То и дело, в различных источниках, всплывает миф о том, что "свинья генетически ближе к человеку, чем шимпанзе", и это заблуждение весьма устойчиво.

Отчасти, по причине того, что внутренние органы свиньи весьма неплохо подходят для пересадки человеку. А еще Бернард Вербер подлил масла в огонь со своей гнигой "Отец наших отцов" (но там, надо понимать, фантастика чистой воды).

А вот что думают по этому поводу специалисты-генетики, насколько всё-таки свинья и человек близки генетически?

Владимир Александрович Трифонов: Цифры гомологий генома имеют довольно невысокую ценность, все сильно зависит от того, что мы с чем сравниваем: учитываем ли структурные изменения генома, учитываем ли повторенные последовательности или же речь идет только о заменах в кодирующих областях.

Как сравнительный цитогенетик, я могу сказать, что эволюция кариотипов свиных сопровождалась большим количеством перестроек - даже от общего предка со жвачными и китообразными свиных отделяет 11 разрывов и 9 инверсий, плюс еще в линии свиней после отделения пекариевых произошло 7 слияний и три инверсии. Когда мы строим молекулярные филогении на основе данных секвенирования, то свинья никогда не попадает в родственники человеку, таких данных можно привести множество и они гораздо точнее и надежней, чем общие оценки молекулярных различий. Отличий между геномами свиньи и человека сотни тысяч, поэтому для их оценки используются специальные программы, которые, основываясь на сходстве и различии множества признаков строят филогенетические деревья. Положение на филогенетическом древе как раз и отражает степень сходства или различия между видами.

У филогенетиков есть свои трудности и свои противоречия, но сегодня мало кто сомневается в некоторых базовых идеях. Вот, например, три современные статьи, где филогении строились разными группами (являющимися общепризнанными экспертами в данной области), основываясь на множестве признаков, взятых из последовательностей ДНК:

Conrad A. Matthee et al. Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Molecular Phylogenetics and Evolution 42 (2007) 827–837.

Olaf R. P. Bininda-Emonds et al. The delayed rise of present-day mammals. Nature, Vol 446|29 March 2007.

William J. Murphy et al. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res. 2007 17: 413-421.

Во всех опубликованных филогениях (см., рисунок ниже) свинья прочно занимает свое место среди парнокопытных, а человек "никуда не выскакивает" из отряда приматов, т.е. данные, полученные по анализу разных последовательностей ДНК, одинаково отвечают на этот вопрос, подтверждая в этом вопросе филогении, построенные по морфологическим признакам еще в 19 веке.

Из рисунка видно, что свинья отстоит от человека дальше, чем мышь, кролик и дикобраз. Источник: William J. Murphy et al. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res. 2007 17: 418.

Михаил Сергеевич Гельфанд: про точный % совпадений ДНК, честно говоря, сходу не скажу, да и не очень понятно, что бы это значило: в генах? в межгенных промежутках? большая часть генома свиньи с человеком просто не выравнивается (в отличие от шимпанзе), там про % совпадений говорить не имеет смысла. В любом случае, свинья от человека дальше, чем мышь. А вот кто близок к свиньям - так это киты (правда, они еще ближе к гиппопотамам).

Вопрос. Константин Задорожный, главный редактор журнала для учителей "Биология" (Украина): В электронной книге уважаемого С. В. Дробышевского "Достающее звено" указано, что вторая хромосома человека образовалась в результате слияния двух хромосом предкового вида, которые у шимпанзе остались неслитыми (эту информацию лично я встречал и ранее, но в популярных изданиях она практически не освещалась). Соответственно, вопрос к кому-нибудь из экспертов. На каком этапе эволюции человека (ранние гоминиды, австралопитеки, ранние хомо и т.д.) произошла эта хромосомная аберрация? Возможно ли это определить?

Ответ. Владимир Александрович Трифонов: с удовольствием отвечу на Ваш вопрос, поскольку слияние хромосом предка шимпанзе и человека (соответствующих хромосомам PTR12 и PTR13 шимпанзе) действительно является последним значительным событием, изменившим кариотип человека.

Начнем с предка человекообразных обезьян - данные сравнительной геномики свидетельствует, что эти два элемента кариотипа были акроцентрическими, и именно в таком неизменном виде они сохранились у орангутана.

Далее у общего предка человека, гориллы и шимпанзе происходит перицентрическая инверсия, превратившая один из этих элементов в субметацентрик (этот элемент соответствует хромосоме PTR13 шимпанзе и хромосоме GGO11 гориллы). Затем у общего предка человека и шимпанзе происходит другая перицентрическая инверсия (в гомологе хромосомы PTR12 шимпанзе), превратившая ее в субметацентрик.

И, наконец, последнее событие уже в линии Homo - слияние двух субметацентриков с образованием хромосомы человека HSA2. Это не робертсоновское слияние (центрическое), а тандемное, при этом центромера PTR12 сохраняет свою функцию, центромера PTR13 инактивируется, а в точке тандемного слияния обнаруживаются предковые теломерные сайты (Ijdo et al., 1991).

По времени образования хромосомы HSA2 человека можно только сказать, что фиксация этой перестройки произошла после расхождения линий человек - шимпанзе, т.е. не раньше, чем 6.3 миллиона лет назад.

Я не думаю, что у человекообразных обезьян повышена частота робертсоновских транслокаций. У них очень консервативные кариотипы, мало меняющиеся на протяжении миллионов лет, за это время в кариотипах видов других таксонов происходили десятки значительных преобразований. Есть данные из клинической цитогенетики, указывающие на частоту 0.1% в мейозе человека (Hamerton et al., 1975). Однако анализ геномов показывает, что такие перестройки не зафиксировались в линии человека.

Вопрос . Алексей (письмо в Редакцию): Возникают вопросы по ходу прочтения лекций по геномике для Физтеха. Не дано определение гену...

Ответ. Светлана Александровна Боринская: Определение гену легко было дать, когда о нем еще не очень много было известно. Например "ген - это единица рекомбинации", или "ген - это участок ДНК, кодирующий белок", "Один ген - один фермент (или белок)", "Один ген - один признак".

Теперь ясно, что дело обстоит сложнее и с рекомбинацией, и с кодированием. Гены имеют разную структуру, порой довольно сложную.Один ген может кодировать много разных белков. Один белок может кодироваться разными фрагментами ДНК, находящимися в геноме на большом расстоянии, продукты которых (РНК или полипептидные цепи) соединяются по мере созревания в один полипептид.

Кроме того, в состав гена входят регуляторные участки. И еще есть гены, не кодирующие белки, а кодирующие только молекулы РНК (кроме всем известных рибосомных РНК это молекулы РНК, входяющие в состав других молекулярных машин, открытые не так давно микроРНК и другие
типы РНК). Поэтому сейчас есть много определений того, что такое ген. Ген - это концепция, которую трудно уложить в одно краткое всеобъемлющее определение.

Ответ С.Б.: Геном - это и есть ДНК. Или полный комплект молекул ДНК организма (в отдельной клетке) = геном.

При этом мы не подразумеваем клетки, в которых в процессе развития происходят перестройки ДНК (такие как клетки иммунной системы у млекопитающих или клетки животных, у которых происходит "диминуция хроматина" - утрата значительной части ДНК в процессе развития).

Ответ С.Б.: Е.coli - самая изученная бактерия, но и для нее до сих пор не для всех генов известны функции. Хотя по нуклеотидной последовательности гена можно "вывести" аминокислотную последовательность белка. Для хорошо изученных бактерий примерно для половины генов известны функции кодируемых ими белков. Для части генов получены экспериментальные подтверждения функций, для части - предсказания делаются на основе сходства структуры белка с другими белками с известными функциями.

Вопрос. Алексей: Правильно ли я понимаю, что количество входящих в ген нуклеотидов для каждого гена различно? Какой-либо закономерности здесь нет.

Ответ С.Б.: Совершенно верно.

Вопрос. Алексей: Могут ли различные гены иметь абсолютно аналогичную последовательность нуклеотидов, но отличаться только местоположением?

Ответ С.Б.: Абсолютно идентичных генов, наверное, все же нет. Но расположенные в разных участках генома гены с очень близкой последовательностью нуклеотидов имеются. Только их называют не "аналогичными", а "гомологичными". Эти гены произошли в результате дупликации предкового гена. Со временем в них накапливаются замены нуклеотидов. И чем ближе к нам время дупликации, тем больше похожи гены. Дупликации генов встречаются у всех организмов - от бактерий до человека.

При этом разные гены у разных людей могут содержаться в разном количестве копий. Количество копий может влиять на активность соответствующих продуктов генов. Например, разное количество генов определенных цитохромов влияет на скорость метаболизма и выведения из организма лекарственных препаратов и, соответственно, рекомендуется применять разные дозы.

Вопрос. Алексей: Также хотелось бы услышать мнение специалистов касательно материалов, предоставляемых Гаряевым (имеется в виду т.н. теория "волнового генома"). Он утверждает что его опыты подтверждаются экспериментально в лабораториях. Так ли это. Что можете сказать на это?

Ответ С.Б.: Вы тоже можете утверждать все, что Вам вздумается. Но научный мир обратит внимание на Ваши утверждения только в том случае, если они будут опубликованы в рецензируемых научных журналах, да еще представлены с описанием деталей эксперимента, позволяющим его повторять.

Г-н Гаряев в научных журналах не публикует свои "открытия", только журналистам рассказывает. Никаких данных о проведенных им "опытах" нет, только его слова. Пусть хотя бы лабораторный журнал покажет с подробной записью условий и результатов экспериментов.

Очередной генетический эксперимент исследователей Поднебесной вызвал споры в научном сообществе. Специалисты из нескольких исследовательских центров Китая в сотрудничестве с коллегами из США внедрили в геном обезьян человеческую версию гена, отвечающего за рост мозга.

Отмечается, что после модификации эмбрионы макак развивались естественным образом. В результате в лаборатории родилось 11 ГМ-обезьян, но выжили только пять. Каждая из этих особей имела от двух до девяти копий человеческого гена MCPH1.

По словам исследователей, ни у одного из этих животных размер мозга не превышал нормальный, хотя процесс развития этого органа проходил дольше, чем обычно.

МРТ-сканирование головного мозга и анализ срезов тканей показали изменение характера дифференцировки нейронов и задержку созревания нервной системы, которая характерна для людей, пишет информагентство China Daily.

Следует пояснить, что одно из ключевых отличий между людьми и нечеловеческими приматами заключается в том, что нам требуется гораздо больше времени для формирования нейронных сетей во время развития, что значительно удлиняет детство. Судя по всему, та же черта проявилась в данном случае у макак.

Чтобы два самых авторитетных в мире научных журнала – британский «Nature» и американский «Science» – одновременно посвятили значительную часть своих очередных выпусков одной и той же теме, – такое случается крайне редко. А уж если случается, то свидетельствует о чрезвычайной важности этой темы. Так что публикация сразу 12-ти статей, посвящённых расшифровке генома шимпанзе и его сравнению с геномом человека, – событие, конечно, незаурядное.

Для реализации проекта по картированию и сравнительному анализу генома шимпанзе был создан международный консорциум. В него вошли 67 учёных из 23-х научных учреждений 5-ти стран – США, Израиля, Испании, Италии и Германии. Координировали работу генетики Гарвардского университета и Массачусетского технологического института в Бостоне. А кровь для анализа ДНК дал молодой самец шимпанзе по имени Клинт (Clint), обитатель одной из вольер Национального центра по изучению приматов имени Йеркиса в Атланте, штат Джорджия. К сожалению, в январе нынешнего года донор умер от острой сердечной недостаточности в самом расцвете сил, в возрасте 24-х лет. Его скелет находится теперь в экспозиции музея Филда в Чикаго. Однако самая главная ценность, доставшаяся человечеству в наследство от Клинта, – это порция его крови, послужившая исходным материалом для расшифровки и анализа генома шимпанзе. Теперь приматы пополнили перечень организмов, наследственный материал которых полностью картирован. Этот перечень насчитывает сегодня уже сотни позиций: тут и плесневые грибы, и бактерии, в том числе возбудители опасных инфекционных заболеваний (сибирской язвы, туляремии, чумы, тифа), и растения (рис, кофейное дерево), и насекомые (малярийный комар), и птицы (например, курица), и млекопитающие (мышь, крыса, собака, свинья, корова). Однако человекоподобные обезьяны занимают в этом перечне, конечно же, совершенно особое место. По словам Роберта Уотерстона (Robert Waterston), возглавляющего отдел геномных исследований Высшей медицинской школы Вашингтонского университета в Сиэтле, «изучение шимпанзе как самого близкого из ныне живущих на Земле родственника человека может дать нам максимум информации о нас самих». Однако прежде чем перейти к обсуждению полученных учёными результатов, я позволю себе небольшое отступление – или, если хотите, напоминание, – чтобы было понятнее, о чём, собственно, речь.

Как известно, любой живой организм состоит из клеток, и в ядре каждой клетки имеется один и тот же свойственный данному биологическому виду набор генетической информации. Этот набор и именуется геномом. Носителем генетической информации являются хромосомы. Хромосома представляет собой молекулу дезоксирибонуклеиновой кислоты (сокращённо – ДНК) и состоит из двух длинных полинуклеотидных цепей, закрученных одна вокруг другой и соединённых друг с другом так называемыми водородными связями. Эта молекула именуется двойной спиралью, её можно несколько упрощённо представить себе в виде скрученной верёвочной лестницы. Разным видам животных присуще разное количество хромосом. Так, человеческий геном состоит из 23 пар хромосом – в каждой паре одна хромосома происходит от отца, другая – от матери. У плодовой мушки – дрозофилы – в ядрах клеток содержится по 4 пары хромосом, а, например, бактерии имеют всего одну непарную хромосому. На хромосомах в строго определённых участках расположены гены – своего рода единицы наследственности. В химическом отношении гены состоят из молекул 4-х азотистых соединений – аденина, цитозина, гуанина и тимина. Эти так называемые нуклеотидные основания повторяются в строго определённом порядке, образуя пары «аденин – тимин» и «гуанин – цитозин». Один ген может содержать от нескольких тысяч до более чем двух миллионов нуклеотидных оснований. Именно их последовательностью и определяются специфические функции каждого конкретного гена.

Образно геном можно представить себе так: ядро клетки – это библиотека, в которой хранятся инструкции по обеспечению жизни; хромосомы играют роль книжных полок; на полках стоят книги – молекулы ДНК; гены – это главы внутри книг, а нуклеотидные основания – аденин, тимин, гуанин и цитозин, которые принято обозначать начальными буквами их названий А, Т, G и С, – это тот самый алфавит, которым записан текст генома. Геном человека, например, – это цепочка из 3-х миллиардов 200-т миллионов букв.

Но того, что гены есть и что они работают, ещё недостаточно: они должны работать по-разному, обеспечивая те или иные специфические функции. Ведь клетки разных органов и тканей – скажем, кожи, печени, сердца и головного мозга, – разительно отличаются друг от друга. Между тем, ядро каждой из них содержит один и тот же набор генов. Всё дело – в активности генов: в одних клетках работают одни гены, в других – другие. Так что хромосомы являются носителями не только генов, но и тех белковых факторов, которые контролируют их функции. Этот набор генов вместе с регулирующими элементами и составляет ту структуру внутри клетки, которая обеспечивает все необходимые функции.

А теперь, вооружившись этими знаниями, давайте вернёмся к тем результатам, что были получены в ходе расшифровки генома шимпанзе. По вполне понятным причинам, наибольший интерес и у специалистов, и у широкой общественности вызывает каталог тех отличий в генетических кодах шимпанзе и человека, которые накопились за минувшие 6 с лишним миллионов лет, с тех пор, как эволюционные пути двух видов, имевших общего предка, разошлись. Сванте Пябо (Svante Pääbo), сотрудник Института эволюционной антропологии имени Макса Планка в Лейпциге и один из участников проекта, оценивает полученную базу данных так:

Она представляет собой чрезвычайно полезный инструмент, который поможет нам в поиске ответа на вопрос, какими генетическими мутациями объясняется разительное отличие человека как биологического вида от всех прочих видов животных. Одно из направлений этого поиска сводится к тому, чтобы попытаться выявить взаимосвязь между генетическими различиями и активностью тех или иных генов.

Прежде всего, следует отметить, что полученные данные удивили специалистов. Главная неожиданность заключается в том, что геном шимпанзе, как оказалось, совпадает с геномом человека на 98,8 процента. Грубо говоря, генетическое сходство между человеком и шимпанзе в 10 раз больше, чем между мышью и крысой. Дилетантов, скорее всего, поразит столь большое сходство, эта почти полная идентичность геномов, однако учёных удивило как раз обратное: то, что отличие оказалось всё же довольно значительным. Тем более, что эта цифра – совпадение на 98,8 процента – не в полной мере отражает положение дел. Она получается при сравнении отдельных букв генетического кода в кодирующей ДНК. Здесь учёные насчитали 35 миллионов расхождений, что и составило 1,2 процента от всего генома шимпанзе, который насчитывает около 3-х миллиардов 100 миллионов нуклеотидных пар. Но это далеко не всё: существенные различия были обнаружены и в распределении тех последовательностей нуклеотидных оснований, которые образуют некодирующую, «эгоистическую» ДНК. Эти несовпадения составили ещё 2,7 процента от всего генома, что дало в сумме уже почти 4 процента.

В общей сложности у шимпанзе не оказалось 53-х генов из тех, что имеются у человека. В частности, в геноме шимпанзе отсутствуют три гена, играющие ключевую роль в развитии воспалений, которые, как известно, являются причиной многих заболеваний человека. С другой стороны, человек, похоже, утратил в процессе эволюции ген, который предохраняет животных от болезни Альцгеймера.

Наиболее значительные отличия касаются генов, регулирующих иммунную систему. По мнению профессора Эвана Эйклера (Evan Eichler), сотрудника Высшей медицинской школы Вашингтонского университета в Сиэтле, это свидетельствует о том, что в процессе эволюционного развития шимпанзе и человеку пришлось противостоять разным патогенам и бороться с разными болезнями. Сванте Пябо (Svante Pääbo) поясняет:

Прежде всего, мы задались вопросом, какие сегменты ДНК могут внести ясность в историю происхождения ряда болезней. Мы знаем, что некоторые генетические структуры, вызывающие то или иное заболевание, встречаются и у шимпанзе, и у человека. Видимо, эти структуры унаследованы обоими видами от их общего предка. Однако есть болезни, генетическая предрасположенность к которым возникла в процессе эволюции только у человека. В этих случаях сравнительный анализ ДНК даст нам ценную информацию о генетической природе таких заболеваний и о восприимчивости к ним человека как биологического вида.

Анализируя собранные данные, учёные произвели своего рода компьютерное наложение карты генома шимпанзе на карту генома человека, что позволило им выделить три категории так называемых ДНК-дупликаций – тех, что имеются в геноме человека, но отсутствуют в геноме шимпанзе, тех, что имеются в геноме шимпанзе, но отсутствуют в геноме человека, и тех, что имеются в геноме обоих видов. ДНК-дупликация – это одна из форм мутации, при которой участок хромосомы удваивается. В данном случае учитывались сегменты ДНК длиной не менее 20-ти тысяч нуклеотидных пар. Оказалось, что примерно треть ДНК-дупликаций, обнаруженных у человека, отсутствуют у шимпанзе. По словам Эйклера, эта цифра изрядно удивила генетиков, поскольку она свидетельствует об очень высокой частоте мутаций за короткий – по эволюционным меркам – промежуток времени. В то же время анализ ДНК-дупликаций, присущих только геному шимпанзе, показал, что хотя количество мест, где они встречаются, относительно невелико, зато количество копий дуплицированных сегментов намного превышает этот показатель у человека. Да и в тех случаях, когда ДНК-дупликация имеет место и у шимпанзе, и у человека, у шимпанзе она обычно представлена большим количеством копий. В частности, учёные обнаружили сегмент, который в геноме человека встречается 4 раза, а в геноме шимпанзе – 400 раз. Интересно то, что этот участок расположен вблизи того региона, который у шимпанзе и других больших обезьян разделён на 2 хромосомы, а у человека слит в одну – хромосому №2.

Впрочем, разительные отличия между обезьяной и человеком объясняются не столько разночтениями генетического кода, сколько различной активностью генов, – подчёркивает Сванте Пябо. Руководимая им группа исследователей изучила и сравнила активность 21 тысячи генов в клетках сердца, печени, почек, яичек и головного мозга обоих приматов. Оказалось, что полного совпадения активности генов нет ни в одном из этих органов, но различия распределены крайне неравномерно. Как это ни удивительно, наименьшие отличия учёные зарегистрировали в клетках головного мозга – они составили всего несколько процентов. А наибольшие отличия были обнаружены в яичках: здесь каждый третий ген обладает другой активностью. Впрочем, это вполне объяснимо, если иметь в виду, что шимпанзе не образуют моногамных семей, а живут группами, своего рода коммунами, насчитывающими 25-30 особей обоего пола. То есть «беспорядочные половые связи» у шимпанзе распространены значительно шире, чем у людей. Чтобы повысить свои шансы на продолжение рода в условиях промискуитета, самцы шимпанзе должны производить огромное количество спермы. Не случайно яички у них в десять раз крупнее, чем у мужчин «гомо сапиенс». Но дело, конечно, не только в размерах, – говорит Сванте Пябо:

Полученные нами данные свидетельствуют об очень высокой активности тех генов на Y-хромосоме, которые непосредственно отвечают за производство спермы.

И тому факту, что человек физически гораздо слабее шимпанзе, учёные нашли генетическое объяснение: у обезьян мускулатура работает в 5-7 раз эффективнее потому, что у всех представителей рода человеческого ген MYH16, кодирующий «миозин» – белок мышечных волокон – представлен мутированной копией.

Однако если сконцентрироваться на вопросе, в чём всё-таки состоит главное генетическое отличие человека как биологического вида от обезьяны и чем объясняется столь успешная экспансия человека в ходе эволюции, то ответ, видимо, следует искать в выделенных учёными 6-ти участках генома. В геноме человека эти участки, содержащие в общей сложности несколько сотен генов, столь стабильны, что практически идентичны у всех людей; в геноме шимпанзе они, напротив, часто содержат мутации. Видимо, считают учёные, эти участки играли чрезвычайно важную роль в процессе нашей эволюции. Примечательно, что на одном из этих участков расположен ген FOXP2 – один из 4-х генов, ответственных за развитие речи. Как показали эксперименты, в лабораторных условиях обезьяны способны усвоить довольно значительный набор знаков и символов; шимпанзе, живущие на воле, используют для коммуникации весьма богатый ассортимент звуков; однако они физически не в состоянии совершать губами и языком те движения, которые необходимы для артикулированной речи. Возможно, именно мутация гена FOXP2 и стала одним из ключевых факторов, определивших столь разную эволюционную судьбу разных видов приматов.

Миф об 1%

ДНК человека и шимпанзе очень отличаются

Дон Батен

Почему люди продолжают верить в миф об 1% отличии ДНК человека и шимпанзе, когда в действительности эта разница составляет до 30%?

Мы до сих пор часто слышим заявления о том, что ДНК человека и шимпанзе почти идентичны, и что разница составляет всего лишь 1%. К примеру, в докладе за 2012 г. о секвенировании ДНК карликового шимпанзе сказано:

«С тех пор как в 2005 г. исследователи расшифровали генетическую последовательность шимпанзе, было установлено, что 99% ДНК человека и обезьян одинаковы. Это означает, что шимпанзе – наши ближайшие родственники».1

Это заявление было опубликовано не в каком-то сомнительном источнике. А в самом престижном научном журнале Science , публикуемом Американской Ассоциацией содействия развитию науки. Science считается одним из двух самых авторитетных научных журналов в мире (второй - британский журнал Nature ).

Впервые заявление об отличии в 1% прозвучало в 1975 г.2 Это было задолго до того, как ученые смогли сравнить отдельные «символы» (пары оснований) ДНК человека и шимпанзе — первый проект по расшифровке человеческой ДНК был опубликован лишь в 2001 г., а ДНК шимпанзе в 2005 г. Так откуда взялся заявленный в 1975 г. 1%? Дело в том, что генетики провели примерные сравнения очень ограниченных участков ДНК человека и шимпанзе, которые были предварительно выбраны для проверки их сходства. Нити ДНК человека и обезьяны проверили на то, насколько они способны соединяться друг с другом — метод, известный как ДНК гибридизация.

Отличие в 1% означает, что мы «почти идентичны»?

Человеческий геном содержит около 3000 млн. «символов». Если показатель 1% верен, отличие должно составлять 30 млн. символов – это равно 10 напечатанным книгам размеров с Библию. Это в 50 раз больше ДНК, чем у самой простой бактерии.3 На самом деле это очень большое отличие, превышающее способности даже самого оптимистического эволюционного сценария, даже если учитывать миллионы лет.4

Каковое же реальное отличие?

Публикация о секвенировании ДНК человека и шимпанзе дала возможность провести сравнение. Однако даже это сделать непросто, потому что геном шимпанзе не был построен на ровном месте. Что сделали генетики? Они секвенировали маленькие кусочки ДНК шимпанзе. Т.е. с помощью химических лабораторных процедур они определили последовательность расположения химических символов. Затем эти маленькие цепочки из «символов» соединили с человеческим геномом в тех местах, в которых, по их мнению, они должны совпадать (для сравнения и размещения сегментов использовались компьютеры). После этого человеческий геном убрали и получили псевдогеном шимпанзе, который якобы указывал на общее родство с человеком (т.е. эволюцию).

Таким образом, была получена смешанная последовательность , которая не является настоящей. Предположение эволюции в получении генома шимпанзе таким вот способом должно было бы создать видимость генома человека больше, чем он есть на самом деле. Но даже если учитывать это эволюционное предубеждение, реальные отличия намного больше, чем 1%.

В 2007 г. в Science была опубликована статья о сходстве ДНК человека и шимпанзе. Заголовок звучал так: «Относительные отличия: миф об 1%».2 Автор статьи Джон Коен ставит под вопрос цифру 1%. Он ссылается на данные сравнения, которые были проведены в проекте по секвенированию ДНК шимпанзе. Согласно анализу это отличие составляет минимум 5%. Несмотря на это, в журнале продолжают появляться заявления об 1%.

Для того чтобы показать, насколько это неправильно, Джеффри Томкинс и Джерри Бергман в 2012 г. пересмотрели опубликованные исследования, в которых проводились сравнения ДНК человека и шимпанзе.5 Они пришли к выводу: «Если взять всю ДНК, а не только отобранные заранее участки, можно смело заключить, что сходство генома человека и шимпанзе составляет примерно 87%, во всяком случае, не больше 81%».

Другими словами, отличия между обезьяной и человеком огромны, возможно даже больше чем 19%. Д-р Томкинс провел свои собственные сравнения и получил цифру 30%!6 К тому же вопреки ожиданиям эволюционистов у шимпанзе и человека очень разные Y-хромосомы, носителями которых являются только мужчины.7

Огромная разница между людьми и обезьянами не оправдывает эволюционных ожиданий, но наоборот подтверждает тот факт, что мы были сотворены отдельно от животных.

Сравнение двух сложных геномов – дело непростое! Необходимо определить, насколько важны различные части ДНК, и какое значение имеют разные типы отличий. К примеру, как быть с генами человека, которые отсутствуют у шимпанзе, и наоборот? Похоже, что генетики-эволюционисты их игнорируют, а сравниваются только схожие гены.

Во многих сравнениях использовались только гены, которые кодируют белки (только 1,2% ДНК, а многие гены, кодирующие белки, как у человека, так и у шимпанзе, почти одинаковы8 ). Причем считалось, что остальная часть ДНК неважная или «мусорная». Однако подобное мнение не обосновано. Почти вся ДНК имеет функцию, что снова противоречит ожиданиям эволюционистов.9 Но даже если бы «мусорная» ДНК была нефункциональной, отличия были бы гораздо больше, чем в участках, кодирующих белки, и при определении отличий их следовало бы учитывать. Люди и обезьяны не идентичны на 99%. Нет!

Какой бы ни был процент сходства, что он доказывает?

Ни эволюционисты, ни креационисты не делали прогнозов о проценте сходства до того, как он был подсчитан. Другими словами, каким бы ни был процент сходства: 99%, 95%, 70% или какой-либо другой, эволюционисты все равно будут доказывать общее родство с обезьянами, а креационисты будут видеть в этом общий дизайн. Размышляя над последствиями этих данных, мы должны понимать, что имеем дело не с точной наукой, которую можно доказать путем эксперимента. Каждый получает свое значение, основываясь на личное мировоззрение.

Однако, чем больше отличий между человеком и обезьяной, тем сложнее эволюционистам объяснить их в рамках эволюционной временной шкалы. Именно поэтому они изо всех сил пытаются уменьшить эти отличия.

Миф продолжает жить

Сравнения целых геномов подтвердили, что отличие между человеком и обезьяной намного больше, чем 1%. Так почему же миф об 1% продолжает жить?

Почему журнал Science увековечил этот миф в 2012 г.? В 2007 Коен привел высказывание генетика Сванте Паабо, специалиста по шимпанзе, члена консорциума Института эволюционной антропологии им. Макса Планка (Германия): «В конце концов, вопрос отличия между человеком и обезьяной - это больше политический, социальный и культурный вопрос».2

Возможно, эволюционисты не откажутся от мифа об 1% именно потому, что он имеет политический, социальный и культурный смысл. Они делают это с одной целью – чтобы отрицать явные выводы сравнений ДНК, что мы, люди, очень отличаемся от шимпанзе . Миф о сходстве используется еще и для поддержки мнения о том, что люди не имеют особого места в этом мире, и что обезьяны могут и должны иметь такие же права, как и человек.10

Огромная разница между людьми и обезьянами не оправдывает эволюционных ожиданий, а наоборот подтверждает тот факт, что мы были сотворены отдельно от животных. Бог создал первого человека из праха земного (Бытие 2:7), а первую женщину из ребра мужчины (Бытие 2:22), а не из обезьяноподобного существа. Люди, в отличие от животных, были сотворены по образу Бога (Бытие 1:26, 27). Они – особое творение. Этот образ не был потерян во время грехопадения, он был испорчен,11 поэтому Бог сотворил людей с особым замыслом и сейчас и в вечности.

  1. Гиббонс A., Карликовые шимпанзе становятся, так же как и обычные шимпанзе, самыми ближайшими родственниками человека // Science Now , 13 June 2012; news.sciencemag.org .

То, что обезьяна – близкий родственник человека, известно уже давно, шимпанзе среди всех обезьян – наш самый близкий родственник. При исследовании ДНК происхождение человека от обезьяноподобных предков вполне подтверждается. Генетические различия на уровне ДНК между людьми составляют в среднем 1 нуклеотид из 1000 (то есть 0.1%), между человеком и шимпанзе - 1 нуклеотид из 100 (т.е. 1%).

По размеру генома человек и высшие приматы не отличаются друг от друга, но отличаются по количеству хромосом - у человека на одну пару меньше. Как было рассказано на прошлых лекциях, у человека 23 пары хромосом, т.е. всего 46. У шимпанзе 48 хромосом, на одну пару больше. В процессе эволюции у предков человека две разных хромосомы приматов объединились в одну. Подобные изменения числа хромосом встречаются и в эволюции других видов. Они могут быть важны для генетической изоляции группы в процессе видообразования, так как в большинстве случаев особи с разным числом хромосом не дают потомства.

Время расхождения (дивергенции) видов, или другими словами, время существования последнего общего предка для двух видов, можно определить несколькими способами. Первый такой: проводят датировку костных останков и определяют, кому эти останки могли принадлежать, когда мог жить общий предок тех или иных видов. Но костных останков предполагаемых предков человека не так много, чтобы можно было с уверенностью восстановить и датировать полную последовательность форм в процессе антропогенеза. Сейчас используют другой способ датировки времени расхождения человека и остальных приматов. Для этого подсчитывают количество мутаций, накопившихся в одних и тех же генах в каждой из ветвей за время их раздельной эволюции. Скорость накопления этих мутаций более менее известна. Скорость накопления мутаций устанавливают по числу различий в ДНК тех видов, для которых известны палеонтологические датировки расхождения видов по костным останкам. Время расхождения человека с шимпанзе по разным оценкам варьирует от 5,4 до 7 млн. лет назад.

Вы уже знаете, что геном человека полностью прочтен (секвенирован). В прошлом году появилось сообщение, что прочтен также геном шимпанзе. Сравнивая геномы человека и шимпанзе, ученые пытаются выявить те гены, которые “делают нас людьми”. Это было бы легко сделать, если бы после разделения ветвей эволюционировали только гены человека, но это не так, шимпанзе тоже развивались, в их генах тоже накапливались мутации. Поэтому, чтобы понять, в какой ветви произошла мутация – у человека или у шимпанзе - приходится сравнивать их еще и с ДНК других видов, гориллы, орангутана, мыши. То есть то, что есть только у шимпанзе и нет например у орангутана, это чисто «шимпанзиные» замены нуклеотидов. Таким образом, сравнивая нуклеотидные последовательности разных видов приматов, мы можем выделить те мутации, которые произошли только в линии наших предков. Сейчас известно около дюжины генов, которые “делают нас людьми”.

Обнаружены различия между человеком и другими животными по генам обонятельных рецепторов. У человека многие гены обонятельных рецепторов инактивированы. Сам фрагмент ДНК присутствует, но в нем появляются мутации, которые инактивируют этот ген: либо он не транскрибируется, либо он транскрибируется, но с него образуется нефункциональный продукт. Как только прекращается отбор на поддержание функциональности гена, в нем начинают накапливаться мутации, сбивающие рамку считывания, вставляющие стоп-кодоны и т.д. То есть мутации появляются во всех генах, и скорость мутирования примерно постоянная. Удается поддерживать ген функционирующим только за счет того, что мутации, нарушающие важные функции, отбрасываются отбором. Такие инактивированные мутациями гены, которые можно распознать по последовательности нуклеотидов, но накопившие мутации, делающие его неактивным, называются псевдогенами. Всего в геноме млекопитающих около 1000 последовательностей, соответствующих генам обонятельных рецепторов. Из них у мыши 20% псевдогенов, у шимпанзе и макаки инактивирована треть (28-26%), а у человека – более половины (54%) являются псевдогенами.

Псевдогены найдены у человека также среди генов, которые кодируют семейство белков кератинов, входящих в состав волос. Так как волосяной покров у нас меньше, чем у шимпанзе, то понятно, что часть таких генов могла быть инактивирована.

Когда говорят об отличии человека от обезьяны, то в первую очередь выделяют развитие умственных способностей и способность к речи. Найден ген, связанный со способностью говорить. Этот ген выявили, изучая семью с наследственными нарушением речи: неспособностью научиться строить фразы в соответствии с правилами грамматики, сочетавшейся с легкой степенью задержки умственного развития. На слайде представлена родословная этой семьи: кружки – это женщины, квадратики – мужчины, закрашенные фигуры – больные члены семьи. Мутация, ассоциированная с заболеванием, находится в гене FOXP2 (forkhead box P2). У человека достаточно трудно исследовать функции гена, легче это делать у мышей. Используют так называемую технику нокаута. Ген прицельно инактивируют, если знать конкретную последовательность нуклеотидов, то это возможно, после этого у мыши этот ген не работает. У мышей, у которых выключили ген FOXP2 , нарушилось формирование одной из зон мозга в эмбриональный период. Видимо, у человека эта зона связана с освоением речи. Кодирует этот ген фактор транскрипции. Напомним, что на эмбриональной стадии развития факторы транскрипции включают группу генов на тех или иных этапах, которые контролируют превращение клеток в то, во что они должны превратиться.

Чтобы посмотреть, как этот ген эволюционировал, его просеквенировали у разных видов: мыши, макаки, орангутана, гориллы и шимпанзе, после этого сравнили эти последовательности нуклеотидов с человеческой.

Оказалось, что этот ген очень консервативен. Среди всех приматов только у орангутана имелась одна аминокислотная замена, и одна замена у мыши. На слайде у каждой линии видны две цифры, первая показывает число аминокислотных замен, вторая – число так называемых молчащих (синонимических) нуклеотидных замен, чаще всего это замены в третьей позиции кодона, не влияющей на кодируемую аминокислоту. Видно, что молчащие замены накапливаются во всех линиях, то есть мутации в данном локусе не запрещены, если они не ведут к аминокислотным заменам. Это не значит, что не появлялись мутации в белок-кодирующей части, они скорее всего появлялись, но были отсеяны отбором, поэтому мы не можем их зафиксировать. В нижней части рисунка схематично изображена аминокислотная последовательность белка, отмечены места, где произошли две аминокислотные замены человека, которые, видимо, повлияли на функциональные особенности белка FOXP2 .

Если белок эволюционирует с постоянной скоростью (число нуклеотидных замен в единицу времени постоянно), то число замен в ветвях будет пропорционально времени, в течение которого замены накапливались. Время разделения линии грызунов (мыши) и приматов принимается равным 90 млн. лет, время разделения человека и шимпанзе – 5.5 млн лет. Тогда количество замен m, накопившихся суммарно в линии мыши и в линии приматов между точкой разделения с мышью и точкой разделения человека и шимпанзе (см. рисунок), по сравнению с числом замен h в линии человека, должно быть в 31.7 раз больше. Если же в линии человека накопилось больше замен, чем ожидается при постоянной скорости эволюции гена, то говорят об ускорении эволюции. Во сколько раз ускорена эволюция, вычисляют по простой формуле:

A. I.= ( h /5.5) / [ m /(2 x 90 - 5.5)]= 31.7 h / m

Где A.I. (Acceleration Index) – индекс ускорения.

Теперь надо оценить, находится ли отклонение числа замен в линии человека от в пределах случайного, или отклонение достоверно выше ожидаемого. Вероятность того, что в линии человека за 5.5 млн. лет появится 2 аминокислотные замены при том, что вероятность появления замен оценивается по линии мыши как 1/(90+84.6)=1/174.6. При этом используют биноминальное распределение B (h + m , Th/(Th+Tm)), где h - число замен в линии человека, m-число замен в линии мыши: Th=5.5, Tm=174.5.