как на Земле нет нигде.


Ответ от Ксения Степанова [новичек]
Атмосфера Меркурия так сильно разрежена, что, можно сказать, её практически нет. Воздушная оболочка Венеры состоит из углекислого газа (96%) и азота (около 4%), она очень плотная - атмосферное давление у поверхности планеты почти в 100 раз больше, чем на Земле. Марсианская атмосфера тоже состоит преимущественно из углекислого газа (95%) и азота (2,7%), но её плотность меньше земной примерно в 300 раз, а давление - почти в 100 раз. Видимая поверхность Юпитера на самом деле представляет собой верхний слой водородно-гелиевой атмосферы. Такие же по составу воздушные оболочки Сатурна и Урана. Красивый голубой цвет Урана обусловлен высокой концентрацией метана в верхней части его атмосферы. У Нептуна, окутанного углеводородной дымкой, выделяют два основных слоя облаков: один состоит из кристаллов замёрзшего метана, а второй, расположенный ниже, содержит аммиак и сероводород.


Ответ от Phibi [гуру]
на Венере, основная часть это углекисый газ


Атмосфера на Википедии
Посмотрите статью на википедии про Атмосфера

Диссипация атмосфер планет на Википедии
Посмотрите статью на википедии про Диссипация атмосфер планет

А. Михайлов, проф.

Наука и жизнь // Иллюстрации

Лунный ландшафт.

Таяние полярного пятна на Марсе.

Орбиты Марса и Земли.

Карта Марса, составленная Лоуеллом.

Модель Марса, сделанная Кюлем.

Рисунок Марса, сделанный Антониади.

Рассматривая вопрос о существовании жизни на других планетах, мы будем говорить только о планетах нашей солнечной системы, так как нам ничего не известно о наличии у других солнц, каковыми являются звезды, собственных планетных систем, подобных нашей. По современным воззрениям на происхождение солнечной системы можно даже полагать, что образование планет, обращающихся вокруг центральной звезды, есть случай, вероятность которого ничтожно мала, и что поэтому огромное большинство звезд не имеет своих планетных систем.

Далее нужно оговориться, что вопрос о жизни на планетах мы поневоле рассматриваем с нашей, земной точки зрения, предполагая, что эта жизнь проявляется в таких же формах, как и на Земле, т. е. предполагая жизненные процессы и общее строение организмов подобными земным. В таком случае для развития жизни на поверхности какой-либо планеты должны существовать определенные физико-химические условия, должна быть не слишком высокая и не слишком низкая температура, необходимо наличие воды и кислорода, основой же органического вещества должны являться соединения углерода.

Атмосферы планет

Присутствие у планет атмосферы определяется напряжением силы тяжести на их поверхности. Большие планеты обладают достаточной силой притяжения, чтобы удерживать около себя газообразную оболочку. Действительно, молекулы газа находятся в постоянном быстром движении, скорость которого определяется химической природой этого газа и температурой.

Наибольшую скорость имеют легкие газы - водород и гелий; при повышении температуры скорость возрастает. При нормальных условиях, т. е. температуре в 0° и атмосферном давлении, средняя скорость молекулы водорода составляет 1840 м/сек, а кислорода 460 м/сек. Но под влиянием взаимных столкновений отдельные молекулы приобретают скорости, в несколько раз превосходящие указанные средние числа. Если в верхних слоях земной атмосферы появится молекула водорода со скоростью, превосходящей 11 км/сек, то такая молекула отлетит прочь от Земли в межпланетное пространство, так как сила земного притяжения окажется недостаточной для ее удержания.

Чем меньше планета, чем она менее массивна, тем меньше эта предельная или, как говорят, критическая скорость. Для Земли критическая скорость составляет 11 км/сек, для Меркурия она равна лишь 3,6 км/сек, для Марса 5 км/сек, для Юпитера же, самой большой и массивной из всех планет, - 60 км/сек. Отсюда следует, что Меркурий, а тем более еще меньшие тела, как спутники планет (в том числе и наша Луна) и все малые планеты (астероиды), не могут удержать своим слабым притяжением атмосферную оболочку у своей поверхности. Марс в состоянии, хотя и с трудом, удерживать атмосферу, значительно более разреженную, чем атмосфера Земли, что же касается Юпитера, Сатурна, Урана и Нептуна, то их притяжение достаточно сильно для того, чтобы удерживать мощные атмосферы, содержащие легкие газы, вроде аммиака и метана, а возможно также и свободный водород.

Отсутствие атмосферы неминуемо влечет за собою и отсутствие воды в жидком состоянии. В безвоздушном пространстве испарение воды происходит гораздо энергичнее, чем при атмосферном давлении; поэтому вода быстро обращается в пар, который представляет собою весьма легкий таз, подвергающийся той же участи, что и другие газы атмосферы, т. е. он более или менее быстро покидает поверхность планеты.

Понятно, что на планете, лишенной атмосферы и воды, условия для развития жизни совершенно неблагоприятны, и мы не можем ожидать на такой планете ни растительной ни животной жизни. Под эту категорию попадают все малые планеты, спутники планет, а из больших планет - Меркурий. Скажем немного подробнее о двух телах этой категории, именно о Луне и Меркурии.

Луна и Меркурий

Для этих тел отсутствие атмосферы установлено не только путем приведенных выше соображений, но и посредством прямых наблюдений. Когда Луна движется по небу, совершая свой путь вокруг Земли, она часто закрывает собою звезды. Исчезновение звезды за диском Луны можно наблюдать уже в небольшую трубу, и происходит оно всегда вполне мгновенно. Если бы лунный рай был окружен хотя бы редкой атмосферой, то, прежде чем вполне исчезнуть, звезда просвечивала бы в течение некоторого времени сквозь эту атмосферу, причем постепенно уменьшалась бы видимая яркость звезды, кроме того, вследствие преломления света звезда казалась бы смещенной со своего места. Все эти явления совершенно отсутствуют при покрытии звезд Луною.

Лунные ландшафты, наблюдаемые в телескопы, поражают резкостью и контрастностью своего освещения. На Луне нет полутеней. Рядом с яркими, освещенными Солнцем местами встречаются глубокие черные тени. Происходит это потому, что вследствие отсутствия атмосферы на Луне нет голубого дневного неба, которое своим светом смягчало бы тени; небо там всегда черное. Нет на Луне и сумерек, и после захода Солнца сразу наступает темная ночь.

Меркурий находится от нас гораздо дальше, чем Луна. Поэтому таких подробностей как на Луне, мы наблюдать на нем не можем. Нам неизвестен вид его ландшафта. Покрытие звезд Меркурием вследствие его видимой малости чрезвычайно редкое явление, и нет указаний на то, чтобы такие покрытия когда-либо наблюдались. Зато бывают прохождения Меркурия перед диском Солнца, когда мы наблюдаем, что эта планета в виде крохотной черной точки медленно проползает по яркой солнечной поверхности. Край Меркурия при этом бывает резко очерчен, и те явления, которые усматривались при прохождении перед Солнцем Венеры, у Меркурия не наблюдались. Но все же возможно, чтобы небольшие следы атмосферы у Меркурия сохранились, однако эта атмосфера имеет совсем ничтожную плотность по сравнению с земной.

На Луне и Меркурии совершенно неблагоприятны для жизни и температурные условия. Луна вращается вокруг своей оси чрезвычайно медленно, благодаря чему день и ночь продолжаются на ней по четырнадцать суток. Зной солнечных лучей не умеряется воздушной оболочкой, и в результате днем на Луне температура поверхности повышается до 120°, т. е. выше точки кипения воды. Во время же долгой ночи температура падает до 150° ниже нуля.

Во время лунного затмения наблюдалось, как в течение всего лишь часа с небольшим температура упала с 70° тепла до 80° мороза, а после окончания затмения почти в столь же короткий срок вернулась к своему исходному значению. Это наблюдение указывает на чрезвычайно малую теплопроводность горных пород, образующих лунную поверхность. Солнечное тепло не проникает вглубь, а остается в самом тонком верхнем слое.

Нужно думать, что поверхность Луны покрыта легкими и рыхлыми вулканическими туфами, может быть даже пеплом. Уже на глубине метра контрасты тепла и холода оглаживаются «эстолько, что вероятно там господствует средняя температура, мало отличающаяся от средней температуры земной поверхности, т. е. составляющая несколько градусов выше нуля. Быть.может там и сохранились некоторые зародыши живого вещества, но участь их, конечно, незавидная.

На Меркурии разница температурных условий еще более резкая. Эта планета всегда повернута к Солнцу одной стороной. На дневном полушарии Меркурия температура достигает 400°, т. е. она выше точки плавления свинца. А на ночном полушарии мороз должен доходить до температуры жидкого воздуха, и если бы на Меркурии существовала атмосфера, то на ночной стороне она должна была превратиться в жидкость, а может быть даже замерзнуть. Лишь на границе между дневным и ночными полушариями в пределах узкой зоны могут быть температурные условия, хоть сколько-нибудь благоприятные для жизни. Однако о возможности там развитой органической жизни думать не приходиться. Далее при наличии следов атмосферы в ней не мог удержаться свободный кислород, так как при температуре дневного полушария кислород энергично соединяется с большинством химических элементов.

Итак, в отношении возможности жизни на Луне перспективы достаточно неблагоприятны.

Венера

В отличие от Меркурия на Венере наблюдаются определенные признаки густой атмосферы. Когда Венера проходит между Солнцем и Землей, она бывает окружена светлым колечком, - это ее атмосфера, которая на просвет освещается Солнцем. Такие прохождения Венеры перед диском Солнца бывают очень редко: последнее прохождение имело место в 18S2 г., ближайшее следующее произойдет в 2004 г. Однако почти ежегодно Венера проходит хотя и не через самый солнечный диск, но достаточно близко от него, и тогда она бывает видна в форме очень узкого серпа, вроде Луны тотчас после новолуния. По законам перспективы освещенный Солнцем серп Венеры должен был бы составлять дугу ровно в 180°, но в действительности наблюдается более длинная светлая дуга, что происходит вследствие отражения и загибания солнечных лучей в атмосфере Венеры. Другими словами, на Венере существуют сумерки, которые увеличивают продолжительность дня и частично освещают ее ночное полушарие.

Состав атмосферы Венеры пока еще мало изучен. В 1932 г. при помощи спектрального анализа в ней было обнаружено присутствие большого количества углекислоты, соответствующее слою мощностью в 3 км при стандартных условиях (т. е. при 0° и 760 мм давления).

Поверхность Венеры всегда представляется нам ослепительно белой и без заметных постоянных пятен или очертаний. Полагают, что в атмосфере Венеры всегда находится густой слой белых облаков, вполне закрывающий собою твердую поверхность планеты.

Состав этих облаков неизвестен, но вероятнее всего, что это водяные пары. Что находится под ними, мы не видим, но понятно, что облака должны умерять зной солнечных лучей, который на Венере, находящейся ближе к Солнцу, чем Земля, был бы иначе чрезмерно силен.

Измерения температуры дали для дневного полушария около 50-60° тепла, а для ночного 20° мороза. Такие контрасты объясняются медленностью вращения Венеры около оси. Хотя точный период ее вращения неизвестен из-за отсутствия на поверхности планеты заметных пятен, но, по-видимому, сутки продолжаются на Венере не меньше наших 15 суток.

Каковы шансы на существование жизни на Венере?

В этом отношении мления ученых расходятся. Некоторые считают, что весь кислород в ее атмосфере химически связан и существует лишь в составе углекислоты. Так как этот газ обладает малой теплопроводностью, то в таком случае температура близ поверхности Венеры должна быть довольно высокой, быть может даже близкой к точке кипения воды. Этим можно было бы объяснить присутствие в верхних слоях ее атмосферы большого количества водяных паров.

Заметим, что приведенные выше результаты определения температуры Венеры относятся к наружной поверхности облачного покрова, т.е. к довольно большой высоте над ее твердой поверхностью. Во всяком случае нужно думать, что условия на Венере напоминают теплицу или оранжерею, но, вероятно, с еще значительно более высокой температурой.

Марс

Наибольший интерес с точки зрения вопроса о существовании жизни представляет планета Марс. Во многих отношениях он похож на Землю. По пятнам, которые хорошо видны на его поверхности, установлено, что Марс вращается около оси, совершая один оборот в 24 ч. и 37 м. Поэтому на нем существует смена дня и ночи почти такой же продолжительности, как и на Земле.

Ось вращения Марса составляет с плоскостью его орбиты угол в 66°, почти в точности такой же, как и у Земли. Благодаря этому наклону оси на Земле происходит смена времен года. Очевидно, и на Марсе существует такая же смена, но только каждое время года на «ем почти вдвое продолжительнее нашего. Причина этого заключается в том, что Марс, будучи в среднем в полтора раза дальше от Солнца, чем Земля, совершает свой оборот вокруг Солнца почти в два земных года, точнее в 689 суток.

Наиболее отчетливая подробность на поверхности Марса, заметная при рассматривании его в телескоп,- белое пятно, по своему положению совпадающее с одним из его полюсов. Лучше всего бывает видно пятно у южного полюса Марса, потому что в периоды своей наибольшей близости к Земле Марс бывает наклонен в сторону Солнца и Земли своим южным полушарием. Замечено, что с наступлением зимы в соответствующем полушарии Марса белое пятно начинает увеличиваться, а летом оно уменьшается. Бывали даже случаи (например, в 1894 г.), когда полярное пятно осенью почти совсем исчезало. Можно думать, что это снег или лед, который отлагается зимою тонким покровом близ полюсов планеты. Что этот покров очень тонкий, следует из указанного наблюдения над исчезновением белого пятна.

Вследствие удаленности Марса от Солнца температура на нем сравнительно низкая. Лето там очень холодное, и тем не менее бывает, что полярные снега полностью стаивают. Большая продолжительность лета не компенсирует в достаточной, мере недостатка тепла. Отсюда следует, что снега выпадает там мало, быть может всего лишь на несколько сантиметров, возможно даже, что белые полярные пятна состоят не из снега, а из инея.

Это обстоятельство находится в полном согласии с тем, что по всем данным на Марсе мало влаги, мало воды. Морей и больших водных пространств на нем не обнаружено. В его атмосфере очень редко наблюдаются облака. Сама оранжевая окраска поверхности планеты, благодаря которой невооруженному глазу Марс представляется красной звездой (откуда и произошло его название по имени древнеримского бога.войны), большинством "наблюдателей объясняется тем, что поверхность Марса представляет безводную песчаную пустыню, окрашенную окислами железа.

Марс движется вокруг Солнца по заметно вытянутому эллипсу. Благодаря этому его расстояние от Солнца меняется в довольно широких пределах - от 206 до 249 млн. км. Когда Земля находится с той же стороны Солнца, что и Марс, происходят так называемые противостояния Марса (потому что Марс в это время находится в стороне неба, противоположной Солнцу). Во время противостояний Марс наблюдается на ночном небе в благоприятных условиях. Противостояния чередуются в среднем через 780 дней, или через два года и два месяца.

Однако далеко не в каждое противостояние Марс приближается к Земле.на свое кратчайшее расстояние. Для этого нужно, чтобы противостояние совпало с временем наибольшего приближения Марса к Солнцу, что бывает лишь каждое седьмое или восьмое противостояние, т. е. примерно через пятнадцать лет. Такие противостояния называются великими противостояниями; они имели место в 1877, 1892, 1909 и 1924 гг. Следующее великое противостояние будет в 1939 т. Именно к этим срокам и приурочены главные наблюдения Марса и связанные с ними открытия. Ближе всего к Земле Марс был во время - противостояния 1924 г., но и тогда его расстояние от нас составляло 55 млн. км. Ha более близком расстоянии от Земли Марс никогда не бывает.

"Каналы" на Марсе

В 1877 г. итальянский астроном Скиапарелли, производя наблюдения в сравнительно скромный по своим размерам телескоп, но под прозрачным небом Италии, обнаружил на поверхности Марса, кроме темных пятен, названных хотя и неправильно морями, еще целую сеть узких прямых линий или полосок, которые он назвал проливами (по-итальянски canale). Отсюда слово «канал» стало употребляться и на других языках для обозначения этих загадочных образований.

Скиапарелли в результате своих многолетних наблюдений составил подробную карту поверхности Марса, на которой нанесены сотни каналов, соединяющих между собок> темные пятна «морей». Позднее американский астроном Лоуелл, построивший в Аризоне даже специальную обсерваторию для наблюдения Марса, обнаружил каналы и на темных пространствах «морей». Он нашел, что как «моря», так и каналы меняют свою видимость в зависимости от времен года: летом они становятся темнее, принимая иногда серо-зеленоватый оттенок зимою бледнеют и становятся буроватыми. Карты Лоуелла еще подробнее карт Скиапарелли, на них нанесено множество каналов, образующих сложную, но довольно правильную геометрическую сеть.

Для объяснения наблюдаемых на Марсе явлений Лоуелл развил теорию, которая получила широкое распространение, главным образом, среди любителей астрономии. Теория эта сводится к следующему.

Оранжевую поверхность планеты Лоуелл, как и большинство других наблюдателей, принимает за песчаную пустошью. Темные пятна «морей» он считает за области, покрытые растительностью - полями и лесами. Каналы он считает за сеть орошения, проведенную разумными существами, обитающими на поверхности планеты. Однако самые каналы нам с Земли не видны, так как их ширина для этого далеко не достаточна. Чтобы быть видимыми с Земли, каналы должны иметь ширину не меньше десятка километров. Поэтому Лоуелл считает, что мы видим лишь широкую полосу растительности, которая распускает свои зеленые листья, когда собственно канал, пролегающий в середине этой полосы, наполняется весною водой, притекающей от полюсов, где она образуется от таяния полярных снегов.

Однако мало-помалу начали возникать сомнения в реальности таких прямолинейных каналов. Наиболее показательным было то обстоятельство, что наблюдатели, вооруженные наиболее мощными современными телескопами, никаких каналов не видели, а наблюдали лишь необыкновенно богатую картину разных деталей и оттенков на поверхности Марса, лишённых, однако, правильных геометрических очертаний. Лишь наблюдатели, пользовавшиеся инструментами средней силы, видели и зарисовывали каналы. Отсюда возникло сильное подозрение, что каналы представляют лишь оптическую иллюзию (обман зрения), возникающую при крайнем напряжении глаза. Много работ и разных опытов было проведено для выяснения этого обстоятельства.

Наиболее убедительными являются результаты, полученные немецким физиком и физиологом Кюлем. Им была устроена специальная модель, изображающая Марс. На темном фоне Кюль наклеил вырезанный им из обыкновенной газеты кружок, на котором было размещено несколько серых пятен, напоминающих по своим очертаниям «моря» на Марсе. Если рассматривать такую модель вблизи, то ясно видно, что она собою представляет,- можно прочитать газетный текст и никакой иллюзии не создается. Но если отойти подальше, то при правильном освещении начинают появляться прямые тонкие полоски, идущие от одного темного пятна к другому и притом не совпадающие со строчками печатного текста.

Кюль подробно исследовал это явление.

Он показал, что три наличии многих мелких деталей и оттенков, постепенно переходящих один в другой, когда глаз не может уловить их «о всех подробностях, возникает стремление объединить эти детали более простыми геометрическими схемами, в результате чего и появляется иллюзия прямых полосок там, где никаких правильных очертаний не имеется. Современный выдающийся наблюдатель Антониади, который в то же время является хорошим художником, рисует Марс пятнистым, с массой неправильных деталей, но без всяких прямолинейных каналов.

Можно подумать, что этот вопрос лучше всего решить три помощи фотографии. Фотографическую пластинку обмануть нельзя: она должна, казалось бы, показать, что же на самом деле имеется на Марсе. К сожалению, это не так. Фотография, которая в применении к звездам и туманностям дала так много, в отношении поверхности планет дает меньше, чем видит глаз наблюдателя в тот же самый инструмент. Объясняется это тем, что изображение Марса, полученное даже с помощью самых больших и длиннофокусных инструментов, на пластинке получается очень малых размеров,- диаметром "всего.лишь до 2 мм. Конечно, на таком изображении больших подробностей разобрать нельзя. При сильном же увеличении таких фотографий выступает дефект, от которого так страдают современные любители фотографии, снимающие аппаратами типа «Лейка». Именно, выступает зернистость изображения, которая затушевывает все мелкие детали.

Жизнь на Марсе

Однако фотографии Марса, снятые через разные светофильтры, с полной ясностью доказали существование у Марса атмосферы, хотя и значительно более редкой, чем у Земли. Иногда под вечер в этой атмосфере замечаются светлые точки, которые, вероятно, представляют собою кучевые облака. Но вообще облачность на Марсе ничтожная, что вполне согласуется с малым количеством на нем воды.

В настоящее время почти все наблюдатели Марса согласны в том, что темные пятна «морей» действительно представляют области, покрытые растениями. В этом отношении теория Лоуелла подтверждается. Однако здесь до сравнительно недавнего времени имелось одно препятствие. Вопрос усложнился температурными условиями на поверхности Марса.

Так как Марс находится в полтора раза дальше от Солнца, чем Земля, то он получает в два с четвертью раза меньше тепла. Вопрос о том, до какой температуры может согреть его поверхность такое незначительное количество тепла, зависит от строения атмосферы Марса, представляющей собою «шубу» неизвестной нам толщины и состава.

Недавно удалось непосредственными измерениями определить температуру поверхности Марса. Оказалось, что в экваториальных областях в полдень температура повышается до 15-25° тепла, но под вечер наступает сильное похолодание, а ночь, по-видимому, сопровождается неизменными крепкими морозами.

Условия на Марсе похожи на те, которые наблюдаются у нас на высоких горах: разреженность и прозрачность воздуха, значительное нагревание прямыми солнечными лучами, холод в тени и сильные ночные морозы. Условия, без сомнения, очень суровые, но можно полагать, что растения акклиматизировались, приспособились к ним, а также и к недостатку влаги.

Итак, существование растительной жизни на Марсе можно считать почти доказанным, но относительно животных, а тем более разумных, мы пока ничего определенного сказать не можем.

Что касается других планет солнечной системы - Юпитера, Сатурна, Урана и Нептуна, то на них трудно предполагать возможность жизни по следующим основаниям: во-первых, низкая температура из-за дальности расстояния от Солнца и, во-вторых, ядовитые газы, недавно открытые в их атмосферах,- аммиак и метан. Если эти планеты и имеют твердую поверхность, то она спрятана где-то на большой глубине, мы же видим лишь верхние слои их чрезвычайно мощных атмосфер.

Еще менее вероятна жизнь на самой удаленной от Солнца планете - недавно открытом Плутоне, о физических условиях которого мы пока еще ничего не знаем.

Итак, из всех планет нашей солнечной системы (кроме Земли) можно подозревать существование жизни на Венере и считать почти доказанным наличие жизни на Марсе. Но, конечно, это все относится к настоящему времени. С течением времени, при эволюции планет, условия могут сильно измениться. Об этом из-за недостатка данных мы говорить не будем.