Модулем числа называется само это число, если оно неотрицательное, или это же число с противоположным знаком, если оно отрицательное.

Например, модулем числа 5 является 5, модулем числа –5 тоже является 5.

То есть под модулем числа понимается абсолютная величина, абсолютное значение этого числа без учета его знака.

Обозначается так: |5|, |х |, |а | и т.д.

Правило :

Пояснение :

|5| = 5
Читается так: модулем числа 5 является 5.

|–5| = –(–5) = 5
Читается так: модулем числа –5 является 5.

|0| = 0
Читается так: модулем нуля является ноль.

Свойства модуля:

1) Модуль числа есть неотрицательное число:

|а | ≥ 0

2) Модули противоположных чисел равны:

|а | = |–а |

3) Квадрат модуля числа равен квадрату этого числа:

|а | 2 = a 2

4) Модуль произведения чисел равен произведению модулей этих чисел:

|а · b | = |а | · |b |

6) Модуль частного чисел равен отношению модулей этих чисел:

|а : b | = |а | : |b |

7) Модуль суммы чисел меньше или равен сумме их модулей:

|а + b | ≤ |а | + |b |

8) Модуль разности чисел меньше или равен сумме их модулей:

|а b | ≤ |а | + |b |

9) Модуль суммы/разности чисел больше или равен модулю разности их модулей:

|а ± b | ≥ ||а | – |b ||

10) Постоянный положительный множитель можно вынести за знак модуля:

|m · a | = m · |а |, m >0

11) Степень числа можно вынести за знак модуля:

|а k | = |а | k , если а k существует

12) Если |а | = |b |, то a = ± b

Геометрический смысл модуля.

Модуль числа – это величина расстояния от нуля до этого числа.

Для примера возьмем снова число 5. Расстояние от 0 до 5 такое же, что и от 0 до –5 (рис.1). И когда нам важно знать только длину отрезка, то знак не имеет не только значения, но и смысла. Впрочем, не совсем верно: расстояние мы измеряем только положительными числами – или неотрицательными числами. Пусть цена деления нашей шкалы составляет 1 см. Тогда длина отрезка от нуля до 5 равна 5 см, от нуля до –5 тоже 5 см.

На практике часто расстояние отмеряется не только от нуля – точкой отсчета может быть любое число (рис.2). Но суть от этого не меняется. Запись вида |a – b| выражает расстояние между точками а и b на числовой прямой.

Пример 1 . Решить уравнение |х – 1| = 3.

Решение .

Смысл уравнения в том, что расстояние между точками х и 1 равно 3 (рис.2). Поэтому от точки 1 отсчитываем три деления влево и три деления вправо – и наглядно видим оба значения х :
х 1 = –2, х 2 = 4.

Можем и вычислить.

х – 1 = 3
х – 1 = –3

х = 3 + 1
х = –3 + 1

х = 4
х = –2.

Ответ : х 1 = –2; х 2 = 4.

Пример 2 . Найти модуль выражения:

Решение .

Сначала выясним, является ли выражение положительным или отрицательным. Для этого преобразуем выражение так, чтобы оно состояло из однородных чисел. Не будем искать корень из 5 – это довольно сложно. Поступим проще: возведем в корень 3 и 10. Затем сравним величину чисел, составляющих разность:

3 = √9. Следовательно, 3√5 = √9 · √5 = √45

10 = √100.

Мы видим, что первое число меньше второго. Значит, выражение отрицательное, то есть его ответ меньше нуля:

3√5 – 10 < 0.

Но согласно правилу, модулем отрицательного числа является это же число с противоположным знаком. У нас отрицательное выражение. Следовательно, надо поменять его знак на противоположный. Выражением, противоположным 3√5 – 10, является –(3√5 – 10). Раскроем в нем скобки – и получим ответ:

–(3√5 – 10) = –3√5 + 10 = 10 – 3√5.

Ответ .

Термин (module) в буквальном переводе с латинского означает «мера». Это понятие было введено в математику английским учёным Р. Котесом. А немецкий математик К. Вейерштрасс ввёл в обращение знак модуля - символ, которым это понятие обозначается при написании.

Вконтакте

Впервые данное понятие изучается в математике по программе 6 класса средней школы. Согласно одному из определений, модуль - это абсолютное значение действительного числа. Другими словами, чтобы узнать модуль действительного числа, необходимо отбросить его знак.

Графически абсолютное значение а обозначается как |a| .

Основная отличительная черта этого понятия заключается в том, что он всегда является неотрицательной величиной.

Числа, которые отличаются друг от друга только знаком, называются противоположными. Если значение положительное, то противоположное ему будет отрицательным, а ноль является противоположным самому себе.

Геометрическое значение

Если рассматривать понятие модуля с позиций геометрии, то он будет обозначать расстояние, которое измеряется в единичных отрезках от начала координат до заданной точки. Это определение полностью раскрывает геометрический смысл изучаемого термина.

Графически это можно выразить следующим образом: |a| = OA.

Свойства абсолютной величины

Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:

Особенности решения уравнений с модулем

Если говорить о решении математических уравнений и неравенств, в которых содержится module, то необходимо помнить, что для их решения потребуется открыть этот знак.

К примеру, если знак абсолютной величины содержит в себе некоторое математическое выражение, то перед тем как раскрыть модуль, необходимо учитывать действующие математические определения.

|А + 5| = А + 5 , если, А больше или равняется нулю.

5-А , если, А значение меньше нуля.

В некоторых случаях знак может раскрываться однозначно при любых значениях переменной.

Рассмотрим ещё одни пример. Построим координатную прямую, на которой отметим все числовые значения абсолютной величиной которых будет 5.

Для начала необходимо начертить координатную прямую, обозначить на ней начало координат и задать размер единичного отрезка. Кроме того, прямая должна иметь направление. Теперь на этой прямой необходимо нанести разметки, которые будут равны величине единичного отрезка.

Таким образом, мы можем увидеть, что на этой координатной прямой будут две интересующие нас точки со значениями 5 и -5.

Модуль числа вводится новое понятие в математике. Разберем подробно, что такое модуль числа и как с ним работать?

Рассмотрим пример:

Мы вышли из дома в магазин. Прошли 300 м, математически это выражение можно записать как +300, смысл числа 300 от знака “+” не поменяется. Расстояние или модуль числа в математике это одно и тоже можно записать так: |300|=300. Знак модуля числа обозначается двумя вертикальными линиями.

А потом в обратном направлении прошли 200м. Математически обратный путь мы можем записать как -200. Но мы не говорим так “мы прошли минус двести метров”, хотя мы вернулись, потому что расстояние как величина остается положительной. Для этого в математике ввели понятие модуля. Записать расстояние или модуль числа -200 можно так: |-200|=200.

Свойства модуля.

Определение:
Модуль числа или абсолютная величина числа – это расстояние от отправной точки до точки назначения.

Модуль целого числа не равного нулю, всегда положительное число.

Записывается модуль так:

1. Модуль положительного числа равно самому числу.
| a|= a

2. Модуль отрицательного числа равно противоположному числу.
|- a|= a

3. Модуль нуля, равен нулю.
|0|=0

4. Модули противоположных чисел равны.
| a|=|- a|= a

Вопросы по теме:
Что такое модуль числа?
Ответ: модуль — это расстояние от отправной точки до точки назначения.

Если перед целым числом поставить знак “+” , что произойдет?
Ответ: число не поменяет свой смысл, например, 4=+4.

Если перед целым числом поставить знак “-” , что произойдет?
Ответ: число изменится на , например, 4 и -4.

У каких чисел одинаковый модуль?
Ответ: у положительных чисел и нуля модуль будет тот же. Например, 15=|15|.

У каких чисел модуль – противоположное число?
Ответ: у отрицательных чисел, модуль будет равен противоположному числу. Например, |-6|=6.

Пример №1:
Найдите модуль чисел: а) 0 б) 5 в) -7?

Решение:
а) |0|=0
б) |5|=5
в)|-7|=7

Пример №2:
Существуют ли два различных числа, модули которых равны?

Решение:
|10|=10
|-10|=10

Модули противоположных чисел равны.

Пример №3:
Какие два противоположных числа, имеют модуль 9?

Решение:
|9|=9
|-9|=9

Ответ: 9 и -9.

Пример №4:
Выполните действия: а) |+5|+|-3| б) |-3|+|-8| в)|+4|-|+1|

Решение:
а) |+5|+|-3|=5+3=8
б) |-3|+|-8|=3+8=11
в)|+4|-|+1|=4-1=3

Пример №5:
Найдите: а) модуль числа 2 б) модуль числа 6 в) модуль числа 8 г) модуль числа 1 д) модуль числа 0.
Решение:

а) модуль числа 2 обозначается как |2| или |+2| это одно и тоже.
|2|=2

б) модуль числа 6 обозначается как |6| или |+6| это одно и тоже.
|6|=6

в) модуль числа 8 обозначается как |8| или |+8| это одно и тоже.
|8|=8

г) модуль числа 1 обозначается как |1| или |+1| это одно и тоже.
|1|=1

д) модуль числа 0 обозначается как |0|, |+0| или |-0| это одно и тоже.
|0|=0

Цели урока

Познакомить школьников с таким математическим понятием, как модуль числа;
Научить школьников навыкам нахождения модулей чисел;
Закрепить изученный материал с помощью выполнения различных заданий;

Задачи

Закрепить знания детей о модуле числа;
С помощью решения тестовых заданий проверить, как усвоили ученики изученный материал;
Продолжать прививать интерес к урокам математики;
Воспитывать у школьников логическое мышление, любознательность и усидчивость.

План урока

1. Общие понятия и определение модуля числа.
2. Геометрический смысл модуля.
3. Модуль числа его свойства.
4. Решение уравнений и неравенств, которые содержат модуль числа.
5. Историческая справка о термине «модуль числа».
6. Задание на закрепление знаний пройденной темы.
7. Домашнее задание.

Общие понятия о модуле числа

Модулем числа принято называть само число, если оно не имеет отрицательного значения, или это же число отрицательное, но с противоположным знаком.

То есть, модулем неотрицательного действительного числа a является само это число:

А, модулем отрицательного действительного числа х будет противоположное число:

В записи это будет выглядеть так:

Для более доступного понимания приведем пример. Так, например, модулем числа 3 будет 3, и также модулем числа -3, является 3.

Из этого следует, что под модулем числа подразумевается абсолютная величина, то есть, ее абсолютное значение, но без учета его знака. Если говорить еще более просто, то необходимо от числа отбросить знак.

Обозначаться и выглядеть модуль числа может так: |3|, |х|, |а| и т.д.

Так, например, модуль числа 3 обозначается |3|.

Также, следует помнить, что модуль числа никогда не бывает отрицательным: |a|≥ 0.

|5| = 5, |-6| = 6, |-12,45| = 12,45 и т.д.

Геометрический смысл модуля

Модулем числа называют расстояние, которое измеряется в единичных отрезках от начала координат до точки. В этом определении раскрывается модуль с геометрической точки зрения.

Возьмем координатную прямую и обозначим на ней две точки. Пускай этим точкам будут соответствовать такие числа, как −4 и 2.



Теперь давайте обратим внимание на данный рисунок. Мы видим, что обозначенная на координатной прямой точка А соответствует числу -4 и если вы внимательно посмотрите, то увидите, что эта точка находится от точки отсчета 0 на расстоянии 4 единичных отрезков. Отсюда следует, что длина отрезка OA равняется четырем единицам. В этом случае, длина отрезка ОА, то есть число 4 будет модулем числа -4.

Обозначается и записывается в данном случае модуль числа таким образом: |−4| = 4.

Теперь возьмем, и на координатной прямой обозначим точку В.

Эта точка В будет соответствовать числу +2, и находится она, как мы видим, от начала отсчета на расстоянии двух единичных отрезков. Из этого следует, что длина отрезка OB равняется двум единицам. В этом случае число 2 будет модулем числа +2.

В записи это будет выглядеть так: |+2| = 2 или |2| = 2.

А теперь подведем итог. Если мы с вами возьмем какое-то неизвестное число а и обозначим его на координатной прямой точкой А, то в этом случае расстояние от точки A до начала отсчёта, то есть длинна отрезка ОА, как раз и является модулем числа «a».

В записи это будет выглядеть так: |a| = OA.

Модуль числа его свойства

А теперь давайте попробуем выделить свойства модуля, рассмотреть всевозможные случаи и записать их с помощью буквенных выражений:

Во-первых, модулем числа является число неотрицательное, а значит модуль положительного числа, равен самому числу: |a| = a, если a > 0;

Во-вторых, модули, которые состоят из противоположных чисел, равны: |а| = |–а|. То есть это свойство говорит нам о том, что противоположные числа всегда имеют равные модули, та как на координатной прямой, хотя они и имеют противоположные числа, но они находятся на одинаковом расстоянии от точки отсчета. Из этого следует, что и модули этих противоположных чисел равны.

В-третьих, модуль нуля равняется нулю в том случае, если это число является нулем: |0| = 0, если a = 0. Здесь можно с уверенностью сказать, что модулем нуля является ноль по определению, так как ему соответствует начало отсчета координатной прямой.

Четвертым свойством модуля является то, что модуль произведения двух чисел равен произведению модулей этих чисел. Теперь подробнее рассмотрим, что это значит. Если следовать определению, то мы с вами знаем, что модуль произведения чисел a и b будет равен a b, или −(a b), если, а в ≥ 0, или же – (а в), если, а в больше 0. В записи это будет выглядеть так: |а b| = |а| |b|.

Пятым свойством является то, что модуль частного от деления чисел равен отношению модулей этих чисел: |а: b| = |а| : |b|.

И следующие свойства модуля числа:



Решение уравнений и неравенств, которые содержат модуль числа

Приступив к решению задач, которые имеют модуль числа, следует помнить, что чтобы решить такое задание, необходимо раскрыть знак модуля, используя знания свойств, которым эта задача соответствует.

Задание 1

Так, к примеру, если под знаком модуля стоит выражение, которое зависит от переменной, то раскрывать модуль следует в соответствии с определением:


Конечно же, при решении задач бывают случаи, когда модуль раскрывается однозначно. Если, например, взять

, здесь мы видим, что такое выражение под знаком модуля неотрицательно при любых значениях х и у.

Или, же для примера берем

, мы видим, что это выражение под модулем не положительно при любых значениях z.

Задание 2

Перед вами изображена координатная прямая. На этой прямой необходимо отметить числа, модуль которых будет равен 2.



Решение

В первую очередь, мы должны начертить координатную прямую. Вам уже известно, что для этого, вначале на прямой необходимо выбрать начало отсчета, направление и единичный отрезок. Далее, нам нужно от начала отсчета поставить точки, которые равны расстоянию двух единичных отрезков.

Как видим, таких точек на координатной прямой две, одна из которых соответствует числу -2, а другая числу 2.

Историческая справка о модуле числа

Термин «модуль» произошел от латинского названия modulus, что в переводе обозначает слово «мера». Ввел в обращение этот термин английский математик Роджер Котес. А вот знак модуля был введен благодаря немецкому математику Карлу Вейерштрассу. При написании модуль обозначается с помощью такого символа: | |.

Вопросы на закрепление знаний материала

На сегодняшнем уроке мы с вами познакомились с таким понятием, как модуль числа, а теперь давайте проверим, как вы усвоили эту тему, ответив на поставленные вопросы:

1. Как называется число, которое противоположно положительному числу?
2. Какое название носит число, которое противоположно отрицательному числу?
3. Назовите число, которое является противоположным нулю. Существует ли такое число?
4. Назовите то число, которое не может являться модулем числа.
5. Дайте определение модулю числа.

Домашнее задание

1. Перед вами изображены числа, которые вам нужно расположить в порядке убывания модулей. Если вы правильно выполните задание, то узнаете фамилию человека, который впервые ввел в математику термин «модуль».



2. Начертите координатную прямую и найдите расстояние от М(-5) и К (8) до начала отсчета.

Предмети > Математика > Математика 6 класс

Аналогично, разности z 1 - z 2 комплексных чисел z 1 и z 2 соответствует разность векторов, Соответствующих числам z 1 и z 2 .Модуль двух комплексных чисел z 1 и z 2 по определению модуля есть длина вектора z 1 - z 2 .Построим вектор, как сумму двух векторов z 2 и (- z 1). Получим вектор , равный вектору.Следовательно,есть длина вектора,то есть модуль разности двух комплексных чисел есть расстояние между точками комплексной плоскости, которые соответствуют этим числам.

6. Аргументы комплексного числа. Аргументом комплексного числа z= a + ibназывается величина угла между положительным направлением действительной оси и вектором z; величина угла считается положительной если отсчет производится против часовой стрелки, и отрицательной, если отсчет производится по часовой стрелке.

Для обозначения того факта, что число j является аргументом числа z= a+ ib, пишут j=argz или j=arg (a+ib).

Для числа z=0 аргумент не определяется. Поэтому во всех последующих рассуждениях, связанных с понятием аргумента будем считать, что.Заметим, что заданием модуля и аргумента комплексное число определяется однозначно; число z=0 – единственное число, которое определяется заданием только его модуля.

С другой стороны, если задано комплексное число, то, очевидно, модуль этого числа всегда определён единственным образом в отличие от аргумента, который всегда определяется неоднозначно: если j - некоторый аргумент числа z,то углы j+2pk, тоже являются аргументами числа z.

Из определения тригонометрических функций следует, что если j=arg (a+ib),то имеет место следующая система

Пример 4. Сколько решений имеет система уравнений

а) Изобразим в одной комплексной плоскости числа, модули которых равны 3 и 1

найдём модуль1-i : .

Заметим, что никакая точка большей окружности не

приближена к меньшей на расстояние, равное ,

откуда и следует, что система корней не имеет.

При сдвиге на 3i только одной точки меньшей окружности мы получаем что эта точка попадает на

другую окружность.

Эта точка и будет решением системы.

в) Изобразим в одной комплексной плоскости числа, модули которых равны 1.

Заметим, что при сдвиге только двух точек на единицу в влево мы попадаем на ту же самую окружность, а значит эти два числа и будут решениями системы.

7.Алгебраическая и тригонометрическая формы комплексного числа. Запись комплексного числа z в виде a +ib называется алгебраической формой комплексного числа.

Рассмотрим другие формы записи комплексных чисел. Пусть r- модуль, а j - какой-либо из аргументов комплексного числа z= a+ ib, то есть r = ,j=arg (a+ib). Тогда из формулы (5) следует, что, и, значит,

Запись комплексного числа в виде называется еётригонометрической формой.

Для того чтобы перейти от алгебраической формы комплексного числа a+ib к тригонометрической, достаточно найти его модуль и один из аргументов.

Пример 5. Какое множество точек комплексной плоскости задаётся условием

а) Мы должны построить точки, которые при сдвигании вниз на i и вправо на 1 поучались бы равноудалёнными от начала координат, откуда

чтобы построить множество точек, удовлетворяющих данному условию, мы должны:

1) построить множество точек, равноудалённых от начала координат на 2

2) сдвинуть его на 1 влево и на i вверх

б) Мы должны построить точки, которые располагались бы ближе к точке -i чем к 2i , аэти точки указаны на рисунке.

в) Данное уравнение равносильно уравнению

То есть эти числа будут удалены на расстояние

на 1 вправо. При этом при выполнении второго условия, у на получится угол, показанный на рисунке.

То есть это будут точки удалённые от начала координат не более чем на 1 и при этом исключая число 0. Учитывая второе и третье условие, получим:

е) Чтобы построить точки, удовлетворяющие первому условию, надо сдвинуть точки, удалённые на расстояние 1,

на 1 вправо. При этом, учитывая другие условия, получим

искомое множество точек.

Пример 6. Будет ли тригонометрической формой числа следующие выражения

Тригонометрической формой записи числа только будет выражение а), так как только оно удовлетворяет определению тригонометрической формы записи числа(и при всех тригонометрических функциях углы должны быть равны, а также если подсчитать значение выражения, то оно должно быть равно).

8. Умножение и деление комплексных чисел в тригонометрической форме. Пусть

Таким образом, модуль и произведение двух комплексных чисел равен произведению модулей сомножителей, а сумма аргументов сомножителей является аргументом произведения.

Пусть,тогда

Таким образом, модуль частного двух комплексных чисел равен частному модулей делимого и делителя, а разность аргументов делимого и делителя является аргументом частого.

9. Возведение в степень и извлечение корня. Формула (6) для произведения двух комплексных чисел может быть обобщена на случай сомножителей. Используя метод математической индукции, нетрудно показать, что если-аргументы чиселсоответственно, то

Отсюда, как частный случай, получается формула, дающая правило возведение комплексного числа в целую положительную степень:

Таким образом, при возведении комплексного числа в степень с натуральным показателем его модуль возводится в степень с тем же показателем, а аргумент умножается на показатель степени.

Формула (8) называется формулой Муавра.

Число называется корнем степени,из числаw (обозначается ,если

Если w=0 , то при любом n уравнение имеет одно и только одно решениеz= 0.

Пусть теперь .Представимz иw в тригонометрической форме:

Тогда уравнение примет вид

Два комплексных числа равны тогда и только тогда, когда равны их модули, а аргументы отличаются на число, кратное 2p. Следовательно,

Таким образом, все решения уравнения даются формулой

В самом деле, придавая числу k в формуле (9)целые значения, отличные от 0, 1, …, (n -1), мы не получаем других комплексных чисел.

Формула (9) называется второй формулой Муавра.

Таким образом, если , то существует ровноn корней степени n из числа w : все они содержатся в формуле(9).

В частности, если =2, то уравнениеимеет два корня:

то есть эти корни симметричны относительно начала координат.

Также из формулы (9) нетрудно получить, что еслито точки, изображающие все корни уравнения, являются вершинами правильногоn- угольника, вписанного в окружность с центром в точке z =0 и радиусом .

Из сказанного выше следует, что символ не имеет однозначного смысла. Поэтому, употребляя его, следует четко представлять себе, что под этим подразумевается. Например, используя запись, следует позаботиться о том, чтобы было ясно, понимается ли под этим пара комплексных чиселi и-i ,или одно, и, если одно, то какое именно.

Пример 7. Запишите в тригонометрической форме:

б) Так как , то, откуда.

Так как , то, откуда

в) Так как , то, откуда.

10.Квадратные уравнения. В школьном курсе алгебры рассматривались квадратные уравнения

с действительными коэффициентамиa, b, c. Тамбыло показано, что если дискриминант уравнения (10) неотрицателен, то решения такого уравнения даются формулой

В случае, если , говорилось, что, уравнение не имеет решений.

Для вывода формулы (11) использовался приём выделения квадрата трёхчлена с последующим разложением левой части на линейные множители:

откуда и получалась формула (11). Очевидно, что все эти выкладки остаются справедливыми и в том случае, когда a, b, c являются комплексными числами, а корни уравнения отыскиваются во множестве комплексных чисел.

Таким образом, во множестве комплексных чисел уравнение

всегда разрешимо. Если уравнение имеет один корень;, уравнение имеет два корня. Во всех случаях для корней квадратного уравнения справедлива формула

где подподразумеваются все значения корня.

Пример 8. Решить уравнение

а) Данное уравнение является квадратным.

и, следовательно, x и y удовлетворяют системе

причём x и y

Заметим, что x

При получим:

Решим уравнение (*): x 4 +15x 2 -16 =0 –квадратное уравнение относительно x 2 , откуда

Вернёмся к системе:

б) Данное уравнение является квадратным.

По формуле корней квадратного уравнения имеем:

Для определения всех значений положим

и, следовательно, x и y удовлетворяют системе

причём x и y действительные числа. Решим систему:

Заметим, что x =0 решением системы не является.

При получим:

Решим уравнение (*): x 4 -16x 2 -225=0 –квадратное уравнение относительно x 2 , откуда

Вернёмся к системе:

Пример 9. Решить уравнение

а) Пусть , тогда уравнение примет вид:

Откуда по теореме, обратной теореме Виета получим

Возвращаясь к z , получим

1) . Заметим, что. Используя вторую формулу Муавра, получим:

Следовательно,

2) . Заметим, что. Используя вторую формулу Муавра, получим:

Следовательно,

б)Преобразуем уравнение:

Заметим, что . Используя вторую формулу Муавра, получим:

Пример10. Решите уравнение:

Решим уравнение как квадратное относительно z 2: D=

Пусть z=a+ib, тогда , а уравнение имеет вид

Пусть , тогда, откуда

Пусть , тогда, а значит получим, ачит получим, что