Путешественник Фёдор Конюхов, на протяжении многих лет поражает нас своими достижениями. Не смотря на то, что ему исполнилось 66 лет, для него нет ни чего невозможного. На его счету 5 кругосветных путешествий, 17 пересечений Атлантики и множество различных рекордов.

Путешествие к самому дну Марианской впадины – новая цель, которую от поставил перед собой. Как известно, в самое глубокое ущелье впадины не опускался не один человек. Конюхов решил стать первым, кто это сделает. Разделить это путешествие с ним собирается Артур Чилингаров – известный учёный-океанолог. Изучение глубин Тихого океана имеет для него огромное значение.

Учитывая все сложность данного погружения, будет построен специальный батискаф. Ведь от него зависит, сможет погрузиться Конюхов в 2018 году на дно Марианской впадины . Экспедиция такого уровня требует тщательной подготовки. Производству батискафа уделяется особое внимание. Россияне вместе с австралийцами уже работают над созданием абсолютно уникального аппарата, рассчитанного на глубокое погружение двух человек.

Путешественников всегда манила Марианская впадина своей неизведанностью. Она считается самым глубоким местом на земле. Из-за глубины около 11000 м она по прежнему остаётся малоизученной. Чтобы добраться до её дна необходимо специальное оборудование, которое сможет выдержать давление более 108 Мпа.

Благодаря специально изготовленным оборудованию, за все годы изучения океана, к дну впадины было произведено всего два погружения:

  1. В 1960 году батискаф «Триест» опустился на глубину 10800 метров.
  2. В 2012 году Джеймс Кэмерон на «Deep Sea Challenger» достиг той же глубины.

Но из-за особой сложности экспедиции, время проведённое на дне было очень коротким. Поэтому оно не было достаточно хорошо изучено. В глубине Марианской впадины есть очень узкое ущелье. В него, ранее проходившие экспедиции не опускались.

Экспедиция организованная нашими учёными обещает быть грандиозной. В этот раз планируется не простое погружение на самое дно ущелья Марианской впадины. Исследования будут проводиться на протяжении 50 часов. Этого времени должно быть достаточно, чтобы тщательно изучить поверхность плит и взять необходимые пробы грунта

Помимо научного, экспедиция несёт ещё и патриотический характер. Путешественники планируют установить на дно впадины флаг Российской Федерации. Этот факт очень сильно обсуждается в обществе. Некоторые говорят, что установка флага во время экспедиции несёт политический характер. Учёные эти высказывания не комментируют.

Однако, если экспедиция из России опустится на самое дно впадины, то вполне естественно, что они могут установить доказательство этого факта. Разумеется, это должен быть флаг именно той страны, которая это сделала.

В планы Фёдора Конюхова входит так же установка православного креста, который был вырезан из известняка возрастом более 360 млн лет. Крест изготовил Владимир Михайлов – известный художник-камнерез. Конюхов является священником Украинской православной церкви, поэтому для него эта миссия очень важна.

Однако прежде чем спуститься в Марианскую впадину, учёные планируют совершить пробное погружение в другом месте. Путешественники должны хорошо узнать особенности батискафа, исследовать его и попробовать работать на большой глубине. Всё это делается для того, чтобы избежать всяческих неполадок при запланированной экспедиции.

Местом для пробного погружения был выбран Желоб Танго. Опустившись на его дно будут не только изучены все функции батискафа, так же учёные собираются проверить правдивы ли утверждения, что Желоб Танго имеет глубину гораздо больше Марианской впадины.

Несмотря на все подготовки, дата начала экспедиции полностью зависит от производства батискафа.

Каким будет батискаф для погружения

Для создания необходимого батискафа в помощь нашим учёным пришла компания Ron Allum Deepsea Services. Она на протяжении многих лет работает над созданием различных глубоководных аппаратов. Благодаря слаженной работе компании, Джеймс Кэмерон совершил своё погружение.

Из-за огромного давления, которому будет подвержен батискаф при погружении, разработчикам необходимо уделить особое внимание таким деталям, как:

  • Производство специального материала для корпуса.
  • Разработать систему балласта.
  • Создание двухместной гондолы.
  • Создать надёжные источники энергосбережения.

Сам аппарат будет иметь вертикальное строение. Как показывает опыт – это наилучший вариант. Благодаря огромному балласту возможно осуществить скоростное погружение. Сам же балласт будет присоединен к батискафу электрическими магнитами, и сбрасываться будет непосредственно перед всплытием нажатием всего лишь одной кнопки.

На случай если балласт не получится скинуть пилоту, он сам разрушится по истечению определённого времени. При погружении батискаф будет вращаться вокруг своей оси, что обеспечит более точное, вертикальное погружение.

Материал для гондолы должен быть сверхпрочным, чтобы участники экспедиции были в полной безопасности.

Находясь в ней пилот может самостоятельно управлять батискафом. Для снабжения путешественников кислородом, гондола будет оснащена системой очистки воздуха от углекислого газа и двумя баллонами с кислородом. Для изготовления поплавка используется специальная, синтактическая пена. Очень лёгкая и прочная пена с лёгкостью заменит тяжёлый металл.

Батискаф будет оснащён сверхновым оборудованием, которое позволит собрать нужные образцы грунта и провести необходимые исследования. Также будет установлено множество фото и видео камер. Это позволит более точно изучить жизнь на самом дне впадины

Несмотря на то, что экспедиция очень дорогостоящая, работа над ней началась уже давно. Если всё будет происходить согласно плану и в 2018 году путешествие пройдёт успешно – это будет новая ступень в изучении мирового океана.

Видео новость

23 января 1960 года, за год до полета Юрия Гагарина в космос, случилось грандиозное событие: Жак Пикар (Швейцария) и Дон Уолш (США) погрузились в батискафе Триест (Trieste) на дно Марианской впадины, в самую глубоководную его точку – Бездну Челленджера (Challenger Deep). Прошло 52 года, прежде чем аналогичное погружение осуществил аппарат под управлением одного человека. В марте 2012 года американский режиссер Джеймс Камерун совершил успешное погружение в Бездну Челленджера. Подробнее .

Космос стал нам более доступным, чем глубины Мирового океана нашей планеты. За всю историю освоения океана человек всего два раза достигал предельных глубин и оба раза погружения были организованы под флагом США.

В настоящий момент разрабатывается российско-австралийских проект создания глубоководного аппарата на два пилота. Проект реализуется под эгидой Русского географического общества. Пилоты Артур Чилингаров и Фёдор Конюхов планируют не только достичь дна впадины, но и оставаться там 48 часов, с тем, чтобы провести научные опыты, в том числе взять пробы грунта с двух тектонических плит (Филиппинская и Тихоокеанская), которые эту впадину образуют. Ширина впадины от 2 до 5 километров

Проект по степени сложности относится к высшей категории. За всю историю освоения Мирового океане в Марианскую впадину погрузились два аппарата:

  • Триест (1960 год) Швейцария-США.
  • Deep Sea Challenger (2012). США.

Российский проект ставит своей целью не просто коснуться дна глубочайшей впадины Мирового океан, но и провести там 48-50 часов, преодолев десятки морских миль и проведя уникальные исследования.

Батискаф создается из расчета на два человека (пилот и ученый) при участии австралийской компании «Ron Allum Deepsea Services». Компания была основана ведущим специалистом по созданию глубоководных аппаратов Роном Аллумом. Рон более 40 лет занимается исследованием океанов с помощью глубоководных аппаратов.

В 1983 году он был руководителем экспедиции по исследованию глубоководной пещеры Cocklebiddy Cave на побережье Австралии. В рамках той экспедиции команде удалось погрузиться на 6 250 метров и установить мировой рекорд.

Начиная с 2001 года Рон работает с американским режиссером Джеймсом Камероном над съёмками фильма «Титаник». Тогда в работе использовались российские глубоководные аппараты «Мир-1» и «Мир-2». Предел погружения этих аппаратов – 6 тыс. метров. Глубина Марианской впадины – 11 тыс. метров.

Тогда же у Джеймса Камерона родилась идея создать глубоководный аппарат, способный погрузиться в Марианскую впадину. В 2005 году к проектированию уникального глубоководного аппарата был привлечен Рон Аллум. Погружение состоялось в марте 2012 года.

На сегодняшний день научными глубоководными аппаратами обладают всего несколько стран:

Россия ― аппараты «Мир-1» и «Мир-2». Способны погружаться на глубину до 6 000 метров

Франция - аппарат «Nautile», предел погружения до 6 000 метров

Япония - «Шинкай-6500», погрузился на 6 527 метров

В 2012 году китайский глубоководный аппарат «Цзяолун» совершил успешное погружение на глубину 7 тысяч метров в Тихом океане.

Испытания проходили в Марианской впадине. Аппарат преодолел глубину в 7 тысяч 15 метров, что стало рекордом для Китая. Во время погружения в аппарате находились три океанолога. Глубоководный аппарат «Цзяолун» создан научно-исследовательским институтом №702 китайской корпорации судостроительной промышленности в рамках так называемого «Проекта 863» — программы развития глубоководных аппаратов.

Китай стал пятой страной в мире после США, Франции, России и Японии, обладающей технологией погружения управляемых экипажем аппаратов на глубину более 5 тысячи метров.

Хотя «Мир-1» и «Мир-2» называют российскими, но глубоководных аппаратов ни российская, ни советская промышленность никогда не производили. Те же «Миры» были заказаны СССР у финской Rauma-Repola Oceanics.

Из-за чудовищного давления на дне Марианской впадины рабочей группе придётся решить задачи в четырех основных областях:

  1. производство материала для корпуса;
  2. создание обитаемой гондолы для пилотов;
  3. создание системы балласта;
  4. источники электроэнергии.

Исходя из опыта прошлых погружений, планируется, что аппарат будет иметь вертикальную конструкцию и будет опускаться под воду под грузом балласта. Аппарат будет вращаться вокруг своей оси во время погружения. Вращение придает аппарату оптимальное гидродинамическое положение, позволяя погружаться строго вертикально, без отклонений от заданной траектории. Вес балласта около 500 кг. Балласт будет сбрасываться на дне океана, перед всплытием. Стальной балласт крепится с помощью электромагнитов и сбрасывается нажатием кнопки. Имеется запасной вариант сбрасывания балласта — гальваническое соединение балласта и глубоководного аппарата начинает разрушаться через определенное количество часов пребывания под водой, что в итоге приводит к сбросу балласта.

Поплавок будет изготовлен из синтактической пены IsoFloat, которая обладает необходимым сопротивлением давлению и положительной плавучестью. Пена разработана австралийской компанией McConagy Boats (также построила парусный тримаран для Элен МакАртур). Синтактическая пена используется в морской и аэрокосмической индустрии, где необходимо применение прочных и легких наполнителей. Использование пены IsoFloat позволит отказаться от тяжелого металлического корпуса, что позволит разместить на борту больше полезного оборудования.

Двигатели. Аппарат будет иметь 12 горизонтальных двигателей для перемещения по дну океана со скоростью до 3 узлов.

Гондола. Пилоты будут находиться в толстостенной титановой сфере, прикрепленной к корпусу с помощью ремней из полиэстера. Находясь в гондоле, пилот управляет приборами аппарата. Система жизнеобеспечения состоит из двух баллонов со сжиженным кислородом. Этот объем даст возможность команде работать 50 часов под водой. Углекислый газ будет удалятся из гондолы с помощью газоочистителя.

Аппарат будет оборудован двумя мачтами-манипуляторами для сбора грунта и биообразцов, а также несколькими HD видеокамерами, 2D и 3D-камерами для съемки мелких обитателей глубин.

Бюджет проекта. Проектирование и строительство глубоководного аппарата для двоих исследователей – 12 млн. долларов США.

Марианская впадина протянулась вдоль Марианских островов в Тихом океане на 1500 км. Имеет V-образный профиль, крутые (7-9°) склоны, плоское дно шириной 1-5 км, которое разделено порогами на несколько замкнутых депрессий. У дна давление воды достигает 108,6 МПа, что более чем в 1100 раз больше нормального атмосферного давления на уровне Мирового океана. Впадина находится на границе стыковки двух тектонических плит, в зоне движения по разломам, где Тихоокеанская плита уходит под Филиппинскую плиту.

Wall Street trader reaches bottom of Atlantic in bid to conquer five oceans. www.theguardian.com

Впервые человек достиг самой глубокой точки Атлантического океана.

Впервые на дно Марианской впадины (глубина — 11,5 км), самого глубокого из известных на Земле океанического жёлоба, люди опустились с помощью батискафа Триест 23 января 1960 года. Ими были лейтенант ВМС США Дон Уолш (Don Walsh) и инженер Жак Пикар (Jacques Piccard). С тех пор и до последнего времени человек не опускался на эту глубину.

Голливудский режиссёр Джеймс Кэмерон в батискафе Deepsea Challenger

Спустя 52 года повторил этот путь к самой глубокой точке океана режиссёр «Аватара» и «Титаника» Джеймс Кэмерон, который 25 марта успешно погрузился на дно Марианской впадины и вернулся на поверхность. На специальном вертикальном батискафе Deepsea Challenger он через два часа после начала погружения достиг дна к 7:52 утра по местному времени. Там он пробыл в течение трёх часов, производя съёмку и сбор образцов, после чего успешно вернулся на поверхность.

Батискаф Deepsea Challenge с Джеймсом Кэмероном опускается в глубины Тихого океана

Первые люди, погрузившиеся на дно Марианской впадины, пробыли там всего 20 минут, сделав минимальный объём работы и почти ничего, кроме поднявшейся от погружения грязи и ила, не увидев. Прошедшие десятки лет не прошли даром. Батискаф господина Кэмерона был оснащён как следует — этого и следовало ожидать от человека, снявшего один из самых впечатляющих художественных стереоскопических фильмов и немало документальных картин о подводном мире.

Deepsea Challenger был оснащён множеством стереоскопических камер, башней светодиодной подсветки, батометром для взятия проб, роботизированным манипулятором и специальным устройством, способным захватывать небольшие подводные организмы с помощью всасывания. Сам глубоководный аппарат создан в Австралии и имеет длину 7 метром при весе 11 тонн. Отсек же, в котором ютился Джеймс Кэмерон, представляет собой сферу с внутренним диаметром чуть больше метра и предполагает только сидячее положение.

Аппарат Deepsea Challenge опускался на дно со скоростью 3—4 узла

Режиссёр перед погружением в интервью ВВС сказал, что это была его мечта: «Я вырос на научной фантастике во времена, когда люди жили в научно-фантастической реальности. Люди отправлялись на Луну, Кусто изучал океан. Это та среда, в которой я рос, это то, что я ценю с детства».

Джеймс Кэмерон сразу после погружения приветствует исследователя океана капитана военно-морского флота США Дона Уолша

Джеймс Кэмерон в люке Deepsea Challenge готовится к погружению

Другой снимок режиссёра и исследователя океана Дона Уолша (крайний справа), который был вместе с Жаком Пикаром первым человеком, достигшим дна Марианской впадины 52 года назад

Путешествие Джеймса Кэмерона в виде одноминутной анимации

:: Батискаф

Батиска́ф – это небольшое подводное судно, предназначенное для погружения на экстремальные глубины. Основное отличие подводного батискафа от подводной лодки заключается в его конструкции: батискаф оснащен более легким корпусом сферичной формы и поплавком, стенки которого заполнены жидкостью, масса которой меньше воды, как правило, это бензин. Ход подводного батискафа осуществляется за счет вращения грибных винтов, приводящихся в движение электромоторами.

История создания батискафа

Впервые идея построить подводный батискаф возникла у швейцарского ученого Огюста Пикару еще до Второй мировой войны. Он первым предложил заменить баллоны со сжатым кислородом на поплавок с жидкостью, масса которой меньше массы воды. Инженерная мысль Пикару имела успех, и уже в 1948 году на воду был спущен первый прототип батискафа.

На создание аппарата подобного класса повлияла потребность в исследовании дна морей и океанов на большой глубине. Классические подводные лодки способны опускаться только на определенную ограниченную глубину. Что примечательно, конструкторы способны построить достаточно прочный корпус, даже для большой субмарины, который смог бы выдержать давление на экстремальной глубине. Однако до сих пор невозможно решить другую проблему, не позволяющую субмаринам опускаться на значительную глубину.

Для всплытия на поверхность воды традиционные подводные лодки используют сжатый кислород, который вытесняет воду из отсеков. Однако во время погружения более, чем на полторы тысячи метров, под воздействием тяжести воды кислород в баллонах теряет свои свойства, иными словами перестает быть «сжатым».

Существуют субмарины, способные опускаться на глубину в 2000 метров. Тем не менее, глубина погружения батискафа намного больше.

Погружение батискафа

Поплавок, заполненный бензином или другой жидкостью, дает возможность подводному батискафу удерживаться на поверхности воды и всплывать. После того, как цистерны наполняются водой, запускается процесс погружения батискафа на глубину.

В тех случаях, когда подводный батискаф зависает из-за чрезмерной плотности воды, чтобы опустить судно на дно, из поплавка выпускают выталкивающую жидкость. После этого процесс погружения батискафа возобновляется.

Опустить на дно батискаф не так сложно, но как его поднять обратно наверх? Для этого в подводных батискафах предусмотрены специальные отсеки, заполненные стальной дробью. Когда судну необходимо всплыть, дробь скидывается, и поплавок тянет батискаф на поверхность. Также на борту имеются баллоны со сжатым кислородом, чтобы ускорить всплывание батискафа на поверхность воды.

Глубина погружения батискафа

Как упоминалось выше, глубина погружения батискафа, намного больше, чем у других подводных аппаратов. Еще в 1960 году модифицированному батискафу "Триест" удалось погрузиться на рекордную глубину в 10919 метров . На удивление экипажа судна, даже на такой глубине они увидели рыбу.

Еще один интересный факт, касающийся погружения батискафа: первым человеком, опустившимся на самое дно мирового океана, является всем известный режиссер Джеймс Кэмерон.

Нашим судостроителям тоже есть, чем похвастаться. Сконструированный российскими инженерами подводный батискаф «Мир» опустился на дно Ледовитого океана. Глубина погружения батискафа составила 4261 м. После этого судно и его экипаж провели около часа на дне самого холодного и опасного океана на земле.



Марианская впадина (или Марианский желоб) – глубочайшее место земной поверхности. Расположено оно на западной окраине Тихого океана в 200 километрах восточнее Марианского архипелага.

Парадоксально, но о тайнах космоса или горных вершин человечество знает гораздо больше, чем об океанских глубинах. И одним из самых загадочных и неисследованных мест нашей планеты является как раз Марианский желоб. Так что же мы знаем о нем?

Марианская впадина – дно мира

В 1875 году команда британского корвета «Челленджер» обнаружила в Тихом океане место, где не было дна. Километр за километром канат лота уходил за борт, но дна не было! И лишь на глубине 8184 метра спуск каната прекратился. Так была открыта самая глубокая подводная щель на Земле. Ее нарекли Марианским желобом, по имени близлежащих островов. Была определена ее форма (в виде полумесяца) и местоположение самого глубокого участка, получившего название «Бездны Челленджера». Он расположен в 340 км южнее острова Гуам и имеет координаты 11°22′ с. ш., 142°35′ в. д.

«Четвертым полюсом», «чревом Геи», «дном мира» называют с тех пор эту глубоководную впадину. Ученые-океанографы долгое время пытались узнать ее истинную глубину. Исследования разных лет давали разные значения. Дело в том, что на такой колоссальной глубине плотность воды повышается по мере приближения ко дну, поэтому и свойства звука от эхолота в ней тоже меняются. Применив вместе с эхолотами барометры и термометры на разных уровнях, в 2011 году было установлено значение глубины в «Бездне Челленджера» 10994 ± 40 метров. Это высота горы Эверест плюс еще два километра сверху.

Давление на дне подводной расселины составляет почти 1100 атмосфер, или 108,6 Мпа. Большинство же глубоководных аппаратов рассчитаны на максимальную глубину в 6-7 тысяч метров. За время, прошедшее с момента открытия глубочайшего каньона, удачно достичь его дна удавалось только четыре раза.

В 1960 году глубоководный батискаф «Триест» впервые в мире спустился на самое дно Марианской впадины в районе «Бездны Челленджера» с двумя пассажирами на борту: лейтенантом ВМС США Доном Уолшем и швейцарским океанографом Жаком Пикаром.

Их наблюдения позволили сделать важный вывод о присутствии жизни на дне каньона. Открытие восходящего тока воды также имело важное экологическое значение: основываясь на нем, ядерные державы отказались от захоронения на дне Марианского провала радиоактивных отходов.

В 90-е годы желоб исследовал японский беспилотный зонд «Kaiko», принесший со дна пробы ила, в которых были обнаружены бактерии, черви, креветки, а также картинки дотоле неведомого мира.

В 2009 году покорил бездну американский робот Nereus, поднявший со дна пробы ила, минералы, образцы глубоководной фауны и фото обитателей неведомых глубин.

В 2012 году в бездну в одиночку совершил погружение Джеймс Кэмерон – автор «Титаника», «Терминатора» и «Аватара». Он провел на дне 6 часов, собирая пробы грунта, минералов, фауны, а также делая фотографии и 3D видеосъемку. На основе этого материала был создан фильм «Вызов бездне».

Удивительные открытия

В желобе на глубине около 4 километров расположен действующий вулкан Дайкоку, извергающий жидкую серу, которая кипит при 187° С в небольшом углублении. Единственное озеро жидкой серы было открыто только на спутнике Юпитера – Ио.

В 2-ух километрах от поверхности клубятся «черные курильщики» – источники геотермальной воды с сероводородом и другими веществами, которые при контакте с холодной водой превращаются в черные сульфиды. Движение сульфидной воды напоминает клубы черного дыма. Температура воды в месте выброса достигает 450° С. Окрестное море не закипает только из-за плотности воды (в 150 раз большей, чем у поверхности).

На севере каньона расположены «белые курильщики» – гейзеры, извергающие жидкий углекислый газ при температуре 70-80° С. Ученые предполагают, что именно в таких геотермальных «котлах» следует искать истоки возникновения жизни на Земле. Горячие источники «подогревают» ледяные воды, поддерживая жизнь в бездне – температура на дне Марианской впадины находится в пределах 1-3° С.

Жизнь за пределами жизни

Казалось бы, что в обстановке полного мрака, безмолвия, ледяного холода и невыносимого давления жизнь во впадине просто немыслима. Но исследования впадины доказывают обратное: почти в 11 километрах под водой есть живые существа!

Дно провала покрыто толстым слоем слизи из органических осадков, опускающихся из верхних слоев океана уже сотни тысяч лет. Слизь является прекрасной питательной средой для баррофильных бактерий, составляющих основу питания простейших и многоклеточных. Бактерии, в свою очередь, становятся пищей для более сложных организмов.

Экосистема подводного каньона поистине уникальна. Живые существа сумели адаптироваться к агрессивной, губительной в нормальных условиях среде, при высоком давлении, отсутствии света, малом количестве кислорода и высокой концентрации токсичных веществ. Жизнь в таких невыносимых условиях придала многим обитателям пучины устрашающий и малопривлекательный вид.

Глубоководные рыбы имеют невероятных размеров пасть, усаженную острыми длинными зубами. Высокое давление сделало их тела небольшими (от 2 до 30 см). Впрочем, встречаются и крупные экземпляры, как например, амеба-ксенофиофора, достигающая 10 см в диаметре. Плащеносная акула и акула-домовой (гоблин), обитающие на глубине 2000 метров, вообще достигают 5-6 метров в длину.

На разных глубинах обитают представители разных видов живых организмов. Чем более глубоководные обитатели бездны, тем лучше у них развиты органы зрения, позволяющие в полном мраке улавливать малейший отблеск света на теле добычи. Некоторые особи и сами способны вырабатывать направленный свет. Иные существа и вовсе лишены органов зрения, их заменяют органы осязания и радиолокации. С увеличением глубины подводные жители все более и более теряют свою окраску, тела многих из них почти прозрачны.

На склонах, где находятся «черные курильщики», живут моллюски, научившиеся нейтрализовать смертельные для них сульфиды и сероводород. И, что пока остается загадкой для ученых, в условиях огромного давления на дне они каким-то чудом ухитряются сохранять целым свой минеральный панцирь. Аналогичные способности проявляют и другие жители Марианской впадины. Изучение образцов фауны показало многократное превышение уровня радиации и токсичных веществ.

К сожалению, глубоководные существа погибают из-за смены давления при любой попытке поднять их на поверхность. Только благодаря современным глубоководным аппаратам стало возможным изучать обитателей впадины в их естественной среде. Уже выявлены представители фауны, не известные науке.

Тайны и загадки «чрева Геи»

Таинственная бездна, как и любое непознанное явление, окутана массой тайн и загадок. Что скрывает она в своих глубинах? Японские ученые утверждали, что, прикармливая акул-гоблинов, они видели акулу 25 метров длиной, пожирающую гоблинов. Чудовищем таких размеров могла быть лишь акула-мегалодон, вымершая почти 2 миллиона лет назад! Подтверждением служат находки зубов мегалодона в окрестностях Марианского желоба, возраст которых датируется всего 11 тысячами лет. Можно предположить, что в глубинах провала еще сохранились экземпляры этих монстров.

Немало ходит рассказов о выброшенных на берег трупах гигантских чудовищ. При спуске в бездну немецкого батискафа «Хайфиш» погружение остановилось в 7 км от поверхности. Чтобы понять причину, пассажиры капсулы включили освещение и пришли в ужас: их батискаф, словно орех, пытался разгрызть какой-то доисторический ящер! Только импульсом электрического тока по внешней обшивке удалось отпугнуть чудовище.

В другой раз при погружении американского глубинного аппарата из-под воды стал доноситься скрежет металла. Спуск был остановлен. При осмотре поднятого оборудования оказалось, что металлический трос из титанового сплава наполовину перепилен (или перегрызен), а балки подводного аппарата погнуты.

В 2012 году видеокамера беспилотного аппарата «Титан» с глубины 10 километров передала картинку объектов из металла, предположительно НЛО. Вскоре связь с аппаратом прервалась.

К сожалению, никаких документальных подтверждений этих интересных фактов не имеется, все они основаны лишь на рассказах очевидцев. У каждой истории есть свои фанаты и скептики, свои аргументы «за» и «против».

Перед рискованным погружением в впадину Джеймс Кэмерон сказал, что хотел своими глазами увидеть хотя бы часть тех тайн Марианской впадины, о которых ходит столько слухов и легенд. Но он не увидел ничего, что выходило бы за грань познаваемого.

Так что же мы знаем о ней?

Чтобы понять, как образовалась Марианская подводная щель, следует вспомнить, что подобные щели (желоба) обычно образуются по краям океанов под действием движущихся литосферных плит. Океанские плиты, как более старые и тяжелые, «подползают» под континентальные, образуя на местах стыков глубокие провалы. Самым глубоким является стык Тихоокеанской и Филлипинской тектонических плит недалеко от Марианских островов (Марианская впадина). Тихоокеанская плита движется со скоростью 3-4 сантиметра в год, в результате чего по обоим ее краям происходит повышенная вулканическая деятельность.

На протяжении всей длины этого глубочайшего провала обнаружено четыре так называемых моста – поперечных горных хребта. Хребты образовались предположительно благодаря движению литосферы и вулканической деятельности.

Желоб в поперечнике имеет V-образную форму, сильно расширяясь кверху и сужаясь книзу. Средняя ширина каньона в верхней части составляет 69 километров, в самой широкой части – до 80 километров. Средняя ширина дна между стенками – 5 километров. Наклон стенок почти отвесный и составляет всего 7-8°. Впадина тянется с севера на юг на 2500 километров. Желоб имеет среднюю глубину около 10 000 метров.

Только три человека на сегодняшний день побывали на самом дне Марианской впадины. В 2018 году планируется еще одно пилотируемое погружение на «дно мира» на самом глубоком его участке. На этот раз покорить впадину и узнать, что скрывает она в своих глубинах, попытаются известный российский путешественник Федор Конюхов и полярный исследователь Артур Чилингаров. В настоящее время ведется изготовление глубоководного батискафа и составляется программа исследования.