1. Понятие круговорота

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Круговорот веществ — многократно повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ в природе, имеющий более или менее цикличный характер. Общий круговорот веществ характерен для всех геосфер и складывается из отдельных процессов круговорота химических элементов, воды, газов и других веществ. Процессы круговорота не полностью обратимы из-за рассеивания веществ, изменения его состава, местной концентрации и деконцентрации.

Для обоснования и пояснения самого понятия круговорота полезно обратиться к четырем важнейшим положениям геохимии, которые имеют первостепенное прикладное значение и подтверждены бесспорными опытными данными:

а) повсеместное распространение химических элементов во всех геосферах;

б) непрерывная миграция (перемещение) элементов во времени и в пространстве;

в) многообразие видов и форм существования элементов в природе;

г) преобладание рассеянного состояния элементов над концентрированным, особенно для рудообразующих элементов.

Более всего, на мой взгляд, стоит остановить свое внимание на процессе перемещения химических элементов.

Миграция химических элементов находит отражение в гигантских тектоно-магамтических процессах, преобразующих земную кору, и в тончайших химических реакциях, протекающих в живом веществе, в непрерывном поступательном развитии окружающего мира, характеризуя движение как форму существования материи. Миграция химических элементов определяется многочисленными внешними факторами, в частности, энергией солнечного излучения, внутренней энергией Земли, действием силы тяжести и внутренними факторами, зависящими от свойств самих элементов.

Круговороты могут происходить на ограниченном пространстве и на протяжении небольших отрезков времени, а может охватывать всю наружную часть планеты и огромные периоды. При этом малые круговороты входят в более крупные, которые в своей совокупности складываются в колоссальные биогеохимические круговороты. Они тесно связаны с окружающей средой.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам — диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества — углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов. Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии (сукцессия (от лат. succesio – преемственность) — последовательная смена экосистем, преемственно возникающих на определенном участке земной поверхности. Обычно сукцессия происходит под влиянием процессов внутреннего развития сообществ, их взаимодействия с окружающей средой. Длительность сукцессии составляет от десятков до миллионов лет). В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических и/или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот, сера.

Различают два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Малый круговорот, являясь частью большого, происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих растений, так и других организмов (как правило, животных), которые поедают их. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

Таким образом, круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки.

2. Круговорот кислорода в природе

2.1 Общие сведения о кислороде-элементе

История открытия. Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы):

2HgO (t)→ 2Hg + O2

Однако, Пристли первоначально не понял, что открыл новое простое вещество. Он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (возможно, в 1770-м) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа Антуан Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория (флогисто́н (от греч. phlogistos — горючий, воспламеняемый) — гипотетическая «огненная субстанция», якобы наполняющая все горючие вещества и высвобождающаяся из них при горении). Лавуазье провел опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теории флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Происхождение названия. Название oxygenium («кислород») происходит от греческих слов, обозначающих «рождающий кислоту»; это связано с первоначальным значением термина «кислота». Ранее этим термином называли оксиды.

Нахождение в природе. Кислород — самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4 % массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1500 соединений земной коры.

Физические свойства. При нормальных условиях плотность газа кислорода 1,42897 г/л. Температура кипения жидкого кислорода (жидкость имеет голубой цвет) -182,9 °C. В твердом состоянии кислород существует по крайней мере в трех кристаллических модификациях. При 20°C растворимость газа О2: 3,1 мл на 100 мл воды, 22 мл на 100 мл этанола, 23,1 мл на 100 мл ацетона. Существуют органические фторсодержащие жидкости (например, перфторбутилтетрагидрофуран), в которых растворимость кислорода значительно более высокая.

Химические свойства элемента определяются его электронной конфигурацией: 2s22p4. Высокая прочность химической связи между атомами в молекуле О2 приводит к тому, что при комнатной температуре газообразный кислород химически довольно малоактивен. В природе он медленно вступает в превращения при процессах гниения. Кроме того, кислород при комнатной температуре способен реагировать с гемоглобином крови (точнее с железом (II) гема (гем — производное порфирина, содержащего в центре молекулы атом двухвалентного железа), что обеспечивает перенос кислорода от органов дыхания к другим органам.

Со многими веществами кислород вступает во взаимодействие без нагревания, например, с щелочными и щёлочноземельными, вызывает образование ржавчины на поверхности стальных изделий. Без нагревания кислород реагирует с белым фосфором, с некоторыми альдегидами и другими органическими веществами.

При нагревании, даже небольшом, химическая активность кислорода резко возрастает. При поджигании он реагирует со взрывом с водородом, метаном, другими горючими газами, с большим числом простых и сложных веществ. Известно, что при нагревании в атмосфере кислорода или на воздухе многие простые и сложные вещества сгорают, причем образуются различные оксиды, пероксиды и супероксиды, такие как SO2, Fe2 O3, Н2 О2, ВаО2, КО2.

Если смесь кислорода и водорода хранить в стеклянном сосуде при комнатной температуре, то экзотермическая реакция образования воды

2Н2 + О2 = 2Н2 О + 571 кДж

протекает крайне медленно; по расчету, первые капельки воды должны появиться в сосуде примерно через миллион лет. Но при внесении в сосуд со смесью этих газов платины или палладия (играющих роль катализатора), а также при поджигании реакция протекает со взрывом.

С азотом N2 кислород реагирует или при высокой температуре (около 1500-2000 °C), или при пропускании через смесь азота и кислорода электрического разряда. При этих условиях обратимо образуется оксид азота (II):

Возникший NO затем реагирует с кислородом с образованием бурого газа (диоксида азота):

2NO + О2 = 2NO2

Из неметаллов кислород напрямую ни при каких условиях не взаимодействует с галогенами, из металлов — с серебром, золотом, платиной и металлами платиновой группы.

С самым активным неметаллом фтором кислород образует соединения в положительных степенях окисления. Так, в соединении O2 F2 степень окисления кислорода +1, а в соединении O2 F — +2. Эти соединения принадлежат не к оксидам, а к фторидам. Фториды кислорода можно синтезировать только косвенным путем, например, действуя фтором F2 на разбавленные водные растворы КОН.

Применение. Применение кислорода очень разнообразно. Основные количества получаемого из воздуха кислорода используются в металлургии. Кислородное (а не воздушное) дутьё в домнах позволяет существенно повышать скорость доменного процесса, экономить кокс и получать чугун лучшего качества. Кислородное дутьё применяют в кислородных конвертерах при переделе чугуна в сталь. Чистый кислород или воздух, обогащённый кислородом, используется при получении и многих других металлов (меди, никеля, свинца и др.). Кислород используют при резке и сварке металлов. При этом применяют сжатый газообразный кислород, хранимый под давлением 15 МПа в специальных стальных баллонах. Баллоны с кислородом окрашены в голубой цвет для отличия от баллонов с другими газами.

Жидкий кислород - мощный окислитель, его используют как компонент ракетного топлива. Смесь жидкого кислорода и жидкого озона один из самых мощных окислителей ракетного топлива. Пропитанные жидким кислородом такие легко окисляющиеся материалы, как древесные опилки, вата, угольный порошок и др. (эти смеси называют оксиликвитами), используют как взрывчатые вещества, применяемые, например, при прокладке дорог в горах.

круговорот кислород химический элемент

2.2 Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 88,8% кислорода, в атмосферном воздухе 23,15% по весу или 20,95% по объему, а в земной коре 47,4% по весу.

Указанная концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза (рис. 1). В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород:

6CO2 + 6H2 O + энергия света = C6 H12 O6 + 6O2

Выше приведено суммарное уравнение фотосинтеза; на самом же деле, кислород выделяется в атмосферу на первой его стадии – в процессе фотолиза воды.

Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца.

Рис.1. Условная схема фотосинтеза.

Кислород — основной биогенный элемент, входящий в состав молекул всех важнейших веществ, обеспечивающих структуру и функции клеток — белков, нуклеиновых кислот, углеводов, липидов, а также множества низкомолекулярных соединений. В каждом растении или животном кислорода гораздо больше, чем любого другого элемента (в среднем около 70%). Мышечная ткань человека содержит 16% кислорода, костная ткань — 28,5%; всего в организме среднего человека (масса тела 70 кг) содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания (свободный кислород) и с водой (связанный кислород). Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе.

В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе.

Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона при сильном ультрафиолетовом излучении:

O2 * + O2 → O3 + O

Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа и др.

Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой. Его основные моменты: выделение свободного кислорода при фотосинтезе, окисление химических элементов, поступление предельно окисленных соединений в глубокие зоны земной коры и их частичное восстановление, в том числе за счет соединений углерода, вынос оксида углерода и воды на поверхность земной коры и вовлечение их в реакцию фотосинтеза. Схема круговорота кислорода в несвязанном виде представлена ниже.

Рис.2. Схема круговорота кислорода в природе.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды (рис. 3). В процессе круговорота вода испаряется с поверхности океана, водяные пары перемещаются вместе с воздушными течениями, конденсируются, и вода возвращается в виде атмосферных осадков на поверхность суши и моря. Различают большой круговорот воды, при котором вода, выпавшая в виде осадков на сушу, возвращается в моря путем поверхностного и подземного стоков; и малый круговорот воды, при котором осадки выпадают на поверхность океана.

Из приведенных примеров круговоротов и миграции элемента видно, что глобальная система циклической миграции химических элементов обладает высокой способностью к саморегуляции, при этом огромную роль в круговороте химических элементов играет биосфера.

Кислород является самым распространенным элементом земной коры. В атмосфере его находится около 23% (масс.), в составе воды – около 89%, в человеческом организме – около 65%, в песке содержится 53% кислорода, в глине – 56% и т.д. Если подсчитать его количество в воздухе (атмосфере), воде (гидросфере) и доступной непосредственному химическому исследованию части твердой земной коры (литосфере), то окажется, что на долю кислорода приходится примерно 50% их общей массы.

Круговорот кислорода в природе. Применение кислорода, его биологическая роль

Свободный кислород содержится почти исключительно в атмосфере, причем количество его оценивается в т. При всей громадности этой величины она не превышает 0,0001 общего содержания кислорода в земной коре.
В связанном состоянии кислород входит в состав почти всех окружающих нас веществ.

Так, например, вода, песок, многие горные породы и минералы, встречающиеся в земной коре, содержат кислород. Кислород является составной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека.
Круговорот кислорода в природе – это процесс обмена кислородом, который происходит между атмосферой, гидросферой и литосферой. Основным источником возобновления кислорода на Земле служит фотосинтез – процесс, происходящий в растениях за счет поглощения ими углекислого газа.

Растворенный в воде кислород поглощается водными формами жизни посредством дыхания.

Круговорот кислорода – планетарный процесс, связывающий атмосферу, гидро- и литосферу через совокупную деятельность живых организмов.

Основные этапы круговорота˸

1) производство кислорода при фотосинтезе фотоавтотрофами суши и океана;

2) производство кислорода при диссоциации Н2О и О3 в верхних слоях атмосферы под действием ионизирующего и ультрофиолетового излучения (незначительное количество);

3) потребление О2 при дыхании живых организмов;

4) потребление кислорода при почвенном дыхании (окислении органики почвенными микроорганизмами);

5) потребление О2 при горении и других формах окисления (извержение вулканов);

6) потребление кислорода на производство О3 в стратосфере;

7) участие в океанических преобразованиях гидрокарбонатов в составе СО2 и Н2О˸

Весь О2 полностью проходит через живые организмы за 2 000 лет.

Ежегодное производство кислорода фотосинтетиками Земли примерно 240 млрд. т. В океане кислорода в растворенном виде так же, как и СО2 гораздо больше, чем в атмосфере (от 2 до 8 г/л). Часть органического вещества захороняется, поэтому часть кислорода выводится из цикла.

Биосферных проблем, связанных с циркуляцией кислорода в атмосфере, несколько˸

1) при сжигании ископаемого топлива тратится огромное количество кислорода.

Совокупное годовое потребление на Земле кислорода 230 млрд. т, из низ на дыхание растений и животных идет 2,6 млрд. т, почвенное окисление – 50 млрд. т, остальное – процессы горения. С учетом быстрого сведения лесов на планете и возрастающими темпами индустриализации закономерно˸ в будущем дальнейшее возрастание потребления и снижение производство О2.

2) в результате человеческой деятельности в атмосферу попадают сотни веществ, многие из которых являются парниковыми газами и разрушителями озонового слоя стратосферы, Например, озоновый слой разрушается при попадании в атмосферу хлора и азота.

В стратосфере под действием жесткого ионизирующего излучения (менее 242 нм) молекулы О2 распадаются на атомы, которые соединяются с молекулами О2 и образуют озон (О3).

В результате, образуется слой, непроницаемый для ультрафиолета А (< 280 нм), В (280 < <315 нм) и задерживающий большую часть ультрафиолета С (315 < 400 нм).

При поглощении озоном квантов УФ-излучения выделяется тепловая энергия, за счёт которой и разогревается стратосфера.

Толщина озонового слоя измеряется в единицах Добсона (100 Д.е = 0,1 см при нормальном атмосферном давлении).

У полюсов озона больше (301,6 Д.е.), чем у экватора, зато толщина тропосферы больше у экватора. Концентрация озона и продолжительность ᴇᴦο жизни различна на разных высотах, меняется от времени суток, сезона. На каждой высоте имеются свои источники озона и свои стоки, обмен озоновыми массами идет также между различными широтами. В целом оценка содержания циркуляции озона в атмосфере – очень трудоемкий процесс с примерными фактическими результатами.

Читайте также

  • — Круговорот кислорода

    В отличие от углерода, резервуары доступного для биоты кислорода по сравнению с егопотоками огромны.

    Поэтому отпадает проблема глобального дефицита О2 и замкнутости его круговорота. Биотический круговорот кислорода составляет 270 Гт/год. Кислород на Земле - первый по… [читать подробнее].

  • — Круговорот кислорода

    26). Кроме того,…

    Опишите ПОДРОБНО круговорот кислорода в природе.

  • — Круговорот кислорода

    Не всегда входил в состав земной атмосферы. Он появился в результате жизнедеятельности фотосинтезирующих организмов и под действием ультрафиолетовых лучей превращался в озон.

    По мере накопления озона произошло образование озонового слоя в верхних слоях атмосферы. … [читать подробнее].

  • — Круговорот кислорода

    Кислород атмосферы имеет биогенное происхождение и его циркуляция кислорода в биосфере осуществляется путем пополнения запасов в атмосфере в результате фотосинтеза растений и поглощения при дыхании организмов и сжигании топлива в хозяйстве человека (рис.

  • — КРУГОВОРОТ КИСЛОРОДА

    Кислород, самый распространенный элемент, без которого не-возможна жизнь на Земле. Он составляет 47,2% от массы земной ко-ры в виде оксидов металлов и неметаллов.

  • — Биогеохимические круговороты: круговорот кислорода, углерода, азота, фосфора, серы и воды.

    Круговорот кислорода: Кислород играет важнейшую роль в жизни большинства живых организмов на нашей планете. Он необходим всем для дыхания. Кислород не всегда входил в состав земной атмосферы. Он появился в результате жизнедеятельности фотосинтезирующих организмов.

  • Примерно четвертая часть атомов всей живой материи приходится на долю кислорода. Поскольку общее количество атомов кислорода в природе неизменно, с удалением кислорода из воздуха вследствие дыхания и других процессов должно происходить его пополнения. Важнейшими источниками кислорода в неживой природе является углекислый газ и вода. Кислород попадает в атмосферу главным образом в результате процесса фотосинтеза, в котором участвует CО2.

    Важным источником кислорода является атмосфера Земли.

    Часть кислорода образуется в верхних частях атмосферы вследствие диссоциации воды под действием солнечного излучения. Часть кислорода выделяется зелеными растениями в процессе фотосинтеза с H2O и CO2.

    В свою очередь атмосферное CО2 образуется в результате реакций горения и дыхания животных. Атмосферное О2 расходуется на образование озона в верхних частях атмосферы, окислительные процессы выветривания горных пород, в процессе дыхания животных и в реакциях горения.

    Преобразование V2 в CО2 приводит к выделению энергии, соответственно, на превращение CО2 в О2 энергия должна расходоваться.

    Особенности кругооборота воды и некоторых веществ в биосфере

    Эта энергия оказывается Солнцем. Таким образом, жизнь на Земле зависит от циклических химических процессов, возможных благодаря попаданию солнечной энергии.

    Применение кислорода обусловлено его химическими свойствами. Кислород широко используется как окислитель. Его применяют для сварки и резки металлов, в химической промышленности - для получения различных соединений и интенсификации некоторых производственных процессов.

    В космической технике кислород применяется для сжигания водорода и других видов топлива, в авиации - при полетах на больших высотах, в хирургии - для поддержания больных с затрудненным дыханием.

    Биологическая роль кислорода обусловлено его способностью поддерживать дыхание.

    Человек при дыхании в течение одной минуты в среднем потребляет 0,5 дм3 кислорода, в течение суток - 720 дм3, а в течение года - 262,8 м3 кислорода.

    Круговорот кислорода в природе

    Задания «С» ЕГЭ_ 2007 г. – С 4

    В чем выражается приспособленность цветковых растений к совместному проживанию в лесном сообществе? Укажите не менее 3-х примеров.

    1) ярусное расположение, обеспечивающее использование растениями света;

    2) неодновременное цветение ветроопыляемых и насекомоопыляемых растений;

    Назовите не менее 3-х отличий в строении клеток прокариот и эукариот.

    1) ядерное вещество не отделено от цитоплазмы оболочкой;

    2) одна кольцевая молекула ДНК – нуклеоид;

    3) отсутствует большинство органоидов, кроме рибосом.

    К каким изменениям в экосистеме луга может привести сокращение численности насекомых-опылителей?

    1) сокращению численности насекомоопыляемых растений, изменению видового состава растений;

    2) сокращению численности и изменению видового состава растительноядных животных;

    3) сокращению численности насекомоядных животных.

    К каким последствиям могут привести различные виды антропогенного воздействия на окружающую среду?

    Приведите не менее 4-х последствий.

    1) сжигание топлива приводит к накоплению в атмосфере СО 2 и парниковому эффекту;

    2) работа промышленных предприятий способствует загрязнению окружающей среды твердыми отходами (пылевые частицы), газообразными продуктами (оксидами азота и др.), что вызывает кислотные дожди;

    3) использование фреонов приводит к образованию озоновых дыр и проникновению ультрафиолетовых лучей, губительно влияющих на всё живое;

    4) вырубка лесов, осушение болот, распашка целинных земель приводят к опустыниванию.

    В последние годы благодаря достижениям биотехнологии появился новый источник пищи – белок, получаемый из микроорганизмов.

    Какие преимущества имеет использование микроорганизмов для производства белка по сравнению с традиционным использованием для этой цели сельскохозяйственных растений и животных?

    1) не требуется больших площадей для посевов и помещений для скота, что снижает энергозатраты;

    2) микроорганизмы выращивают на дешевых или побочных продуктах сельского хозяйства или промышленности;

    3) с помощью микроорганизмов можно получить белки с заданными свойствами (например, кормовые белки).

    Современные кистеперые рыбы находятся в состоянии биологического регресса.

    Приведите данные, подтверждающие это явление.

    1) невысокая численность вида: в настоящее время известен только один вид этих рыб – латимерия;

    2) небольшая площадь ареала: латимерия имеет ограниченное распространение в участке Индийского океана;

    3) латимерия приспособлена к жизни только на определённой глубине, т.е.

    она – узко специализированный вид.

    Приведите не менее 3-х изменений в экосистеме смешанного леса, к которым может привести сокращение численности насекомоядных птиц.

    1) увеличение численности насекомых;

    2) сокращение численности растений, поедаемых и повреждаемых насекомыми;

    3) сокращение численности хищных животных, питающихся насекомоядными птицами.

    Биологический прогресс млекопитающих сопровождался появлением множества частных приспособлений – идиоадаптаций.

    Приведите не менее 3-х идиоадаптаций во внешнем строении, которые позволяют кротам успешно вести подземно-роющий образ жизни. Ответ поясните.

    1) приспособленные для рытья лопатообразные передние конечности; 2) отсутствие ушных раковин;

    3) короткий шерстный покров не препятствует передвижению в почве.

    Объясните, какие особенности передних конечностей приматов способствовали развитию руки для орудийной деятельности при антропогенезе.

    1) передняя конечность хватательного типа, противопоставление большого пальца;

    2) наличие ногтей: кончики пальцев открыты и имеют большую осязательную чувствительность;

    3) наличие ключицы, обеспечивающей разнообразие движений передней конечности.

    Какие ароморфозы позволили млекопитающим широко распространиться на Земле?

    1) теплокровность, обусловленная 4-х камерным сердцем, альвеолярными лёгкими, волосяным покровом;

    2) внутриутробное развитие, выкармливание детенышей молоком;

    3) высокий уровень организации центральной нервной системы, сложные формы поведения.

    Для борьбы с вредителями сельского и лесного хозяйства используют различные методы.

    Приведите не менее 3-х преимуществ применения биологических методов перед химическими.

    1) биологические методы безвредны и экологически безопасны, так как основаны на привлечении естественных врагов вредителей;

    2) химические препараты отравляют и полезных насекомых, загрязняют почву, усваиваются произрастающими на ней растениями, а, следовательно, и загрязняют возможные продукты питания человека; 3) применение биологических методов борьбы с вредителями способствует сохранению биологического разнообразия природы или регуляции одного вида вредителей.

    В природе осуществляется круговорот кислорода.

    Какую роль играют в этом процессе живые организмы?

    1) кислород образуется в растениях в процессе фотосинтеза и выделяется в атмосферу;

    2) в процессе дыхания кислород используется живыми организмами; 3) в клетках живых организмов кислород участвует в окислительно-восстановительных процессах энергетического обмена с образованием воды и углекислого газа.

    1) обитание в теле хозяина, защищенность от неблагоприятных условий, обеспеченность пищей, отсутствие врагов способствовали редукции некоторых систем органов и формированию сильно развитой половой системы;

    2) плотные покровы тела препятствуют его перевариванию, а органы прикрепления удерживают в теле хозяина;

    3) самооплодотворение, высокая плодовитость, сложный цикл развития позволяют ему широко расселяться.

    Какие признаки в строении тела являются общими только для человека и человекообразных обезьян?

    1) наличие ногтей вместо когтей;

    2) наличие копчика и отсутствие хвоста;

    3) одинаковая зубная система;

    4) сходная форма ушей, лицо без сплошного волосяного покрова.

    Влияние автотранспорта на человека и окружающую среду

    1.3.1 Понятие шума

    Шумом является всякий нежелательный для человека звук. При нормальных атмосферных условиях скорость звука в воздухе равна 344 м/с. Звуковое поле — это область пространства, в которой распространяются звуковые волны…

    Воздушная оболочка Земли

    9.

    Понятие о климате

    Климат — это многолетний режим погоды, характерный для данной местности. Климат оказывает влияние на режим рек, образование различных типов почв, растительность и животный мир. Так, в областях, где земная поверхность получает много тепла и влаги…

    Генетически модифицированные организмы и генетически модифицированные продукты

    1.

    Генетически модифицированный организм (ГМО) — организм, генотип которого был искусственно изменён при помощи методов генной инженерии. Это определение может применяться для растений, животных и микроорганизмов. Генетические изменения…

    Закономерности самоочищения воды в водных объектах

    1.1 Понятие об ОВОС

    Пока единственный действующий российский нормативный документ, регламентирующий оценку воздействия на окружающую среду (ОВОС) _ Положение «Об оценке воздействия на окружающую среду в Российской Федерации» (утв.

    Круговорот кислорода

    приказом Минприроды России от 18…

    Круговорот веществ и энергии в природе

    1.1 Круги круговорота веществ

    Солнечная энергия на Земле вызывает два круговорота веществ: · большой (геологический), наиболее ярко проявляющийся в круговороте воды и циркуляции атмосферы. · малый, биологический (биотический)…

    Круговорот фосфора

    2. Составьте схему круговорота и покажите перемещение фосфорсодержащих соединений

    Составьте пояснительный текст к схеме и дайте ответы на вопросы: 1.

    Какой фазы не существует в круговороте фосфора? 2. Где фосфор может накапливаться? 3…

    Лапландский государственный заповедник: экологическое состояние и мероприятия по оздоровлению

    7. Механизмы круговорота веществ

    Круговорот веществ в биогеоценозе — необходимое условие существования жизни.

    Он возник в процессе становления жизни и усложнялся в ходе эволюции живой природы. С другой стороны, чтобы в биогеоценозе был возможен круговорот веществ…

    Отношения организмов в агросистемах

    4. Особенности круговорота веществ в агроэкосистемах

    Массо- и энергообмен на планете включает разнообразные процессы вещественных и энергетических превращений и перемещений в литосфере, гидросфере, атмосфере.

    С появлением жизни эти круговороты и потоки интенсифицировались…

    Правовая охрана вод

    2.1.1. Понятие «водопользование»

    По отношению к многочисленным и разнообразным конкретным общественным отношениям, возникающим в процессе использования природных запасов воды, понятие «водопользование» выступает как одно собирательное, обобщающее понятие.

    Нужно отметить…

    Правовые основы лицензирования в области охраны окружающей среды

    1.1 Понятие лицензирования

    Лицензирование представляет собой процедуру выдачи тому или иному субъекту разрешительного документа на право занятия определенной деятельностью, в котором отражаются сроки и условия осуществления такой деятельности. Винокуров А.Ю…

    Проблема загрязнения атмосферы

    1.1 Понятие о геосферах

    Биосфера — живая оболочка планеты Земля Биосфера представляет собой совокупность тех слоёв Земли, которые на протяжении её геологической истории подвергались воздействию организмов.

    Изучая биосферу как особую оболочку земного шара…

    Решение проблемы депонирования углерода на государственном и межгосударственном уровнях

    Глава 2. Влияние круговорота углерода на глобальный климат

    Современный уровень нарушений экологических условий и равновесий на Земле

    Понятие природообустройство

    В настоящее время, когда человек на высоком уровне развития науки и производительных сил своей деятельностью коренным образом изменяет компоненты природы, появляется проблема сосуществования человека (человеческого общества) и природы…

    Человек как биологический и социальный организм природы

    2.

    Участие организмов в круговороте веществ и энергии. Проблема нарушения круговорота веществ в биосфере

    Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами…

    Экологическая система

    3.

    Изобразите и обсудите модель биотического (биологического) круговорота веществ-биогенов с участием продуцентов, консументов, редуцентов. Поясните названия организмов и их роль в круговороте

    Рис. Модель биотического (биологического) круговорота веществ-биогенов с участием продуцентов, консументов, редуцентов. Биотический круговорот обеспечивается взаимодействием трех основных групп организмов: 1) продуцентов — зеленых растений…

    * Кислород - самый распространённый в земной коре элемент, на его
    долю (в составе различных соединений, главным образом силикатов)
    приходится около 47 % массы твёрдой земной коры. Морские и
    пресные воды содержат огромное количество связанного кислорода -
    85,82 % (по массе). Более 1500 соединений земной коры в своём
    составе содержат кислород.
    * В атмосфере содержание свободного кислорода составляет 20,95 % по
    объёму и 23,10 % по массе (около 1015 тонн). Основная часть
    кислорода на Земле выделяется фитопланктоном Мирового океана.
    При этом, около 60 % кислорода, производимого лесами и зелёными
    растениями, расходуется на процессы гниения и разложения в самих
    лесах и растительных зонах.
    * Деятельность человека очень мало влияет на количество свободного
    кислорода в атмосфере. При нынешних темпах фотосинтеза
    понадобится около 2000 лет, чтобы восстановить весь кислород в
    атмосфере.
    * Кислород входит в состав многих органических веществ и
    присутствует во всех живых клетках. По числу атомов в живых клетках
    он составляет около 25 %, по массовой доле - около 65 %.

    * КРУГОВОРОТ КИСЛОРОДА - взаимообмен кислородом,
    осуществляемый между атмосферой и океанами, между
    процессами, происходящими в животных и растениях, и
    химическим горением. Основным источником возобновления
    кислорода на Земле является фотосинтез, процесс,
    происходящий в растениях, при котором происходит
    выделение кислорода.

    КРУГОВОРОТ КИСЛОРОДА
    Основные моменты:
    * Фотосинтез;
    * Фотохимическое разложение водяного пара в
    верхних слоях атмосферы под влиянием
    ультрафиолетовых лучей солнца;
    * Убыль кислорода в атмосфере в результате
    процессов дыхания, гниения и горения;
    * Участие в цикле образования и разрушения озона;
    * Фиксация литосферой в виде карбонатов,
    сульфатов, оксидов железа и др.;
    * Участие в круговоротах в несвязанном виде (воды,
    углекислого газа и др.).

    * Концентрация кислорода
    в атмосфере
    поддерживается
    благодаря фотосинтезу,
    в результате которого
    зеленые растения под
    действием солнечного
    света превращают
    диоксид углерода и воду
    в углеводы и кислород.
    Основная масса
    кислорода продуцируется
    растениями суши,
    остальная часть –
    фотосинтезирующими
    организмами Мирового
    океана.

    * Мощным источником кислорода является и
    фотохимическое разложение водяного
    пара в верхних слоях атмосферы под
    влиянием ультрафиолетовых лучей солнца.
    Кроме того, кислород совершает
    важнейший круговорот, входя в состав
    воды. Незначительное количество
    кислорода образуется из озона под
    воздействием ультрафиолетовой радиации.
    Вторым по содержанию в атмосфере после
    азота является кислород, составляющий
    20,95% ее по объему. Гораздо большее его
    количество находится в связанном
    состоянии в молекулах воды, в солях, а
    также в оксидах и других твердых породах
    земной коры, однако к этому огромному
    фонду кислорода экосистема не имеет
    непосредственного доступа.

    * Механизм круговорота кислорода достаточно прост. Полагают, что
    молекула кислорода (О2) , образующаяся при фотосинтезе, получает
    один свой атом от диоксида углерода, а другой - от воды; молекула
    кислорода, потребляемая при дыхании, отдает один свой атом диоксиду
    углерода, а другой - воде. Таким образом, круговорот кислорода
    завязан на процессы фотосинтеза и дыхания. Фотосинтез. 6СО2 + 6Н20
    (свет, хлорофилл)= С6Н1206 + 602. Дыхание. С6Н1206 + 602 = 6СО2 +
    6Н20 + энергия.

    * Кислород - наиболее активный газ. В пределах
    биосферы происходит быстрый обмен кислорода
    среды с живыми организмами или их остатками
    после гибели. В составе земной атмосферы
    кислород занимает второе место после азота.
    Господствующей формой нахождения кислорода в
    атмосфере является молекула О2. Круговорот
    кислорода в биосфере весьма сложен, поскольку он
    вступает во множество химических соединений
    минерального и органического миров. Свободный
    кислород современной земной атмосферы является
    побочным продуктом процесса фотосинтеза зеленых
    растений и его общее количество отражает баланс
    между продуцированием кислорода и процессами
    окисления и гниения различных веществ.

    * Биологический (биогеохимический) круговорот (малый
    круговорот веществ в биосфере)
    Движущей силой биологического круговорота веществ
    является деятельность живых организмов. Он является частью
    большого и происходит в пределах биосферы на уровне
    экосистем. Состоит малый круговорот в том, что питательные
    вещества, вода и углерод аккумулируются в веществе
    растений (автотрофы), расходуются на построение тел и
    жизненные процессы, как растений, так и других организмов
    (как правило, животных - гетеротрофов), которые поедают эти
    растения. Продукты распада органического вещества под
    действием деструкторов и микроорганизмов (бактерии,
    грибы, черви) вновь разлагаются до минеральных
    компонентов. Эти неорганические вещества могут быть вновь
    использованы для синтеза автотрофами органических
    веществ. В биогеохимических круговоротах различают
    резервный фонд (вещества, которые не связаны с живыми
    организмами) и обменный фонд (вещества, которые связаны
    прямым обменом между организмами и их непосредственным
    окружением). В зависимости от расположения резервного
    фонда биогеохимические круговороты делят на два типа:
    Круговороты газового типа с резервным фондом веществ в
    атмосфере и гидросфере (круговороты углерода, кислорода,
    азота). Круговороты осадочного типа с резервным фондом в
    земной коре (круговороты фосфора, кальция, железа и др.)

    * На сегодняшний день население больших городов работает и живет
    в крайне неблагоприятных экологических условиях. Экологически
    чистый воздух – роскошь для современных людей. Принимая во
    внимание все возрастающий уровень загрязнения окружающей
    среды, следует отметить, что содержание кислорода в атмосфере
    снижается, и приводит к недостатку его в организме человека. По
    последним научным данным все жители мегаполисов испытывают
    гипоксию, или хронический дефицит кислорода. Нормальное
    содержание кислорода в атмосфере 21%. В крупных городах оно
    может снижаться до 17%. Вырубка лесов, эрозия почв, различные
    горные выработки на поверхности уменьшают общую массу
    фотосинтеза и снижают круговорот кислорода на значительных
    территориях. Кроме того, на промышленные и бытовые нужды
    ежегодно расходуется 25 % кислорода, образующегося в результате
    ассимиляции (синтеза). Со второй половины XX века вопросы,
    связанные с состоянием атмосферы и качеством атмосферного
    воздуха, входят в круг постоянно обсуждаемых экологических
    проблем. На национальном и международном уровне
    предпринимаются вполне конкретные практические шаги, связанные
    с охраной компонентов атмосферы и регуляции производства
    атмосферных загрязнителей.

    2.2 Круговорот кислорода

    Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 88,8% кислорода, в атмосферном воздухе 23,15% по весу или 20,95% по объему, а в земной коре 47,4% по весу.

    Указанная концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза (рис. 1). В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород:

    6CO 2 + 6H 2 O + энергия света = C 6 H 12 O 6 + 6O 2

    Выше приведено суммарное уравнение фотосинтеза; на самом же деле, кислород выделяется в атмосферу на первой его стадии - в процессе фотолиза воды.

    Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца.

    Рис.1. Условная схема фотосинтеза.

    Кислород - основной биогенный элемент, входящий в состав молекул всех важнейших веществ, обеспечивающих структуру и функции клеток - белков, нуклеиновых кислот, углеводов, липидов, а также множества низкомолекулярных соединений. В каждом растении или животном кислорода гораздо больше, чем любого другого элемента (в среднем около 70%). Мышечная ткань человека содержит 16% кислорода, костная ткань - 28,5%; всего в организме среднего человека (масса тела 70 кг) содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания (свободный кислород) и с водой (связанный кислород). Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе.

    В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе.

    Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона при сильном ультрафиолетовом излучении:

    O 2 * + O 2 > O 3 + O

    Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа и др.

    Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой. Его основные моменты: выделение свободного кислорода при фотосинтезе, окисление химических элементов, поступление предельно окисленных соединений в глубокие зоны земной коры и их частичное восстановление, в том числе за счет соединений углерода, вынос оксида углерода и воды на поверхность земной коры и вовлечение их в реакцию фотосинтеза. Схема круговорота кислорода в несвязанном виде представлена ниже.

    Рис.2. Схема круговорота кислорода в природе.

    Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды (рис. 3). В процессе круговорота вода испаряется с поверхности океана, водяные пары перемещаются вместе с воздушными течениями, конденсируются, и вода возвращается в виде атмосферных осадков на поверхность суши и моря. Различают большой круговорот воды, при котором вода, выпавшая в виде осадков на сушу, возвращается в моря путем поверхностного и подземного стоков; и малый круговорот воды, при котором осадки выпадают на поверхность океана.

    Из приведенных примеров круговоротов и миграции элемента видно, что глобальная система циклической миграции химических элементов обладает высокой способностью к саморегуляции, при этом огромную роль в круговороте химических элементов играет биосфера.

    В то же время хозяйственная деятельность человека вызывает деформацию природных циклов массообмена и, следовательно, изменение состава окружающей среды. Эти изменения происходят значительно быстрее, чем совершаются процессы генетической адаптации организмов и видообразования. Зачастую хозяйственные действия настолько непродуманны или несовершенны, что создают острую экологическую опасность. Изучение процессов массообмена, связывающих в единое целое все оболочки Земли, должно помочь в создании системы контроля за эколого-геохимическим состоянием окружающей среды и разработке научно обоснованного прогноза экологических последствий хозяйственных действий и новых технологий.

    Рис. 3. Схема круговорота воды в природе.

    Список литературы

    1. Добровольский В.В. Основы биогеохимии. Учеб. пособие для геогр., биол., геол., с.-х. спец. вузов. М.: Высш. шк., 1998

    2. Каменский А.А., Соколова Н.А., Валовая М.А. Основы биологии. Полный курс общеобразовательной средней школы/ А.А. Каменский, Н.А. Соколова, М.А. Валовая. - М.: Издательство «Экзамен», 2004 - 448 с.

    3. Интернет-ресурс http://ru.wikipedia.org/

    Делись добром;)

    1. Понятие круговорота

    2. Круговорот кислорода

    2.1. Общие сведения о кислороде-элементе

    2.2. Круговорот кислорода

    Список используемой литературы

    1. Понятие круговорота.

    Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

    Круговорот веществ - многократно повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ в природе, имеющий более или менее цикличный характер. Общий круговорот веществ характерен для всех геосфер и складывается из отдельных процессов круговорота химических элементов, воды, газов и других веществ. Процессы круговорота не полностью обратимы из-за рассеивания веществ, изменения его состава, местной концентрации и деконцентрации.

    Для обоснования и пояснения самого понятия круговорота полезно обратиться к четырем важнейшим положениям геохимии, которые имеют первостепенное прикладное значение и подтверждены бесспорными опытными данными:

    а) повсеместное распространение химических элементов во всех геосферах;

    б) непрерывная миграция (перемещение) элементов во времени и в пространстве;

    в) многообразие видов и форм существования элементов в природе;

    г) преобладание рассеянного состояния элементов над концентрированным, особенно для рудообразующих элементов.

    Более всего, на мой взгляд, стоит остановить свое внимание на процессе перемещения химических элементов.

    Миграция химических элементов находит отражение в гигантских тектоно-магамтических процессах, преобразующих земную кору, и в тончайших химических реакциях, протекающих в живом веществе, в непрерывном поступательном развитии окружающего мира, характеризуя движение как форму существования материи. Миграция химических элементов определяется многочисленными внешними факторами, в частности, энергией солнечного излучения, внутренней энергией Земли, действием силы тяжести и внутренними факторами, зависящими от свойств самих элементов.

    Круговороты могут происходить на ограниченном пространстве и на протяжении небольших отрезков времени, а может охватывать всю наружную часть планеты и огромные периоды. При этом малые круговороты входят в более крупные, которые в своей совокупности складываются в колоссальные биогеохимические круговороты. Они тесно связаны с окружающей средой.

    Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам - диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

    Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества - углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов. Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота.

    Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических и/или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе.

    Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот, сера.

    Различают два основных круговорота: большой (геологический) и малый (биотический).

    Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

    Малый круговорот, являясь частью большого, происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих растений, так и других организмов (как правило, животных), которые поедают их. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

    Таким образом, круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки.

    2. Круговорот кислорода в природе.

    2.1. Общие сведения о кислороде-элементе.

    История открытия. Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы):

    2HgO (t)→ 2Hg + O2

    Однако, Пристли первоначально не понял, что открыл новое простое вещество. Он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

    Несколькими годами ранее (возможно, в 1770-м) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

    Работа по экологии

    на тему:

    Биогеофизические круговороты веществ в природе

    Работу выполнила

    Ученица 11-А класса

    Лучник Татьяна


    Понятие круговорота.

    Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

    Круговорот веществ - многократно повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ в природе, имеющий более или менее цикличный характер. Общий круговорот веществ характерен для всех геосфер и складывается из отдельных процессов круговорота химических элементов, воды, газов и других веществ. Процессы круговорота не полностью обратимы из-за рассеивания веществ, изменения его состава, местной концентрации и деконцентрации.

    Для обоснования и пояснения самого понятия круговорота полезно обратиться к четырем важнейшим положениям геохимии, которые имеют первостепенное прикладное значение и подтверждены бесспорными опытными данными:

    1. повсеместное распространение

    химических элементов во всех геосферах;

    2. непрерывная миграция (перемещение) элементов во времени и в пространстве;

    3. многообразие видов и форм существования элементов в природе;

    4. преобладание рассеянного состояния элементов над концентрированным, особенно для рудообразующих элементов.

    Более всего, на мой взгляд, стоит остановить свое внимание на процессе перемещения химических элементов.

    Миграция химических элементов находит отражение в гигантских тектономагматических процессах, преобразующих земную кору, и в тончайших химических реакциях, протекающих в живом веществе, в непрерывном поступательном развитии окружающего мира, характеризуя движение как форму существования материи. Миграция химических элементов определяется многочисленными внешними факторами, в частности, энергией солнечного излучения, внутренней энергией Земли, действием силы тяжести и внутренними факторами, зависящими от свойств самих элементов.

    Круговороты могут происходить на ограниченном пространстве и на протяжении небольших отрезков времени, а может охватывать всю наружную часть планеты и огромные периоды. При этом малые круговороты входят в более крупные, которые в своей совокупности складываются в колоссальные биогеохимические круговороты. Они тесно связаны с окружающей средой.

    Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам - диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

    Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества - углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов. Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота.

    Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических и/или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе.

    Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот, сера.

    Различают два основных круговорота: большой (геологический) и малый (биотический).

    Большой круговорот , продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

    Малый круговорот , являясь частью большого, происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих растений, так и других организмов (как правило, животных), которые поедают их. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

    Таким образом, круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки.

    Круговорот кислорода в природе.

    Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 88,8% кислорода, в атмосферном воздухе 23,15% по весу или 20,95% по объему, а в земной коре 47,4% по весу.



    возникновению биохимического механизма дыхания современного типа. Этот механизм и обеспечивает энергией аэробные организмы.

    Указанная концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза (рис. 1). В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород:

    6CO 2 + 6H 2 O + энергия света = C 6 H 12 O 6 + 6O 2

    Выше приведено суммарное уравнение фотосинтеза; на самом же деле, кислород выделяется в атмосферу на первой его стадии – в процессе фотолиза воды.

    Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца.

    Кислород - основной биогенный элемент, входящий в состав молекул всех важнейших веществ, обеспечивающих структуру и функции клеток - белков, нуклеиновых кислот, углеводов, липидов, а также множества низкомолекулярных соединений. В каждом растении или животном кислорода гораздо больше, чем любого другого элемента (в среднем около 70%). Мышечная ткань человека содержит 16% кислорода, костная ткань - 28,5%; всего в организме среднего человека (масса тела 70 кг) содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания (свободный кислород) и с водой (связанный кислород). Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе.

    В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе.

    Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона при сильном ультрафиолетовом излучении:

    O 2 * + O 2 → O 3 + O

    Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа и др.

    Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой. Его основные моменты: выделение свободного кислорода при фотосинтезе, окисление химических элементов, поступление предельно окисленных соединений в глубокие зоны земной коры и их частичное восстановление, в том числе за счет соединений углерода, вынос оксида углерода и воды на поверхность земной коры и вовлечение их в реакцию фотосинтеза. Схема круговорота кислорода в несвязанном виде представлена ниже.

    Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды (рис. 3). В процессе круговорота вода испаряется с поверхности океана, водяные пары перемещаются вместе с воздушными течениями, конденсируются, и вода возвращается в виде атмосферных осадков на поверхность суши и моря. Различают большой круговорот воды, при котором вода, выпавшая в виде осадков на сушу, возвращается в моря путем поверхностного и подземного стоков; и малый круговорот воды, при котором осадки выпадают на поверхность океана.

    Из приведенных примеров круговоротов и миграции элемента видно, что глобальная система циклической миграции химических элементов обладает высокой способностью к саморегуляции, при этом огромную роль в круговороте химических элементов играет биосфера.

    В то же время хозяйственная деятельность человека вызывает деформацию природных циклов массообмена и, следовательно, изменение состава окружающей среды. Эти изменения происходят значительно быстрее, чем совершаются процессы генетической адаптации организмов и видообразования. Зачастую хозяйственные действия настолько непродуманны или несовершенны, что создают острую экологическую опасность. Изучение процессов массообмена, связывающих в единое целое все оболочки Земли, должно помочь в создании системы контроля за экологогеохимическим состоянием окружающей среды и разработке научно обоснованного прогноза экологических последствий хозяйственных действий и новых технологий.

    3. Круговорот азота в природе . При гниении органических веществ значительная часть содержащегося в них азота превра­щается в аммиак, который под влиянием живущих в почве н и трифицирующих бактерий окисляется затем в азотную кис­лоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты:

    2HN0з + СаСОз = Са(NОз)2 + СОС + Н0Н

    Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при.недо­статочном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих де ни трифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) пере­ходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

    Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещаю­щие потери азота. К таким процессам относятся прежде всего про­исходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в ни­траты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бак­терий поселяются на корнях растений из семейства бобовых, вы­зывая образование характерных вздутий - «клубеньков», почему они и получили название клубеньковых бактерий. Усваи­вая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества.

    Таким образом, в природе совершается непрерывный круговою рот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

    Изучение вопросов питания растений и повышения урожайно­сти последних путем применения удобрений является предметом специальной отрасли химии, получившей название агрохимии. Большой вклад в развитие этой науки внесен французским ученым Ж. Б. Буссенго (1802-1887), немецким химиком Ю. Либихом (1803-1873) и русским ученым Д. Н. Прянишниковым.

    3.Круговорот воды. Вода находится в постоянном движении. Испаряясь с поверхности водоемов, почвы, растений, вода накапливается в атмосфере и, рано или поздно, выпадает в виде осадков, пополняя запасы в океанах, реках, озерах и т.п. Таким образом, количество воды на Земле не изменяется, она только меняет свои формы - это и есть круговорот воды в природе. Из всех выпадающих осадков 80% попадает непосредственно в океан. Для нас же наибольший интерес представляют оставшиеся 20%, выпадающие на суше, так как большинство используемых человеком источников воды пополняется именно за счет этого вида осадков. Упрощенно говоря, у воды, выпавшей на суше, есть два пути. Либо она, собираясь в ручейки, речушки и реки, попадает в результате в озера и водохранилища - так называемые открытые (или поверхностные) источники водозабора. Либо вода, просачиваясь через почву и подпочвенные слои, пополняет запасы грунтовых вод. Поверхностные и грунтовые воды и составляют два основных источника водоснабжения. Оба этих водных ресурса взаимосвязаны и имеют как свои преимущества, так и недостатки в качестве источника питьевой воды.

    Круговорот воды является одним из грандиозных процессов на поверхности земного шара. Он играет главную роль в связывании геологического и биотического круговоротов. В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с

    поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков

    на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно

    сложнее. В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая - питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот.

    Важное свойство круговорота воды заключается в том, что он, взаимодействуя с
    литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу.

    Вода - важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.

    Наиболее замедленной частью круговорота воды является деятельность полярных ледников, что отражают медленное движение и скорейшее таяние ледниковых масс. Наибольшей активностью обмена после атмосферной влаги отличаются речные воды, которые сменяются в среднем каждые 11 дней. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре.


    4. Круговорот углерода. Углерод в биосфере часто представлен наиболее подвижной формой - углекислым газом. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Миграция углекислого газа в биосфере Земли протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием органических веществ и в последующем захоронении их в литосфере в виде торфа, угля, горных сланцев, рассеянной органики, осадочных горных пород. Так, в далекие геологические эпохи сотни миллионов лет назад значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах миллионы лет, этот детрит под действием высоких температур и давления (процесс метаморфизации) превращался в нефть, природный газ и уголь, во что именно - зависело от исходно о материала, продолжительности и условий пребывания в породах. Теперь мы в огромных количествах добываем это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определенном смысле завершаем круговорот углерода. Если бы ни этот процесс в истории планеты, вероятно, человечество имело бы сейчас совсем другие источники энергии, а может быть и совсем другое направление развития цивилизации.По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане. В пределах суши, где имеется растительность, углекислый газ атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2.Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.5. Круговорот фосфора.
    Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах фосфор содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но нелетучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме так называемого органического фосфата. По пищевым цепям фосфор переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащего фосфор соединения в процессе клеточного дыхания для получения организмом энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл.В отличие, например, от углекислого газа, который, где бы он ни выделялся в атмосферу, свободно переносится в ней воздушными потоками, пока снова не усвоится растениями, у фосфора нет газовой фазы и, следовательно, нет "свободного возврата" в атмосферу. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому же вблизи побережья.Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет. Следовательно, фосфат и другие минеральные биогены почвы циркулируют в экосистеме лишь в том случае, если содержащие их "отходы" жизнедеятельности
    откладываются в местах поглощения данного элемента. В естественных экосистемах так в основном и происходит. Когда же в их функционирование вмешивается человек, он нарушает естественный круговорот, перевозя, например, урожай вместе с накопленными из почвы биогенами на большие расстояния к потребителям.6. Круговорот серы. Сера является важным составным элементом живого вещества. Большая часть ее в живых организмах находится в виде органических соединений. Кроме того, сера входит в состав некоторых биологически активных веществ: витаминов, а также ряда веществ, выступающих в качестве катализаторов окислительно-восстановительных процессов в организме и активизирующих некоторые ферменты. Сера представляет собой исключительно активный химический элемент биосферы и мигрирует в разных валентных состояниях в зависимости от окислительно-восстановительных условий среды. Среднее содержание серы в земной коре оценивается в 0,047 %. В природе этот элемент образует свыше 420 минералов.В изверженных породах сера находится преимущественно в виде сульфидных минералов: пирита, пирронита, халькопирита, в осадочных породах содержитсяв глинах в виде гипсов, в ископаемых углях - в виде примесей серного колчедана и реже в виде сульфатов. Сера в почве находится преимущественно в форме сульфатов; в нефти встречаются ее органические соединения.В связи с окислением сульфидных минералов в процессе выветривания сера в виде сульфатиона переносится природными водами в Мировой океан. Сера поглощается морскими организмами, которые богаче ее неорганическими соединениями, чем пресноводные и наземные.7.Конкретные виды антропогенного вмешательства в круговороты веществ в природе.Круговорот углерода. Углерод является основным "строительным материалом" молекул углеводов, жиров, белков, нуклеиновых кислот (таких как ДНК и РНК) и других важных для жизни органических соединений. Вмешательство человека в круговорот углерода резко возрастает, особенно начиная с 1950-х годов, из-за быстрого роста населения и использования ресурсов, и происходит оно в основном двумя способами:· сведение лесов и другой растительности без достаточных лесовосстановительных работ, в связи с чем уменьшается общее количество растительности, способной поглощать СО2;· сжигание углеродосодержащих ископаемых видов топлива и древесины. Образующийся при этом углекислый газ попадает в атмосферу.Круговорот азота. Вмешательство человека в круговорот азота состоит в следующем:· сжигание древесины или ископаемого топлива (NO). Оксид азота затем соединяется в атмосфере с кислородом и образует диоксид азота (NO2), который при взаимодействии с водяным паром может образовывать азотную кислоту (HNO3);· производство азотных удобрений и их широкое применение;· увеличение количества нитрат-ионов и ионов аммония в водных экосистемах при попадании в них загрязненных стоков с животноводческих ферм, смытых с полей азотных удобрений, а также очищенных и неочищенных коммунально-бытовых канализационных стоков.

    · Круговорот фосфора. · Вмешательство человека в круговорот фосфора сводится в основном к двум вариантам:· - Добыча больших количеств фосфатных руд для производств минеральных удобрений и моющих средств.· - Увеличение избытка фосфат-ионов в водных экосистемах при попадании в них загрязненных стоков с животноводческих ферм, смытых с полей фосфатных удобрений, а также очищенных и неочищенных коммунально-бытовых стоков.