МОУ Дмитриевская СОШ

Урок по физике в 11 классе по теме: "Силы в природе"

Колупаев Владимир Григорьевич

учитель физики

2015

Целью урока является расширение программного материала по теме: “Силы в природе ” и совершенствование практических навыков и умений по решению задач ЕГЭ.

Задачи урока:

    закрепить изученный материал,

    сформировать у учащихся представления о силах вообще и о каждой силе в отдельности,

    грамотно применять формулы и правильно строить чертежи при решении задач.

Урок сопровождается мультимедиа презентацией.

I . Силой называется векторная величина, которая является причиной всякого движения как следствия взаимодействий тел. Взаимодействия бывают контактные, вызывающие деформации, и бесконтактные. Деформация это изменение формы тела или отдельных его частей в результате взаимодействия.

В Международной системе единиц (СИ) единица силы называется ньютон (Н). 1 Н равен силе, придающей эталонному телу массой 1 кг ускорение 1 м/с 2 в направлении действия силы. Прибор для измерения силы – динамометр.

Действие силы на тело зависит от:

    Величины прилагаемой силы;

    Точки приложения силы;

    Направления действия силы.

По своей природе силы бывают гравитационные, электромагнитные, слабые и сильные взаимодействия на полевом уровне. К гравитационным силам относятся сила тяжести, вес тела, сила тяготения. К электромагнитным силам относятся сила упругости и сила трения. К взаимодействиям на полевом уровне можно отнести такие силы как: сила Кулона, сила Ампера, сила Лоренца.

Рассмотрим предлагаемые силы.

Сила тяготения.

Сила тяготения определяется из закона Всемирного тяготения и возникает на основании гравитационных взаимодействий тел, так как любое тело, обладающее массой, имеет гравитационное поле. Два тела взаимодействуют с силами равными по величине и противоположно направленными, прямо пропорциональными произведению масс и обратно пропорциональными квадрату расстояния между их центрами.

G = 6,67 . 10 -11 - гравитационная постоянная, определенная Кавендишем.

Рис.1

Одним из проявлений силы всемирного тяготения является сила тяжести, причем, ускорение свободного падения можно определить по формуле:

Где: М – масса Земли, R з – радиус Земли.

Сила тяжести.

Сила, с которой Земля притягивает к себе все тела, называется силой тяжести. Обозначается - F тяж, приложена к центру тяжести, направлена по радиусу к центру Земли, определяется по формуле F тяж = mg.

Где: m – масса тела; g – ускорение свободного падения (g=9,8м/с 2).

Вес тела.

Сила, с которой тело действует на горизонтальную опору или вертикальный подвес, вследствие земного притяжения, называется весом. Обозначается - Р, приложена к опоре или подвесу под центром тяжести, направлена вниз.

Рис.2

Если тело покоится, то можно утверждать, что вес равен силе тяжести и определяется по формуле Р = mg.

Если тело движется с ускорением вверх, то тело испытывает перегрузку. Вес определяется по формуле Р = m(g + a).

Рис.3

Вес тела приблизительно в два раза превышает по модулю силу тяжести (двукратная перегрузка) .

Если тело движется с ускорением вниз, то тело может испытывать невесомость в первые секунды движения. Вес определяется по формуле Р = m(g - a).

Рис. 4

Сила трения.

Сила, возникающая при движении одного тела по поверхности другого, направленная в сторону противоположную движению называется силой трения.

Рис.5

Точка приложения силы трения под центром тяжести, в сторону противоположную движению вдоль соприкасающихся поверхностей. Сила трения делится на силу трения покоя, силу трения качения, силу трения скольжения. Сила трения покоя это сила, препятствующая возникновению движения одного тела по поверхности другого. При ходьбе сила трения покоя, действующая на подошву, сообщает человеку ускорение. При скольжении связи между атомами первоначально неподвижных тел, разрываются, трение уменьшается. Сила трения скольжения зависит от относительной скорости движения соприкасающихся тел. Трение качения во много раз меньше трения скольжения.

Рис.6

Сила трения определяется по формуле:

F = µN

Где: µ - коэффициент трения безразмерная величина, зависит от характера обработки поверхности и от сочетания материалов соприкасающихся тел (силы притяжения отдельных атомов различных веществ существенно зависят от их электрических свойств);

N – сила реакции опоры - это сила упругости, возникающая в поверхности под действием веса тела.

Для горизонтальной поверхности: F тр = µmg

При движении твердого тела в жидкости или газе возникает сила вязкого трения. Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя. Сила вязкого трения сильно зависит от скорости тела.

Сила упругости.

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Ее называют силой упругости.

Простейшим видом деформации является деформация растяжения или сжатия.

Рис. 7

При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации: F упр =kх

Это соотношение выражает экспериментально установленный закон Гука: сила упругости прямо пропорциональна изменению длины тела.

Где: k - коэффициент жесткости тела, измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала.

В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме:

Где: – относительная деформация; Е – модуль Юнга, который зависит только от свойств материала и не зависит от размеров и формы тела. Для различных материалов модуль Юнга меняется в широких пределах. Для стали, например, E2·10 11 Н/м 2 , а для резины E2·10 6 Н/м 2 ; – механическое напряжение.

При деформации изгиба F упр = - mg и F упр = - Kx.

Рис.8

Следовательно, можно найти коэффициент жесткости:

k =

В технике часто применяются спиралеобразные пружины. При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука, возникают деформации кручения и изгиба.

Рис. 9

4. Равнодействующая сила.

Равнодействующей называется сила, заменяющая действия нескольких сил. Эта сила применяется при решении задач с использованием нескольких сил.

Рис.10

На тело действуют сила тяжести и сила реакции опоры. Равнодействующая сила, в данном случае, находится по правилу параллелограмма и определяется по формуле

На основании определения равнодействующей, можно интерпретировать второй закон Ньютона как: равнодействующая сила равна произведению ускорения тела на его массу.

R = ma

Равнодействующая двух сил, действующих вдоль одной прямой в одну сторону, равна сумме модулей этих сил и направлена в сторону действия этих сил. Если силы действуют вдоль одной прямой, но в разные стороны, то равнодействующая сила равна разности модулей действующих сил и направлена в сторону действия большей силы.

Сила Архимеда.

Сила Архимеда - это выталкивающая сила, возникающая в жидкости или газе и действующая противоположно силе тяжести.

Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу вытесненной жидкости

F A = mg =Vg

Где: – плотность жидкости или газа; V – объем погруженной части тела; g – ускорение свободного падения.

Рис.11

Центробежная сила.

Центробежная сила возникает при движении по окружности и направлена по радиусу из центра.

Где: v –линейная скорость; r – радиус окружности.

Рис.12

Сила Кулона.

В механике Ньютона используется понятие гравитационной массы, подобно этому в электродинамике первичным является понятие электрического заряда.Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия. Заряды взаимодействуют с силой Кулона.

Где: q 1 и q 2 – взаимодействующие заряды, измеряющиеся в Кл (Кулонах);

r – расстояние между зарядами; k – коэффициент пропорциональности.

k=9 . 10 9 (Н . м 2)/Кл 2

Часто его записывают в виде: ,где – электрическая постоянная, равная 8,85 . 10 12 Кл 2 /(Н . м 2).

Рис.13

Силы взаимодействия подчиняются третьему закону Ньютона: F 1 = - F 2 . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис.14

Сила Ампера.

На проводник с током в магнитном поле действует сила Ампера.

F А = IBlsin

Где: I – сила тока в проводнике; В – магнитная индукция; l - длина проводника; – угол между направлением проводника и направлением вектора магнитной индукции.

Направление этой силы можно определить по правилу левой руки.

Если левую руку следует расположить таким образом, чтобы линии магнитной индукции входили в ладонь, вытянутые четыре пальца направлены вдоль действия силы тока, то отогнутый большой палец указывает направление силы Ампера.

Рис. 15

Сила Лоренца.

Сила, с которой электромагнитное поле действует на любое, находящееся в нем заряженное тело, называется силой Лоренца.

F = qvBsin

Рис. 16

Где: q – величина заряда; v – скорость движения заряженной частицы; В – магнитная индукция; – угол между векторами скорости и магнитной индукции.

Направление силы Лоренца можно определить по правилу левой руки.

В заключение урока предоставляется возможность учащимся заполнить таблицу.

Просмотр фрагмента (интерактивные модели по физике)

II . Решение заданий ЕГЭ

1.Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. Для первой из них сила притяжения к звезде в 4 раза больше, чем для второй. Каково отношение радиусов орбит первой и второй планет?


1)
2)
3)
4)

Решение.
По закону Всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс планет () отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:

По условию, сила притяжения для первой планеты к звезде в 4 раза больше, чем для второй: а значит,

2. Во время выступления гимнастка отталкивается от трамплина (этап 1), делает сальто в воздухе (этап 2) и приземляется на ноги (этап 3). На каком(их) этапе(ах) движения гимнастка может испытывать состояние, близкое к невесомости?


1) только на 2 этапе
2) только на 1 и 2 этапах
3) на 1, 2 и 3 этапах
4) ни на одном из перечисленных этапов

Решение.
Вес - это сила, с которой тело давит на опору или растягивает подвес. Состояние невесомости заключается в том, что у тела отсутствует вес, при этом сила тяжести никуда не пропадает. Когда гимнастка отталкивается от трамплина, она давит на него. Когда гимнастка приземляется на ноги, то она давит на землю. Трамплин и земля играют роль опоры, поэтому на этапах 1 и 3 она не находится в состоянии, близком к невесомости. Напротив, во время полета (этап 2) у гимнастки попросту отсутствует опора, если пренебречь сопротивлением воздуха. Раз нет опоры, то нет и веса, а значит, гимнастка действительно испытывает состояние, близкое к невесомости.

3. Тело подвешено на двух нитях и находится в равновесии. Угол между нитями равен , а силы натяжения нитей равны 3 H и 4 H. Чему равна сила тяжести, действующая на тело?


1) 1 H
2) 5 H
3) 7 H
4) 25 H

Решение.
Всего на тело действует три силы: сила тяжести и силы натяжения двух нитей. Поскольку тело находится в равновесии, равнодействующая всех трех сил должна равняться нулю, а значит, модуль силы тяжести равен


Правильный ответ: 2.

4.На рисунке представлены три вектора сил, лежащих в одной плоскости и приложенных к одной точке.


1) 0 H
2) 5 H
3) 10 H
4) 12 H

Решение.
Из рисунка видно, что равнодействующая сил и совпадает с вектором силы Следовательно, модуль равнодействующей всех трех сил равен

Используя масштаб рисунка, находим окончательный ответ

Правильный ответ: 3.

5. Как движется материальная точка при равенстве нулю суммы всех действующих на нее сил? Какое утверждение верно?


1) скорость материальной точки обязательно равна нулю
2) скорость материальной точки убывает со временем
3) скорость материальной точки постоянна и обязательно не равна нулю
4) скорость материальной точки может быть любой, но обязательно постоянной во времени

Решение.
Согласно второму закону Ньютона, в инерциальной системе отсчета ускорение тела пропорционально равнодействующей всех сил. Поскольку, по условию, сумма все действующих на тело сил равна нулю, ускорение тела также равно нулю, а значит, скорость тела может быть любой, но обязательно постоянной во времени.
Правильный ответ: 4.

6. На брусок массой 5 кг, движущийся по горизонтальной поверхности, действует сила трения скольжения 20 Н. Чему будет равна сила трения скольжения после уменьшения массы тела в 2 раза, если коэффициент трения не изменится?


1) 5 Н
2) 10 Н
3) 20 Н
4) 40 Н

Решение.
Сила трения скольжения связана с коэффициентом трения и силой реакции опоры соотношением . Для бруска, движущегося по горизонтальной поверхности, по второму закону Ньютона, .

Таким образом, сила трения скольжения пропорциональна произведению коэффициента трения и массы бруска. Если коэффициент трения не изменится, то после уменьшения массы тела в 2 раза, сила трения скольжения также уменьшится в 2 раза и окажется равной

Правильный ответ: 2.

III . Подведение итога, оценивание.

IV . Д/з:

    На рисунке представлены три вектора сил, лежащих в одной плоскости и приложенных к одной точке.

Масштаб рисунка таков, что сторона одного квадрата сетки соответствует модулю силы 1 H. Определите модуль вектора равнодействующей трех векторов сил.

    На графике показана зависимость силы тяжести от массы тела для некоторой планеты.

Чему равно ускорение свободного падения на этой планете?

Интернет ресурс: 1.

2.

Литература:

    М.Ю.Демидова, И.И.Нурминский “ЕГЭ 2009”

    В.А.Касьянов “Физика. Профильный уровень”

Которая характеризует меру, с которой на тело воздействуют другие тела либо поля, называется силой. Согласно второму ускорение, которое получает тело, прямо пропорционально действующей на него силе. Соответственно, чтобы изменить скорость тела, необходимо воздействовать на него силой. Поэтому верным является утверждение о том, что силы в природе служат источником любого движения.

Инерциальные системы отсчета

Силы в природе являются векторными величинами, то есть они имеют модуль и направление. Две силы могут считаться одинаковыми лишь тогда, когда равны их модули, а их направления совпадают.

Если на тело не действуют силы, а также в том случае, когда геометрическая сумма сил, воздействующих на данное тело (эта сумма часто называется равнодействующей всех сил), равна нулю, то тело либо остается в состоянии покоя, либо продолжает движение в одном направлении с постоянной скоростью (то есть движется по инерции). Это выражение справедливо для инерциальных систем отсчета. Существование таких систем постулируется первым законом Ньютона. В природе таких систем нет, но они являются удобной Тем не менее, часто при решении практических задач систему отсчета, связанную с Землей, можно считать инерциальной.

Земля - инерциальная и неинерциальная система отсчета

В частности при строительных работах, при расчете движения автомобилей и плавательного транспорта предположения о том, что Земля - инерциальная система отсчета, вполне достаточно, чтобы с необходимой для практического решения задач точностью описать действующие силы.

В природе также существуют задачи, не допускающие такого предположения. В частности, это относится к космическим проектам. При старте ракеты строго вверх она вследствие вращения Земли осуществляет видимое движение не только вдоль вертикали, но и в горизонтальном направлении против вращения Земли. В этом движении проявляется неинерциальность системы отсчета, связанной с нашей планетой.

Физически на ракету не действуют силы, отклоняющие ее. Тем не менее, для описания движения ракеты удобно использовать Эти силы не существуют физически, но предположение об их существовании позволяет представить неинерциальную систему инерциальной. Другими словами, при расчетах траектории ракеты считают, что система отсчета «Земля» является инерциальной, но при этом на ракету действует некоторая сила в горизонтальном направлении. Эта сила называется сила Кориолиса. В природе ее действие становится заметным, когда речь идет о телах, движущихся на некоторой высоте относительно нашей планеты в течение довольно большого времени либо с большой скоростью. Так, ее учитывают, не только описывая движение ракет и спутников, но и при расчетах движения артиллерийских снарядов, самолетов и т.д.

Природа взаимодействий

Все силы в природе по характеру своего происхождения относятся к четырем фундаментальным гравитационное, слабое и сильное). В макромире заметным является лишь воздействие гравитации и электромагнитных сил. Слабые и сильные взаимодействия влияют на процессы, происходящие внутри атомных ядер и субатомных частиц.

Самым распространенным примером гравитационного взаимодействия является Это сила, с которой Земля действует на окружающие ее тела.

Электромагнитные силы, помимо очевидных примеров, включают в себя все упругие, связанные с давлением взаимодействия, которые тела оказывают друг на друга. Соответственно, такая сила природы, как вес (сила, с которой тело действует на подвес либо опору), имеет электромагнитную природу.


| Выясним, много ли видов сил существует в природе.

На первый взгляд кажется, что мы взялись за непосильную и неразрешимую задачу: тел на Земле и вне ее бесконечное множество. Они взаимодействуют по-разному. Так, например, камень падает на Землю; электровоз тянет поезд; нога футболиста ударяет по мячу; потертая о мех эбонитовая палочка притягивает легкие бумажки (рис. 3.1, а); магнит притягивает желез- ные опилки (рис. 3.1, б)", проводник с током поворачивает стрелку компаса (рис. 3.1, в); взаимодействуют Луна и Земля, а вместе они взаимодействуют с Солнцем; взаимодействуют звезды и звездные системы и т. д. и т. п. Подобным примерам нет конца. Похоже, что в природе существует бесконечное множество взаимодействий (сил)! Оказывается, нет!
Четыре типа сил
В безграничных просторах Вселенной, на нашей планете, в любом веществе, в живых организмах, в атомах, в атомных ядрах и в мире элементарных частиц мы встречаемся с проявлением всего лишь четырех типов сил: гравитационных, электромагнитных, сильных (ядерных) и слабых.
Гравитационные силы, или силы всемирного тяготения, действуют между всеми телами - все тела притягиваются друг к другу. Но это притяжение существенно лишь тогда, когда хотя бы одно из взаимодействующих тел так же велико, как Земля или Луна. Иначе эти силы столь малы, что ими можно пренебречь.
Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сфера их действия особенно обширна и разнообразна. В атомах, молекулах, твердых, жидких и газообразных телах, живых организмах именно электромагнитные силы являются главными. Велика их роль в атомных ядрах.
Область действия ядерных сил очень ограничена. Они сказываются заметным образом только внутри атомных ядер (т. е. на расстояниях порядка 10~12 см). Уже на расстояниях между частицами порядка Ю-11 см (в тысячу раз меньших размеров атома - 10~8 см) они не проявляются совсем.
Слабые взаимодействия проявляются на еще меньших расстояниях. Они вызывают превращения элементарных частиц друг в друга.
Ядерные силы самые мощные в природе. Если интенсивность ядерных сил принять за единицу, то интенсивность электромагнитных сил составит 10~2, гравитационных - 10 40, слабых взаимодействий -10~16.
Надо сказать, что лишь гравитационные и электромагнитные взаимодействия можно рассматривать как силы в смысле механики Ньютона. Сильные (ядерные) и слабые взаимодейст- вия проявляются на таких малых расстояниях, когда законы механики Ньютона, а с ними вместе и понятие механической силы теряют смысл. Если и в этих случаях употребляют термин «сила», то лишь как синоним слова «взаимодействие».
Силы в механике
В механике обычно имеют дело с силами тяготения, силами упругости и силами трения.
Мы не будем здесь рассматривать электромагнитную природу силы упругости и силы трения. С помощью опытов можно выяснить условия, при которых возникают эти силы, и выразить их количественно.
В природе существуют четыре типа сил. В механике изучаются гравитационные силы и две разновидности электромагнитных сил - силы упругости и силы трения.

«Физика - 10 класс»

В главе 2 мы ввели понятие силы как количественной меры действия одного тела на другое.
В этой главе мы рассмотрим, какие силы рассматриваются в механике, чем определяются их значения.

Много ли видов сил существует в природе?
Перечислите известные вам силы.
Какую природу они имеют - гравитационную или электромагнитную?

На первый взгляд кажется, что мы взялись за непосильную и неразрешимую задачу: тел на Земле и вне её бесконечное множество.
Они взаимодействуют по-разному.

Ядерные силы действуют между частицами в атомных ядрах и определяют свойства ядер.

Область действия ядерных сил очень ограничена.

Они заметны только внутри атомных ядер (т. е. на расстояниях порядка 10 -15 м).
Уже на расстояниях между частицами порядка 10 -13 м (в тысячу раз меньших размеров атома - 10 -10 м) они не проявляются совсем.

Слабые взаимодействия вызывают взаимные превращения элементарных частиц, определяют радиоактивный распад ядер, реакции термоядерного синтеза.

Они проявляются на ещё меньших расстояниях, порядка 10 -17 м.

Ядерные силы - самые мощные в природе.

Если интенсивность ядерных сил принять за единицу, то интенсивность электромагнитных сил составит 10 -2 , гравитационных - 10-40, слабых взаимодействий - 10 -16 .

Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, когда законы механики Ньютона, а с ними вместе и понятие механической силы теряют смысл.

Интенсивность сильного и слабого взаимодействий измеряется в единицах энергии (в электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» объясняется многовековой традицией все явления в окружающем мире объяснять действием характерных для каждого явления «сил».

В механике мы будем рассматривать только гравитационные и электромагнитные взаимодействия.


Силы в механике.


В механике обычно имеют дело с тремя видами сил - силами тяготения, силами упругости и силами трения.


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Динамика - Физика, учебник для 10 класса - Класс!ная физика

До сих пор использовалось общее понятие силы, и не рассматривался вопрос о том, какие бывают силы и что они собой представляют. Несмотря на многообразие сил, встречающихся в природе, все их можно свести к четырем видам фундаментальных сил: 1) гравитационные; 2) электромагнитные; 3) ядерные; 4) слабые.

Гравитационные силы возникают между любыми телами. Их действие надо учитывать лишь в мире больших тел.

Электромагнитные силы действуют на заряды как неподвижные, так и движущиеся. Поскольку вещество построено из атомов, которые, в свою очередь состоят из электронов и протонов, то большинство сил, с которыми мы встречаемся в жизни - это электромагнитные силы. Ими являются, например, силы упругости, возникающие при деформации тел, силы трения.

Ядерные и слабые силы проявляют себя на расстояниях, не превышающих м, поэтому эти силы заметны лишь в микромире. Вся классическая физика, а вместе с ней и понятие силы, неприменимы к элементарным частицам. Характеризовать точным образом взаимодействие этих частиц с помощью сил нельзя. Единственно возможным здесь становится энергетическое описание. Тем не менее, и в атомной физике часто говорят о силах. В этом случае терминсила становится синонимом слова взаимодействие .

Таким образом, в современной науке слово сила употребляется в двух смыслах: во-первых, в смысле механической силы – точной количественной меры взаимодействия; во-вторых, сила означает наличие взаимодействия определенного типа, точной количественной мерой которого может быть только энергия .

В механике рассматриваются три типа сил: гравитационные, упругие и силы трения. Кратко остановимся на них.

1. Гравитационные силы . Все тела в природе притягиваются друг к другу. Эти силы получили название гравитационных. Ньютон установил закон, названный законом всемирного тяготения : силы, с которыми притягиваются материальные точки, пропорциональны произведению их масс, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющих их, т.е.

, (2.16)

где М и т – массы тел; r – расстояние между телами;   гравитационная постоянная. Знак «» указывает на то, что это сила притяжения.

Из формулы (2.16) следует, что при т = М = 1 кг и r = 1 м,  = F , т.е. гравитационная постоянная равна модулю силы притяжения материальных точек единичной массы, находящихся на единичном расстоянии друг от друга. Впервые опытное доказательство закона всемирного тяготения проведено Кавендишем. Он сумел определить величину гравитационной постоянной:
. Очень малая величина указывает на то, что сила гравитационного взаимодействия значительна только в случае тел с большими массами.

2. Силы упругости . При упругих деформациях возникают силы упругости. Согласно закону Гука , модуль упругой силы
пропорционален величине деформациих , т.е.

, (2.17)

где k  коэффициент упругости. Знак «» определяет тот факт, что направление силы и деформации противоположны.

3. Силы трения . При перемещении соприкасающихся тел или их частей относительно друг друга возникают силы трения . Различают внутреннее (вязкое) и внешнее (сухое) трение.

Вязким трением называют трение между твердым телом и жидкой или газообразной средой, а также между слоями такой среды.

Внешним трением называют явление возникновения в месте контакта соприкасающихся твердых тел сил, препятствующих их взаимному перемещению. Если соприкасающиеся тела неподвижны, то между ними возникает сила при попытке сдвинуть одно тело относительно другого. Она называется силой трения покоя . Сила трения покоя не является однозначно определенной величиной. Она меняется от нуля до максимального значения силы, приложенной параллельно плоскости соприкосновения, при которой тело начинает двигаться (рис. 2.3).

Обычно силой трения покоя и называют эту максимальную силу трения. Модуль силы трения покоя
пропорционален модулю силы нормального давления, который по третьему закону Ньютона равен модулю силы реакции опорыN , т.е.
, где
 коэффициент трения покоя.

При движении тела по поверхности другого тела возникает сила трения скольжения . Установлено, что модуль силы трения скольжения
так же пропорционален модулю силы нормального давленияN

, (2.19)

где   коэффициент трения скольжения. Установлено, что
, однако при решении многих задач их считают равными.

При решении задач учитывают следующие виды сил:

1. Сила тяжести
 сила, с которой гравитационное поле Земли действует на тело (приложена эта сила к центру масс тела).

2. Вес тела  сила, с которой тело действует на горизонтальную опору или нить, удерживающую его от свободного падения (сила упругости по своей природе). Приложена сила к опоре (нити). В инерциальной системе отсчета
.

3. Сила реакции опоры  сила, с которой поверхность опоры действует на тело (сила упругости по своей природе). Сила приложена к телу со стороны опоры и перпендикулярна поверхности соприкосновения.

4. Сила натяжения нити  сила, с которой нить действует на тело, подвешенное к нити. Сила приложена к телу и направлена вверх по нити.

5. Сила трения
.