Мы впервые познакомились в курсе алгебры 7-го класса. Глядя на график функции, мы снимали соответствующую информацию: если двигаясь по графику слева направо мы в то же время движемся снизу вверх (как бы поднимаемся в горку), то мы объявляли функцию возрастающей (рис. 124); если же мы движемся сверху вниз (спускаемся с горки), то мы объявляли функцию убывающей (рис. 125).

Однако математики не очень жалуют такой способ исследования свойств функции. Они считают, что определения понятий не должны опираться на рисунок, - чертеж должен лишь иллюстрировать то или иное свойство функции на ее графике . Дадим строгие определения понятий возрастания и убывания функции.

Определение 1. Функцию у = f(x) называют возрастающей на промежутке X, если из неравенства х 1 < х 2 - где хг и х2 - любые две точки промежутка X, следует неравенство f(x 1) < f(x 2).

Определение 2. Функцию у = f(x) называют убывающей на промежутке X, если из неравенства х 1 < х 2 , где х 1 и х 2 - любые две точки промежутка X, следует неравенство f(x 1) > f(x 2).

На практике удобнее пользоваться следующими формулировками:

функция возрастает, если большему значению аргумента соответствует большее значение функции;
функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Используя эти определения и установленные в § 33 свойства числовых неравенств, мы сможем обосновать выводы о возрастании или убывании ранее изученных функций.

1. Линейная функция у = kx +m

Если k > 0, то функция возрастает на всей (рис. 126); если k < 0, то функция убывает на всей числовой прямой (рис. 127).

Доказательство. Положим f(х) = kx +m. Если х 1 < х 2 и k > О, то, согласно свойству 3 числовых неравенств (см. § 33), kx 1 < kx 2 . Далее, согласно свойству 2, из kx 1 < kx 2 следует, что kx 1 + m < kx 2 + m, т. е. f(х 1) < f(х 2).

Итак, из неравенства х 1 < х 2 следует, что f(х 1) < f(x 2). Это и означает возрастание функции у = f(х), т.е. линейной функции у = kx+ m.

Если же х 1 < х 2 и k < 0, то, согласно свойству 3 числовых неравенств, kx 1 > kx 2 , а согласно свойству 2, из kx 1 > kx 2 следует, что kx 1 + m> kx 2 + т.

Итак, из неравенства х 1 < х 2 следует, что f(х 1) > f(х 2). Это и означает убывание функции у = f(x), т. е. линейной функции у = kx + m.

Если функция возрастает (убывает) во всей своей области определения, то ее можно называть возрастающей (убывающей), не указывая промежутка. Например, про функцию у = 2х - 3 можно сказать, что она возрастает на всей числовой прямой, но можно сказать и короче: у = 2х - 3 - возрастающая
функция.

2. Функция у = х2

1. Рассмотрим функцию у = х 2 на луче . Возьмем два неположительных числа х 1 и х 2 , таких, что х 1 < х 2 . Тогда, согласно свойству 3 числовых неравенств, выполняется неравенство - х 1 > - х 2 . Так как числа - х 1 и - х 2 неотрицательны, то, возведя в квадрат обе части последнего неравенства, получим неравенство того же смысла (-х 1) 2 > (-х 2) 2 , т.е. Это значит, что f(х 1) >f(х 2).

Итак, из неравенства х 1 < х 2 следует, что f(х 1) > f(х 2).

Поэтому функция у = х 2 убывает на луче (- 00 , 0] (рис. 128).

1. Рассмотрим функцию на промежутке (0, + 00).
Пусть х1 < х 2 . Так как х 1 и х 2 - , то из х 1 < x 2 следует (см. пример 1 из § 33), т. е. f(x 1) > f(x 2).

Итак, из неравенства х 1 < х 2 следует, что f(x 1) > f(x 2). Это значит, что функция убывает на открытом луче (0, + 00) (рис. 129).


2. Рассмотрим функцию на промежутке (-оо, 0). Пусть х 1 < х 2 , х 1 и х 2 - отрицательные числа. Тогда - х 1 > - х 2 , причем обе части последнего неравенства - положительные числа, а потому (мы снова воспользовались неравенством, доказанным в примере 1 из § 33). Далее имеем , откуда получаем .

Итак, из неравенства х 1 < х 2 следует, что f(x 1) >f(x 2) т.е. функция убывает на открытом луче (- 00 , 0)

Обычно термины «возрастающая функция», «убывающая функция» объединяют общим названием монотонная функция, а исследование функции на возрастание и убывание называют исследованием функции на монотонность.



Решение.

1) Построим график функции у = 2х 2 и возьмем ветвь этой параболы при х < 0 (рис. 130).

2) Построим и выделим его часть на отрезке (рис. 131).


3) Построим гиперболу и выделим ее часть на открытом луче (4, + 00) (рис. 132).
4) Все три «кусочка» изобразим в одной системе координат - это и есть график функции у = f(x) (рис. 133).

Прочитаем график функции у = f(x).

1. Область определения функции - вся числовая прямая.

2. у = 0 при х = 0; у > 0 при х > 0.

3. Функция убывает на луче (-оо, 0], возрастает на отрезке , убывает на луче , выпукла вверх на отрезке , выпукла вниз на луче ;

3) на промежутке [−4; 4];

4) на промежутке [−2; 1].

2.34. Издержки производства С (у. е.) зависят от объема выпускаемой продукции х (ед.): Найти наибольшие издержки производства, если х изменяется на промежутке . Найти значение х , при котором прибыль будет максимальной, если выручка от реализации единицы продукции равна 15 у. е.

2.35. Требуется выделить прямоугольную площадку земли в 512 м 2 , огородить ее и разделить забором на три равные части параллельно одной из сторон площадки. Каковы должны быть размеры площадки, чтобы на ограждение пошло наименьшее количество материала?

2.36. При заданном периметре прямоугольного окна найти такие его размеры, чтобы оно пропускало наибольшее количество света.

2.37. Найти максимум прибыли, если доход R и издержки C определяются формулами: где х − количество реализованного товара.

2.38. Зависимость объема выпуска продукции W от капитальных затрат К определяется функцией Найти интервал изменения К , на котором увеличение капитальных затрат неэффективно.

2.39. Функция издержек имеет вид Доход от реализации единицы продукции равен 200. Найти оптимальное для производителя значение выпуска продукции.

2.40. Зависимость объема выпуска продукции (в денежных единицах) от капитальных затрат определяется функцией Найти интервал значений , на котором увеличение капитальных затрат неэффективно.

2.41. Считается, что увеличение реализации от затрат на рекламу (млн руб.) определяется соотношением Доход от реализации единицы продукции равен 20 тыс. руб. Найти уровень рекламных затрат, при котором фирма получит максимальную прибыль.

2.42. Доход от производства продукции с использованием единиц ресурса составляет величину Стоимость единицы ресурса – 10 ден. ед. Какое количество ресурса следует приобрести, чтобы прибыль была наибольшей?

2.43. Функция издержек имеет вид Доход от реализации единицы продукции равен 50. Найти максимальное значение прибыли, которое может получить производитель.

2.44. Зависимость дохода монополии от количества выпускаемой продукции определяется как Функция издержек на этом промежутке имеет вид Найти оптимальное для монополии значение выпуска продукции.

2.45. Цена на продукцию монополии-производителя устанавливается в соответствии с отношением, идентифицируемым как . При каком значении выпуска продукции доход от ее реализации будет наибольшим?

2.46. Функция издержек имеет следующий вид при при . В настоящий момент уровень выпуска продукции При каком условии на параметр p фирме выгодно уменьшить выпуск продукции, если доход от реализации единицы продукции равен 50?

2.47. Найти точки перегиба и интервалы выпуклости графика функции:

2.48. Найти асимптоты графика функции:

Указание. Вертикальнаяасимптотаимеет уравнение х = а, если хотя бы один из односторонних пределов функции в точке х = а равен ∞.

Наклоннаяасимптота имеет уравнение

2.4.2. Общая схема исследования функции

и построения ее графика

1. Найти область определения функции и установить наличие вертикальных асимптот.

2. Исследовать функцию на четность/нечетность, периодичность.

3. Установить наличие наклонных (горизонтальных) асимптот.

4. Исследовать функцию на монотонность и экстремумы.

5. Найти интервалы выпуклости и точки перегиба графика.

6. Найти точки пересечения графика с осями координат и дополнительные точки, уточняющие график.

2.49. Исследовать функцию и построить ее график:

Контрольные задания

Вариант 1.

Вариант 2.

2. Исследовать функцию и построить ее график:

Вариант 3.

2. Исследовать функцию и построить ее график:

Неопределенный интеграл

Определение. Функция F (x ) называется первообразной функции f (x ) на некотором промежутке, если для всех х из этого промежутка выполняется равенство F′ (x ) = f (x ).

Определение. Неопределенным интегралом от функции f (x ) называется семейство ее первообразных:

где F(x) – некоторая первообразная для f (x );

C – произвольная постоянная.

Основные свойства неопределенного интеграла

Таблица интегралов

3. Частный случай:

Частный случай:

Частный случай

Примеры.

2.50. Найти интегралы:

7) ; 8) ; 9) ; 10) ;

11) ; 12) ; 13) ; 14) .

2.51. Найти интегралы:

1) 2) 3) ; 4) ;

9) 10) 11) 12)

13) ; 14) ; 15) ; 16) ;

2.5.1. Метод замены переменной

в неопределенном интеграле

где – дифференцируемая функция.

Примеры.

2.52. Найти интегралы методом замены переменной:

10) ; 11) 12) ;

13) 14) 15) ;

16) ; 17) ; 18)

Пример 2.4.

2.53. Найти интегралы от рациональных функций.

1) ; 2) ; 3) dx ;

4) ; 5) ; 6) ;

7) 8) 9) dx ;

10) ; 11) ; 12)

Пример 2.5.

2.54. Найти интегралы от иррациональных функций:

1) ; 2) ; 3) ; 4)

2.55. Найти интегралы от тригонометрических функций:

5) ; 6) ; 7) 8)

2.5.2. Метод интегрирования по частям

в неопределенном интеграле

Пусть u= u(x) , v= v(x) – дифференцируемые функции. Тогда справедливо равенство (формула интегрирования по частям ):

Примеры.

2.56. Найти интегралы, применяя интегрирование по частям:

9) 10) 11) 12)

2.57. Найти интегралы:

1) 2) 3) ; 4) ;

5) 6) ; 7) 8) dx ;

9) 10) ; 11) 12)

Определенный интеграл

Определение. Определенным интегралом от функции f (х ) называется предел интегральной суммы:

При этом функция f(х) называется подынтегральной функцией, а и b – нижним и верхним пределами интегрирования соответственно.

Укажем свойства определенного интеграла , которые будут необходимы при решении задач:

Геометрический смысл определенного интеграла : площадь криволинейной трапеции, ограниченной сверху кривой у = f (х ), равна

2.6.1. Правила вычисления определенного интеграла

1. Формула Ньютона–Лейбница:

где F′ (x ) = f (x ).

2. Замена переменной:

где x = – функция, непрерывная вместе с на отрезке – функция, непрерывная на отрезке .

3. Интегрирование по частям:

где u = u(x), v = v(x) – дифференцируемые на функции.

4. Если f(x) нечетная функция, то

5. Если f(x) четная функция, то

Примеры.

2.58. Вычислить интегралы:

1) 2) 3) ; 4)

5) ; 6) 7) ; 8)

9) 10) 11) ; 12)

13) 14) 15) 16)

2.6.2. Геометрические приложения

определенного интеграла

Пример 2.6.

Найти площадь фигуры, ограниченной линиями у = х 2 , х = у 2 .

Графики функций пересекаются в точках (0; 0), (1; 1) (рис. 2.3 ).

Y
X
у = х 2
у = √х

Рис. 2.3. Площадь фигуры

2.59. Найти площадь фигуры, ограниченной графиками функций:

2.60. Найти объем тела, образованного вращением вокруг осей Ох и Оу плоской фигуры, ограниченной линиями:

Указание. Объем тела, образованного вращением плоской фигуры вокруг осей координат Ох и Оу, соответственно равен:

2.61. Найти длину дуги кривой:

1) от х = 0 до х = 1; 2) от х = 0 до х = 1;

3) от точки О(0; 0) до точки А (4; 8).

Указание. Длина дуги кривой при равна


Похожая информация.


Гипермаркет знаний >>Математика >>Математика 10 класс >> Применение производной для исследования функций на монотонность и экстремумы

§ 35. Применение производной для исследования функций на монотонность и экстремумы

1. Исследование функций на монотонность

На рис. 129 представлен график некоторой возрастающей дифференцируемой функции у = f(х). Проведем касательные к графику в точках х= х 1 и х- х 2 . Что общего у построенных прямых? Общее то, что они составляют с осью х острый угол, а значит, у обеих прямых положительный угловой коэффициент. Но угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом, А вточке x=x 3 касательная параллельна оси х, в этой точке выполняется равенство f"(Х 3) =0. Вообще в любой точке х из области определения возрастающей дифференцируемой функции выполняется неравенство

На рис. 130 представлен график некоторой убывающей дифференцируемой функции у = f(х). Проведем касательные к графику в точках х= х 1 и х= х 2 . У построенных прямых? Общее то, что обе они составляют с осью х тупой угол, а значит, у обеих прямых отрицательный угловой коэффициент. Но угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом, А в точке х=х 3 касательная параллельна оси х, в этой точке выполняется равенство f"(х 3) =0. Вообще в любой точке х из области определения убывающей дифференцируемой функции выполняется неравенство
Эти рассуждения показывают, что между характером монотонности функции и знаком ее производной есть определенная связь:

если функция возрастает на промежутке и имеет на нем производную, то производная неотрицательна; если функция убывает на промежутке и имеет на нем производную, то производная неположительна.
Для практики гораздо важнее то, что верны и обратные теоремы, показывающие, как по знаку производной можно установить характер монотонности функции на промежутке. При этом, во избежание недоразумений, берут только открытые промежутки, т.е. интервалы или открытые лучи. Дело в том, что для функции, определенной на отрезке [а, Ь], не очень корректно ставить вопрос о существовании и о значении производной в концевой точке (в точке х= а или в точке х= Ъ), поскольку в точке х = а приращение аргумента может быть только положительным, а в точке х = Ъ - только отрицательным. В определении производной такие ограничения не предусмотрены.

Доказательства этих теорем проводят обычно в курсе высшей математики. Мы ограничимся проведенными выше рассуждениями «на пальцах» и для вящей убедительности дадим еще физическое истолкование сформулированных теорем.

Пусть по прямой движется материальная точка, s =s(t) - закон движения. Если скорость все время положительна, то точка постоянно удаляется от начала отсчета, т.е. функция s = s(t) возрастает. Если же скорость все время отрицательна, то точка постоянно приближается к началу отсчета, т.е. функция s = s(t) убывает. Если скорость движения была положительна, затем в какой-то отдельный момент времени обратилась в нуль, а потом снова стала положительной, то движущееся тело в указанный момент времени как бы притормаживает, но все равно продолжает удаляться от начальной точки. Так что и в этом случае функция s = s(t) возрастает. А что такое скорость? Это производная пути по времени. Значит, от знака производной (скорости) зависит характер монотонности функции - в данном случае функции s = s(t). Об этом как раз и говорят обе сформулированные теоремы.

Пример 1. Доказать, что функция возрастает на всей числовой прямой.
Решение. Найдем производную заданной функции:


Очевидно, что при всех х выполняется неравенство . Значит, по теореме 1, функция возрастает на всей числовой прямой.

Пример 2. а) Доказать, что функция у = 5соз х + зт4х - 10х убывает на всей числовой прямой;
б) решить уравнение 5соз х + sin4х - 10х = х 3 + 5.

Решение , а) Найдем производную заданной функции:

Полученное выражение всегда отрицательно. В самом деле, для всех значений х выполняются неравенства:


Это неравенство выполняется при всех значениях х. Значит, по теореме 2, функция убывает на всей числовой прямой.

б) Рассмотрим уравнение 5соз х + sin4х - 10х = х 3 + 5. Как было установлено только что, у = 5соsх + sin4х-10х - убывающая функция. В то же время у = х 3 +5 - возрастающая функция. Имеет место следующее утверждение: если одна из функций у = f(х) или у = s(х) возрастает, а другая убывает и если уравнение f(х) = g(х) имеет корень, то только один (рис. 131 наглядно иллюстрирует это утверждение). Корень заданного уравнения подобрать нетрудно - это число х= 0 (при этом значении уравнение обращается в верное числовое равенство 5 = 5).
Итак, х = 0 - единственный корень заданного уравнения.

Пример 3. а) Исследовать на монотонность функцию у = 2х 3 + Зх 2 -1; б) построить график этой функции.

Решение , а) Исследовать функцию на монотонность - это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает. Согласно теоремам 1 и 2 это связано со знаком производной.

Найдем производную данной функции: f"(х)=6х 2 +6х и далее f"(х)=6x(х + 1).

На рис. 132 схематически указаны знаки производной по промежуткам области определения: на луче (-оо,-1) производная положительна, на интервале (-1,0) - отрицательна, на луче (0,+ - положительна. Значит, на первом из указанных промежутков функция возрастает, на втором убывает, на третьем возрастает.


Обычно, если функция непрерывна не только на открытом промежутке, но и в его концевых точках, эти концевые точки включают в промежуток монотонности функции.

Таким образом, заданная функция возрастает на луче , возрастает на луче убывает на отрезке [-1,0].

б) Графики функций строят «по точкам». Для этого надо составить таблицу значений функции у= 2х3 +3х 2 -1, куда обязательно следует включить значения функции в концевых точках промежутков монотонности х = -1 и х = 0 и еще пару-тройку значений:


Отметим эти точки на координатной плоскости. Учтем найденные в п. а) промежутки возрастания и убывания функции, а также то, что в точках х = -1 и х = 0 производная функции равна нулю, т.е. касательная к графику функции в указанных точках параллельна оси абсцисс, более того, в точке (-1; 0) она даже совпадает с осью абсцисс. Учтем, наконец, то, что функция непрерывна, т.е. ее графиком является сплошная линия. График заданной в условии функции изображен на рис. 133.

Завершая рассуждения по исследованию функций на монотонность, обратим внимание на одно обстоятельство. Мы видели, что если на промежутке X выполняется неравенство f"(x) >0, то функция у-f(х) возрастает на промежутке X; если же на промежутке X выполняется неравенство f"(x) < 0, то функция убывает на этом промежутке. А что будет, если на всем промежутке выполняется тождество (х) =0 ? Видимо, функция не должна ни возрастать, ни убывать. Что же это за функция? Ответ очевиден - это постоянная функция у = С (буква С - первая буква слова соп81ап1а, что означает «постоянная»). Справедлива следующая теорема, формальное доказательство которой мы не приводим, ограничиваясь приведенными выше правдоподобными рассуждениями.

В дальнейшем эта теорема будет нами востребована, т.е. в ее пользе для математики мы сумеем убедиться. А сейчас приведем (для наиболее любознательных) пример использования теоремы 3 (из разряда математических развлечений). Мы приведем новый способ доказательства хорошо вам известного тождества sin 2 x + cos 2 x= 1.
Рассмотрим функцию у = f(х), где f(х) = sin 2 х+соs 2 х. Найдем ее производную:


Итак, для всех х выполняется равенство f"(х) =0, значит, f(х) = С. Чтобы найти значение С, достаточно вычислить значение функции в любой точке х, например, х = 0. Имеем: f(0) = sin 2 0+соs2 0=0 + 1 = 1.

Таким образом, С = 1, т. е. sin 2 х+соs 2 х = 1

2. Точки экстремума функции и их отыскание

Вернемсяк графику функции у=2 х 3 +3х 2 -1(рис. 133). На графике есть две уникальные точки, определяющие его структуру, - это точки (-1; 0) и (0; -1). В этих точках:

1) происходит изменение характера монотонности функции (слева от точки х = -1 функция возрастает, справа от нее, но только до точки х =0, функция убывает; слева от точки х =0 функция убывает, справа от нее возрастает);

2) касательная к графику функции параллельна оси х, т.е. производная функции в каждой из указанных точек равна нулю;

3) f(-1) - наибольшее значение функции, но не во всей области определения, а в локальном смысле, т.е. по сравнению со значениями функции из некоторой окрестности точки х = -1. Точно так же f(0) - наименьшее значение функции, но не во всей области определения, а в локальном смысле, т.е. по сравнению со значениями функции из некоторой окрестности точки х = 0.

А теперь взгляните на рис. 134, где изображен график другой функции. Не правда ли, он похож на предыдущий график? На нем те же две уникальные точки, но одна из указанных выше трех особенностей этих точек изменилась: теперь касательные к графику в этих точках не параллельны оси х. В точке х = -1 касательная вообще не существует, а в точке х = 0 она перпендикулярна оси х (точнее, она совпадает с осью у).


Дальнейший ход рассуждений вам уже известен: если появляется новая математическая модель или новая особенность математической модели, ее надо специально изучить, т.е. ввести новый термин, новые обозначения, сформулировать новые свойства.

Определение 1. Точку х =х 0 называют точкой минимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой (кроме самой точки х =х 0) выполняется неравенство:
f(х)>f(х0).

Так, функции, графики которых изображены на рис. 133 и 134, имеют точку минимума х=0. Почему? Потому что у этой точки существует окрестность, например, или (-0,2, 0,2), для всех
точек которой, кроме точки х= 0, выполняется неравенство f(х) > f(О). Это верно для обеих функций.
Значение функции в точке минимума обычно обозначают . Не путайте это значение (наименьшее, но в локальном смысле) с т.е. с наименьшим значением функции во всей рассматриваемой области определения (в глобальном смысле). Посмотрите еще раз на рис. 133 и 134. Вы видите, что наименьшего значения нет ни у той, ни у другой функции, а существует.

Определение 2. Точку х = х 0 называют точкой максимума функции у=f(х), если у этой точки существует окрестность, для всех точек которой, кроме самой точки х = х 0 , выполняется неравенство:
f(х)

Так, функции, графики которых изображены на рис. 133 и 134, имеют точку максимума х= - 1. Почему? Потому что у этой точки
существует окрестность, например, , для всех точек которой, кроме х=-1, выполняется неравенство f(х) < f(-1). Это верно для обеих функций.
Значение функции в точке максимума обычно обозначают . Не путайте это значение (наибольшее, но в локальном смысле) с ., т.е. с наибольшим значением функции во всей рассматриваемой области определения (в глобальном смысле). Посмотрите еще раз на рис. 133 и 134. Вы видите, что наибольшего значения нет ни у той, ни у другой функции, а существует.

Точки минимума и максимума функции объединяют общим термином - точки экстремума (от латинского слова ехtremum - «крайний»).

Как искать точки экстремума функции? Ответ на этот вопрос мы сможем найти, еще раз проанализировав графические модели, представленные на рис. 133 и 134.

Обратите внимание: для функции, график которой изображен на рис. 133, в обеих точках экстремума производная обращается в нуль (касательные параллельны оси х). А для функции, график которой изображен на рис. 134, в обеих точках экстремума производная не существует. Это не случайно, поскольку, как доказано в курсе математического анализа, справедлива следующая теорема.

Теорема 4. Если функция у = f(х) имеет экстремум в точке х = х 0 , то в этой точке производная функции либо равна нулю, либо не существует.

Для удобства условимся внутренние точки области определения функции, в которых производная функции равна нулю, называть стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная функции не существует, - критическими.

Пример 4. Построить график функции у = 2х 2 -6х + 3.

Решение. Вам известно, что графиком заданной квадратичной функции является парабола, причем ветви параболы направлены вверх, поскольку коэффициент при хг положителен. Но в таком случае вершина параболы является точкой минимума функции, касательная к параболе в ее вершине параллельна оси х, значит, в вершине параболы должно выполняться условие у"=0. Имеем: у"=(2х 2 -6х + 3)"=4х-6.

Приравняв производную нулю, получим: 4х-6=0; х = 1,5.

Подставив найденное значение х в уравнение параболы, получим:

у = 21,52 - 6-1,5 + 3 = -1,5. Итак, вершиной вдраболы служитточка(1,5; -1,5), а осью параболы - прямая х=1,5 (рис. 135). В качестве контрольных точек удобно взять точку (0; 3) и симметричную ей относительно оси параболы точку (3; 3). На рис. 136 по найденным трем точкам построена парабола - график заданной квадратичной функции.


Помните ли вы, как мы строили график квадратичной функции у=ах 2 +Ьх+с в 8-9-м классах? Практически так же, лишь ось параболы находили не с помощью производной, а по формуле которую приходилось запоминать. Решение, показанное в примере 4, освобождает вас от необходимости помнить эту формулу. Чтобы найти абсциссу вершины параболы у=ах 2 +Ъх+с или уравнение ее оси симметрии, достаточно приравнять нулю производную квадратичной функции.

А теперь вернемся к теореме 4, которая говорит, что если в точке х = х 0 функция у = f(х) имеет экстремум, то х = х 0 - стационарная или критическая точка функции. Возникает естественный вопрос: верна ли обратная теорема, т.е. верно ли, что если х = х 0 - стационарная или критическая точка, то в этой точке функция имеет экстремум? Отвечаем: нет, неверно. Посмотрите на рис. 137, где изображен график возрастающей функции, не имеющей точек экстремума. У этой функции есть стационарная точка х = х 1 ,в которой производная обращается в нуль (в этой точке график функции имеет касательную, параллельную оси х), но это не точка экстремума, а точка перегиба, и есть критическая точка х =х 2 , в которой производная не существует, но это также не точка экстремума, а точка излома графика. Поэтому скажем так: теорема 4 дает только необходимое условие экстремума (справедлива прямая теорема), но оно не является достаточным условием (обратная теорема не выполняется).


A кaк же быть с достаточным условием? Как узнать, есть ли в стационарной или в критической точке экстремум? Для ответа на этот вопрос снова рассмотрим графики функций, представленные на рис. 133, 134, 136 и 137.
Замечаем, что при переходе через точку максимума (речь идет о точке х = -1 на рис. 133 и 134) изменяется характер монотонности функции: слева от точки максимума функция возрастает, справа убывает. Соответственно изменяются знаки производной: слева от точки максимума производная положительна, справа отрицательна.
Замечаем, что при переходе через точку минимума (речь идет о точке х=0 на рис. 133 и 134 и о точке х = 1,5 на рис. 136) также изменяется характер монотонности функции: слева от точки минимума функция убывает, справа возрастает. Соответственно изменяются знаки производной: слева от точки минимума производной отрицательна, справа положительна.

Если же и слева, и справа от стационарной или критической точки производная имеет один и тот же знак, то в этой точке экстремума нет, именно так обстоит дело с функцией, график которой изображен на рис. 137.
Наши рассуждения могут служить подтверждением (но, конечно, не доказательством - строгие доказательства проводятся в курсе математического анализа) справедливости следующей теоремы.

Теорема 5 (достаточные условия экстремума). Пусть функция у=f(х) непрерывна на промежутке X и имеет внутри промежутка стационарную или критическую точку x = x 0 .

а) если у этой точки существует такая окрестность, что в ней при х<х 0 выполняется неравенство f(x) < 0,а при x > x 0 - неравенство f"x)>0, то x =x 0 - точка минимума функции У=f(х);

б) если у этой точки существует такая окрестность, что в ней при x < x 0 выполняется неравенство f"(x) > О, а при x > x 0 - неравенство f(х) < О, то x = x 0 - точка максимума функции У=f(х);

в) если у этой точки существует такая окрестность, что в ней и слева, и справа от точки x 0 знаки производной одинаковы, то в точке x = x 0 экстремума нет.

Пример 5. а) Найти точки экстремума функции
у = 3х 4 -16х 3 + 24х2 -11; б) построить график этой функции.

Решение , а) Найдем производную данной функции:

Производная обращается в нуль в точках х = О и х = 2 - это две стационарные точки заданной функции. На рис. 138 схематически указаны знаки производной по промежуткам области определения: на промежутке производная отрицательна, на промежутке (0, 2) - положительна, на промежутке - положительна.
Значит, х = 0 - точка минимума функции, а х = 2 точкой экстремума не является. На первом из указанных выше промежутков функция убывает, на втором и третьем возрастает.

В точке минимума х = 0 имеем f(0) = -11 (подставили значение х = 0 в аналитическое задание функции), значит, = -11.

б) Чтобы построить график функции, нужно знать особо важные точки графика. К таковым относятся:
- найденная точка минимума (0; -11);

Стационарная точка х = 2; в этой точке

Точки пересечения с осями координат; в данном примере это уже найденная точка (0; -11) - точка пересечения графика с осью у. И еще: можно догадаться, что f(1)=0, значит, найдена точка пересечения графика с осью х - это точка (1; 0).

Итак, мы имеем точку минимума (0; -11), точку пересечения графика с осью х - точку (1; 0) и стационарную точку (2; 5). В этой точке касательная к графику функции горизонтальна, но это не точка экстремума, а точка перегиба.


График функции схематически изображен на рис. 139. Заметим, что есть еще одна точка пересечения графика с осью абсцисс, но найти ее нам не удалось.

Завершая этот пункт, заметим, что мы фактически выработали

Алгоритм иследования непрерывной функции " у = f(х)" на монотонность и экстремумы

1. Найти производную f"(х).
2. Найти стационарные и критические точки.
3. Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
4. Опираясь на теоремы из § 35, сделать выводы о монотонности функции и о ее точках экстремума.

Заметим, что если заданная функция имеет вид то полюсы функции, т.е. точки, в которых знаменатель q(х) обращается в нуль, тоже отмечают на числовой прямой, причем делают это до определения знаков производной. Но, разумеется, полюсы не могут быть точками экстремума.
Пример 6. Исследовать функцию на монотонность и экстремумы.
Решение. Заметим, что функция всюду непрерывна, кроме точки х = 0. Воспользуемся указанным выше алгоритмом.
1) Найдем производную заданной функции:


2) Производная обращается в нуль в точках х = 2 и х = -2 - это стационарные точки. Производная не существует в точке х = 0, но это не критическая точка, это точка разрыва функции (полюс).


3) Отметим точки -2, 0 и 2 на числовой прямой и расставим знаки производной на получившихся промежутках (рис. 140).

4) Делаем выводы: на луче(-°°, -2] функция убывает, на полуинтервале [-2, 0) функция возрастает, на полуинтервале (0, 2] функция убывает, на луче функция возрастает, на промежутке применяется теорема Лагранжа: существует точка x 0 из (x 1 ; x 2) такая, что f (x 2) - f (x 1) = (x 2 - x 1)×f ¢(x 0). Но, по условию, f" (x 0) = 0, следовательно, f (x 2) = f (x 1), т.е. функция f (x ) постоянна на (a ; b ). Это означает, что достаточность доказана. Теорема доказана.

Теорема 4 (необходимое условие монотонности функции) . Пусть в интервале (a ; b ) функция f (x ) дифференцируема. Тогда :

а ) если f (x ) возрастает, то ее производная в (a ; b ) не отрицательна , т.е. f ¢(x ) ³ 0;

б ) если f (x ) убывает, то ее производная в (a ; b ) не положительна , т.е. f ¢(x ) £ 0.


Доказательство. а). Пусть функция f (x ) возрастает в (a ; b ), т.е. для любых x 1 , x 2 из (a ; b ) выполняется соотношение: x 1 < x 2 ® f (x 1) < f (x 2). Тогда, для указанных точек x 1 , x 2 следующее отношение положительное:

Отсюда следует, что производная f ¢(x 1) ³ 0. Утверждение а б ).

Теорема 5 (достаточное условие монотонности функции). Пусть в интервале (a ; b ) функция f (x ) дифференцируема. Тогда :

а ) если f ¢(x ) > 0 на (a ; b ), то f (x ) возрастает на (a ; b );

б) если f ¢(x ) < 0 на (a ; b ), то f (x ) убывает на (a ; b ).

Доказательство. а). Пусть f ¢(x ) > 0 на (a ; b ) и точки x 1 , x 2 из (a ; b ) такие, что x 1 < x 2 . По теореме Лагранжа, существует точка x 0 из (x 1 ; x 2) такая, что f (x 2) - f (x 1) = (x 2 - x 1)×f ¢(x 0). Здесь правая часть равенства положительная, поэтому f (x 2) - f (x 1) > 0, т.е. f (x 2) > f (x 1) . Это означает, что f (x ) возрастает на (a ; b ). Утверждение а ) доказано. Аналогично доказывается утверждение б ).

Пример 9. Функция у = х 3 всюду возрастает, так как с ростом значений х возрастают кубы этих значений. Производная этой функции у ¢= 3х 2 всюду неотрицательная, т.е. выполняется необходимое условие монотонности.

Пример 10. Найти промежутки возрастания и убывания функции у = 0,25х 4 - 0,5х 2 .

Решение. Находится производная данной функции у ¢ = х 3 - х , и строятся промежутки, в которых х 3 - х положительная или отрицательная. Для этого сначала находятся критические точки, в которых у ¢ = 0: х 3 - х = 0 ® х (х + 1)(х -1) = 0 ® х 1 = 0, х 2 = -1 х 3 = 1. Эти точки разбивают числовую ось на 4 промежутка:


- + - + X

-¥ -2 -1 0 1 2 3 +¥

Черт.36.

В общем случае, для определения знаков производной берут по одной точке в каждом промежутке и вычисляют значения производной в этих точках. Но иногда достаточно взять только одну точку в крайнем правом промежутке, определить знак производной в этой точке, а в остальных промежутках знаки чередовать. В данном примере пусть х = 2, тогда у ¢(2) = 2 3 – 2 = 6 > 0. В правом интервале ставится знак +, а затем знаки чередуются. Получено у ¢ > 0 на промежутках (-1; 0) и (1; +¥), следовательно, исследуемая функция на этих промежутках возрастает. Далее, у ¢< 0 на (- ¥; -1) и (0; 1), следовательно, исследуемая функция на этих промежутках убывает. Ниже на чертеже 37 построен график этой функции.

Определение 3 . 1). Точка х о называется точкой максимума функции f (x ), если существует интервал (a ; b ), содержащий х о, в котором значение f (x о) наибольшее, т.е. f (x о) > f (x ) для всех х из (a ; b ).

2). Точка х о называется точкой минимума функции f (x ), если существует интервал (a ; b ), содержащий х о, в котором значение f (x о) наименьшее, т.е. f (x о) < f (x ) для всех х из (a ; b ). Точки максимума и минимума называются точками экстремума.

Теорема 6 (необходимое условие экстремума функции ). Если х о является точкой экстремума функции f (x ) и существует производная

f ¢(x 0), то f "(x 0) = 0.

Доказательство аналогично доказательству теоремы Ролля.

Точка x 0 , в которой f ¢(x 0) = 0 или f ¢(x 0) не существует, называется критической точкой функции f (x ). Говорят, что критические точки подозрительны на экстремум , т.е. они могут быть точками максимума или минимума, но могут и не быть ими.

Теорема 7 (достаточное условие экстремума функции) . Пусть f (x ) дифференцируема в некотором интервале, содержащем критическую точку х о ( кроме, быть может, самой точки х о). Тогда :

а ) если при переходе через х о слева направо производная f ¢(x ) меняет знак с + на - , то х о является точкой максимума функции f (x );

б ) если при переходе через х о слева направо производная f ¢(x ) меняет знак с - на +, то х о является точкой минимума функции f (x ).

Доказательство. Пусть выполнены все условия пункта а ). Возьмем точку х (из указанного интервала) такую, что х < х о, и применим теорему Лагранжа к интервалу (х ; х о). Получим: f (x 0) - f (x ) = (x 0 - x )×f ¢(x 1), где x 1 – некоторая точка из (х ; х о). По условию, f ¢(x 1) > 0 и (x 0 - x ) > 0, поэтому f (x 0) > f (x ) . Аналогично доказывается, что для любой точки х > х о тоже f (x 0) > f (x ). Из этих утверждений следует, что – точка максимума, утверждение а ) доказано. Аналогично доказывается утверждение б ).

Пример 11. В примере 9 показано, что функция у = х 3 всюду возрастает, следовательно, она не имеет экстремумов. Действительно, ее производная у" = 3х 2 равна нулю только при х о = 0, т.е. в этой точке выполняется необходимое условие экстремума функции. Но при переходе через 0 ее производная у" = 3х 2 не меняет знак, поэтому х о = 0 не является точкой экстремума этой функции.

Пример 12. В примере 10 показано, что функция у = 0,25х 4 - 0,5х 2 имеет критические точки х 1 = 0, х 2 = -1, х 3 = 1. На чертеже 34 указано, что при переходе через эти точки ее производная меняет знак, следовательно, х 1 , х 2 , х 3 - точки экстремума, при этом х 1 = 0 - точка максимума, а х 2 = -1, х 3 = 1 - точки минимума.

Далее, делается чертеж к этому примеру. Функция f (x ) = 0,25х 4 - 0,5х 2 исследуется на четность : f (-x ) = 0,25(-х ) 4 - 0,5(-х ) 2 = f (x ), следовательно, эта функция четная, и ее график симметричен относительно оси ОY . Строятся найденные выше точки графика и некоторые вспомогательные точки, лежащие на графике, и они соединяются плавной линией.


y = 0,25x 4 - 0,5x 2 0,5 -0,11

1 0 max 1 х Ö `1/3 –0,14 A B

Черт.37.

Теорема 8 (второе достаточное условие экстремума ). Пусть х 0 – критическая точка функции f (x ), и существует производная второго порядка f ¢¢(х 0). Тогда :

a ) если f ¢¢( х 0) < 0, то х 0 – точка максимума функции f (x );

б) если f ¢¢(х 0) > 0, то х 0 - точка минимума функции f (x ).

Доказательство этой теоремы не рассматривается (см.).

Пример 13. Исследовать на экстремум функцию y = 2x 2 - x 4 .

Решение. Находится производная y ¢ и критические точки, в которых

y ¢= 9: y ¢= 4x - 4x 3 ; 4x - 4x 3 = 0 ® x 1 = 0, x 2 = 1, x 3 = -1 - критические точки. Находится производная второго порядка y ¢¢ и вычисляются ее значения в критических точках: y ¢¢= 4 –12х 2 ; y ¢¢(0) = 4, y ¢¢(1) = –8, y ¢¢(-1) = –8. Так как y ¢¢(0) > 0, то x 1 = 0 - точка минимума; и так как y ¢¢(1) < 0, y ¢¢(-1) < 0, то x 2 = 1, x 3 = -1 - точки максимума данной функции.

Абсолютными экстремумами функции на сегменте [a ; b ] называются наибольшее и наименьшее значения f (x ) на [a ; b ]. Эти экстремумы достигаются или в критических точках функции f (x ), или на концах сегмента [a ; b ].

Пример 14. Определить наибольшее и наименьшее значения функции у = х 2 ×lnx на промежутке .

Решение. Находится производная данной функции и ее критические точки: у ¢ = 2x ×lnx + x 2 ×(1/x ) = x ×(2lnx +1); x ×(2×lnx +1) = 0 ® а) х 1 = 0; б) 2×lnx + 1 = 0 ® ln x = -0,5 ® х 2 = e - 0,5 = 1/Ö `e » 0,607. Критическая точка х 1 = 0 не входит в рассматриваемый промежуток , поэтому находятся значения функции в точке х 2 = e - 0,5 и на концах а = 0,5, b = e . у (e -0,5) = (e - 0,5) 2 ×ln (e - 0,5) = e - 1 (-0,5) = -0,5/e » -0,184; у (0,5) = 0,25×ln 0,5 » 0,25(-0,693) = -0,17325; у (e ) = e 2 ×lne = e 2 ×1» 7,389. Выбираются наибольшее и наименьшее среди найденных значений: наибольшее значение »7,389 в при х = е , наименьшее значение » -0,184 в при х = e - 0,5 .

Задачи на экстремум.

В таких задачах рассматриваются две переменные величины х и у , и требуется найти такое значение х , при котором значение у является наибольшим или наименьшим. Решение такой задачи содержит следующие шаги:

1) выбирается экстремальная величина y , максимум или минимум которой необходимо найти;

2) выбирается переменная х , и y выражается через х ;

3) вычисляется производная у " и находятся критические точки, в которых у " равна 0 или не существует;

4) исследуются критические точки на экстремум;

5) рассматриваются значения y на концах, и вычисляется требуемая в задаче величина.

Пример 15. Экспериментально установлено, что расход бензина

у (л) на 100 км пути автомобилем ГАЗ-69 в зависимости от скорости х (км/ч) описывается функцией у = 18 - 0,3х + 0,003х 2 . Определить наиболее экономичную скорость.

Решение. Здесь первые два шага 1) и 2) выполнены в условии задачи. Поэтому сразу вычисляется производная: у" = -0,3 +0,006х , и находится критическая точка: -0,3 + 0,006х = 0 ® х о = 50 . Теперь, прменяется второе достаточное условие экстремума: у"" = 0,006 > 0 в любой точке, следовательно, х о = 50 - точка минимума. Вывод: наиболее экономичная скорость равна 50 км/ч, при этом расход бензина равен 18 - 0,3×50 + 0,003×50 2 = 10,5 л. на 100 км.

Пример 16. Из квадратного листа картона со стороной 60 см вырезают по углам одинаковые квадраты и из оставшейся части склеивают прямоугольную коробку. Какова должна быть сторона вырезаемого квадрата, чтобы объем коробки был наибольшим .

Решение. Осуществляются указанные выше шаги решения задачи.

1). По условию объем коробки должен быть наибольшим, поэтому пусть y - объем коробки.

2). За х (см) берется сторона вырезаемого квадрата. Тогда высота коробки будет равна х и основанием коробки будет квадрат со стороной

(60 – 2х ), его площадь равна (60 – 2х ) 2 . Следовательно, объем коробки равен y = х (60 – 2х ) 2 = 3600х - 240х 2 + 4х 3 .

3). Вычисляется производная и находятся критические точки: у" = 3600 - 480х + 12х 2 ; х 2 - 40х +300 = 0 ® х 1 =10, х 2 =30 - критические точки.

4). Производная 2-го порядка равна у"" = - 480 + 24х и у"" (10) = -240, у"" (30) = 240. По теореме 8, х 1 =10 - точка максимума и y max = 400 (см 3).

5). Кроме того, х может принять крайнее значение х 3 = 0. Но у (0) = 0 - это меньше чем y max .

Ответ: сторона вырезаемого квадрата равна 10 см.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20


План показа: Введение. Введение. 1. Определения возрастающей и убывающей функций. Графики функций. 1. Определения возрастающей и убывающей функций. Графики функций. 2.Алгоритм исследования функции на монотонность. 2.Алгоритм исследования функции на монотонность. 3. Примеры исследования функций на монотонность. 3. Примеры исследования функций на монотонность. Выводы. Выводы.


Введение. Введение. Только с алгеброй начинается строгое математическое учение. Только с алгеброй начинается строгое математическое учение. Н.И. Лобачевский Н.И. Лобачевский Мы изучаем алгебру по комплектам учебников (под рук. Мордковича А.Г.), где учебный материал излагается по схеме: Мы изучаем алгебру по комплектам учебников (под рук. Мордковича А.Г.), где учебный материал излагается по схеме: функция - уравнения – преобразования. функция - уравнения – преобразования. В 7-м и 8-м классах мы учились читать графики, описывая некоторые свойства функций. В 7-м и 8-м классах мы учились читать графики, описывая некоторые свойства функций. В 9-м классе узнали много новых определений и научились применять их для исследования функций. Таким образом, появилась возможность, ответить на многие вопросы без построения графиков функций и, наоборот, по графикам – определить свойства функций. В 9-м классе узнали много новых определений и научились применять их для исследования функций. Таким образом, появилась возможность, ответить на многие вопросы без построения графиков функций и, наоборот, по графикам – определить свойства функций. Замечательным свойством функции является монотонность. Наш показ посвящен этому свойству. Замечательным свойством функции является монотонность. Наш показ посвящен этому свойству.


1.Определения возрастающей и убывающей функций. Функцию y = f(x) называют возрастающей на множестве X D(f), если для любых двух точек x 1 и x 2 множества X, таких, что x 1


3. Алгоритм исследования функции на монотонность. 1. Найти область определения функции y = f(x): множество X D(f). 2. Выбрать произвольные значения аргумента x 1 и x 2 множества X такие, что x 1


4. Примеры исследования функций на монотонность. Исследовать на монотонность функцию: Исследовать на монотонность функцию: 1. y = 2 - 5x; 1. y = 2 - 5x; 2. y = x 3 +4; 2. y = x 3 +4; 3. y = x 3 +2x 2 ; 3. y = x 3 +2x 2 ; 4. y = - 3x 3 - x; 4. y = - 3x 3 - x; 5. y = x 0,5 +x 5 ; 5. y = x 0,5 +x 5 ; 6. y = - x 3 - x 0,5. 6. y = - x 3 - x 0,5.


1. y = 2 – 5x. Решение. Решение. 1. Область определения функции y = 2 – 5x: D(y)= (- ; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1 – x 2 ; 2 – 5 x 1 > 2 – 5 x Итак, из x 1 f (x 2), то заданная функция убывает на D(y). – x 2 ; 2 – 5 x 1 > 2 – 5 x 2 3. 5. Итак, из x 1 f (x 2), то заданная функция убывает на D(y).">


2. y = x y = x Решение. Решение. 1. Область определения функции y = x: D(y)= (- ; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1


3. y = x 3 +2x 2. Решение. Решение. Область определения функции y = x 3 + 2x 2: D(y)= (- ; +). Область определения функции y = x 3 + 2x 2: D(y)= (- ; +). Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1


4. y = – 3x 3 – x. Решение. Решение. 1. Область определения функции y = – 3x 3 – x: D(y)= (- ; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1 – x 2 3 ; – x 1 (3x) > – x 2 (3x); – 3x 1 3 – x 1 > – 3x 2 3 – x Итак, из x 1 f (x 2), то заданная функция убывает на D(y). – x 2 3 ; – x 1 (3x 1 2 + 1) > – x 2 (3x 2 2 +1); – 3x 1 3 – x 1 > – 3x 2 3 – x 2. 5. Итак, из x 1 f (x 2), то заданная функция убывает на D(y).">


5. y = x 0,5 +x 5. Решение. Решение. 1. Область определения функции y = x 0,5 +x 5: D(y)= [ 0 ; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1


6. y = - x 3 - x 0,5. Решение. Решение. 1. Область определения функции y = – x 3 – x 0,5: D(y)= [ 0; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1 – x 2 3 ; – x 1 0,5 > – x 2 0,5 ; –x 1 0,5 (x 1 2,5 + 1) > – x 2 (x 2 2,5 +1); – x 1 3 – x 1 0,5 > – x 2 3 – x 2 0,5. 5. Итак, из x 1 f (x 2), то заданная функция убывает на D(y). – x 2 3 ; – x 1 0,5 > – x 2 0,5 ; –x 1 0,5 (x 1 2,5 + 1) > – x 2 (x 2 2,5 +1); – x 1 3 – x 1 0,5 > – x 2 3 – x 2 0,5. 5. Итак, из x 1 f (x 2), то заданная функция убывает на D(y).">


Выводы. Выводы. Данный материал подготовлен как вводное повторение для урока по теме « Теорема о корне при решении уравнений». Данный материал подготовлен как вводное повторение для урока по теме « Теорема о корне при решении уравнений». Свойство монотонности функции будет в дальнейшем использоваться для решения нестандартных задач. Свойство монотонности функции будет в дальнейшем использоваться для решения нестандартных задач. Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их. Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их. Д.Пойа Д.Пойа