МЕХАНИЧЕСКИЙ УДАР

Нижний Новгород
2013 год

Лабораторная работа № 1-21

Механический удар

Цель работы : Ознакомиться с элементами теории механического удара и экспериментально определить время удара , среднюю силу удара F , коэффициент восстановления Е , а также изучить основные характеристики удара и ознакомиться с цифровыми приборами для измерения временного интервалов.

Теоретическая часть

Ударом называется изменения состояния движения тела, вследствие кратковременного взаимодействия его с другим телом. Во время удара оба тела претерпевают изменения формы (деформацию). Сущность упругого удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел, за короткое время, преобразуется в энергию упругой деформации или в той или иной степени в энергию молекулярного движения. В процессе удара происходит перераспределение энергии между соударяющимися телами.

Пусть на плоскую поверхность массивной пластины падает шар с некоторой скоростью V 1 и отскакивает от нее со скоростью V 2 ­­.

Обозначим – нормальные и тангенциальные составляющие скоростей и , а и – соответственно углы падения и отражения. В идеальном случае при абсолютно упругом ударе, нормальные составляющие скоростей падения и отражения и их касательные составляющие были бы равны ; . При ударе всегда происходит частичная потеря механической энергии. Отношение как нормальных, так и тангенциальных составляющих скорости после удара к составляющим скорости до удара есть физическая характеристика, зависящая от природы сталкивающихся тел.



Эту характеристику Е называют коэффициентом восстановления. Числовое значение его лежит между 0 и 1.

Определение средней силы удара,

Начальной и конечной скоростей шарика при ударе

Экспериментальная установка состоит из стального шарика А, подвешенного на проводящих нитях, и неподвижного тела В большей массы, с которым шарик соударяется. Угол отклонения подвеса α измеряется по шкале. В момент удара на шар массой m действует сила тяжести со стороны Земли , сила реакции со стороны нити и средняя сила удара со стороны тела В (см. рис.2.).

На основании теоремы об изменении импульса материальной точки:

где и – векторы скоростей шара до и после удара; τ – длительность удара.

После проектирования уравнения (2) на горизонтальную ось определим среднюю силу удара:

(3)

Скорости шарика V 1 и V 2 определяются на основании закона сохранения и превращения энергии. Изменение механической энергии системы, образованной шариком и неподвижным телом В, в поле тяготения Земли определятся суммарной работой всех внешних и внутренних не потенциальных сил. Поскольку внешняя сила перпендикулярна перемещению и нить нерастяжима, то эта сила работы не совершает, внешняя сила и внутренняя сила упругого взаимодействия – потенциальны. Если эти силы много больше других не потенциальных сил, то полная механическая энергия выбранной системы не меняется. Поэтому, уравнение баланса энергии можно записать в виде:

(4)

Из чертежа (рис. 2) следует, что , тогда из уравнения (4) получим значения начальной V 1 и конечной V 2 скоростей шарика:

(5)

где и - углы отклонения шара до и после соударения.

Метод определения длительности удара

В данной работе длительность удара шарика о плиту определяется частотомером Ч3-54, функциональная схема которого представлена на рис.3. С генератора подается на вход системы управления СУ импульсы с периодом Т. Когда в процессе соударения металлической плиты В, электрическая цепь, образованная СУ, проводящими нитями подвеса шара, шаром, плитой В и счетчиком импульсов С ч, оказывается замкнутой, и система управления СУ пропускает на вход счетчика С ч импульсы электрического тока только в интервале времени , равном времени длительности удара. Число импульсов, зарегистрированных за время , равно , откуда .

Чтобы определить длительность удара , необходимо число импульсов, зарегистрированных счетчиком, умножить на период импульсов, снимаемых с генератора Г.

Экспериментальная часть

Исходные данные:

1. Масса шарика m = (16,7 ± 0,1)*10 -3 кг.

2. Длина нити l = 0,31 ± 0,01 м.

3. Ускорение свободного падения g = (9,81 ± 0,005) м/с 2 .

4. Опыт для каждого угла выполняем 5 раз.

Результаты опыта занесем в таблицу:

α 1 = 20 0 α 1 = 30 0 α 1 = 40 0 α 1 = 50 0 α 1 = 60 0
i 2i i 2i i 2i i 2i i 2i
61,9 17,1 58,0 26,8 54,9 37,0 52,4 43,6 48,9 57,8
65,7 17,2 58,2 26,5 45,2 35,9 51,0 45,0 42,6 58,0
64,0 16,9 58,4 26,9 52,8 36,7 49,9 46,7 49,6 57,2
65,4 16,8 58,4 26,7 54,3 36,0 48,2 46,0 48,5 57,6
64,0 16,9 57,3 26,8 52,4 37,0 50,2 43,9 48,4 58,1
Сред. 64,2 16,98 58,06 26,74 51,92 36,52 50,34 45,04 47,6 57,74

Расчёты

=20 0 мкс

=30 0 мкс

=40 0 мкс

Механизм воздействия удара. В механике абсолютно твердоготвёрдого тела удар рассматривается как скачкообразный процесс, продолжительность которого бесконечно мала. Во время удара в точке соприкосновения соударяющихся тел возникают большие, но мгновенно действующие силы, приводящие к конечному изменению количества движения. В реальных системах всегда действуют конечные силы в течение конечного интервала времени, и соударение двух движущихся тел связано с их деформацией вблизи точки соприкосновения и распространением волны сжатия внутри этих тел. Продолжительность удара зависит от многих физических факторов: упругих характеристик материалов соударяющихся тел, их формы и размеров, относительной скорости сближения и т.д.

Изменение ускорения во времени принято называть импульсом ударного ускорения или ударным импульсом, а закон изменения ускорения во времени - формой ударного импульса. К основным параметрам ударного импульса относят пиковое ударное ускорение (перегрузку), длительность действия ударного ускорения и форму импульса.

Различают три основных вида реакции изделий на ударные нагрузки:

* баллистический (квазиамортизационный) режим возбуждения (период собственных колебаний ЭУ больше длительности импульса возбуждения);

* квазирезонанансный режим возбуждения (период собственных колебаний ЭУ примерно равен длительности импульса возбуждения);

* статический режим возбуждения (период собственных колебаний ЭУ меньше длительности импульса возбуждения).

При баллистическом режиме максимальное значение ускорения ЭУ всегда меньше пикового ускорения воздействующего ударного импульса. КвазирезонанасныйКвазирезонансный режим возбуждения наиболее жесткийжёсткий по величине возбуждаемых ускорений (m более 1). При статическом режиме возбуждения отклик ЭУ полностью повторяет воздействующий импульс (m=1), результаты испытаний не зависят от формы и длительности импульса. Испытания в статической области эквивалентны испытаниям на воздействие линейного ускорения, т.к. его можно рассматривать как удар бесконечной длительности.

Испытания на ударную нагрузку проводят в квазирезонансном режиме возбуждения. Ударную прочность оценивают по целостности конструкции ЭУ (отсутствие трещин, сколов).

Испытания на ударную устойчивость проводят после испытаний на ударную прочность под электрической нагрузкой для проверки способности ЭУ выполнять свои функции в условиях действия механических ударов.

Помимо механических ударных стендов применяют электродинамические и пневматические ударные стенды. В электродинамических стендах через катушку возбуждения подвижной системы пропускают импульс тока, амплитуда и длительность которого определяют параметры ударного импульса. На пневматических стендах ударное ускорение получают при соударении стола со снарядом, выпущенным из пневматической пушки.

Характеристики ударных стендов изменяются в широких пределах: грузоподъемностьгрузоподъёмность – от 1 до 500 кг, число ударов в минуту (регулируется) – от 5 до 120, максимальное ускорение – от 200 до 6000 g, длительность ударов – от 0,4 до 40 мс.

В механике ударом называют механическое воздействие материальных тел, приводящее к конечному изменению скоростей их точек за бесконечно малый промежуток времени. Ударное движение — движение, возникающее в результате однократного взаимодействия тела (среды) с рассматриваемой системой при условии, что наименьший период собственных колебаний системы или ее постоянная времени соизмеримы или больше времени взаимодействия.

При ударном взаимодействии в рассматриваемых точках определяют ударные ускорения, скорость или перемещение. В совокупности такие воздействия и реакции называют ударными процессами. Механические удары могут быть одиночными, многократными и комплексными. Одиночные и многократные ударные процессы могут воздействовать на аппарат в продольном, поперечном и любом промежуточном направлениях. Комплексные ударные нагрузки оказывают воздействие на объект в двух или трех взаимно перпендикулярных плоскостях одновременно. Ударные нагрузки на ЛА могут быть как непериодическими, так и периодическими. Возникновение ударных нагрузок связано с резким изменением ускорения, скорости или направления перемещения ЛА. Наиболее часто в реальных условиях встречается сложный одиночный ударный процесс, представляющий собой сочетание простого ударного импульса с наложенными колебаниями.

Основные характеристики ударного процесса:

  • законы изменения во времени ударного ускорения a(t), скорости V(t) и перемещения X(t) \ длительность действия ударного ускорения т - интервал времени от момента появления до момента исчезновения ударного ускорения, удовлетворяющий условию, а> ап, где ап - пиковое ударное ускорение;
  • длительность фронта ударного ускорения Тф - интервал времени от момента появления ударного ускорения до момента, соответствующего его пиковому значению;
  • коэффициент наложенных колебаний ударного ускорения - отношение полной суммы абсолютных значений приращений между смежными и экстремальными значениями ударного ускорения к его удвоенному пиковому значению;
  • импульс ударного ускорения - интеграл от ударного ускорения за время, равное длительности его действия.

По форме кривой функциональной зависимости параметров движения ударные процессы разделяют на простые и сложные. Простые процессы не содержат высокочастотных составляющих, и их характеристики аппроксимируются простыми аналитическими функциями. Наименование функции определяется формой кривой, аппроксимирующей зависимость ускорения от времени (полусинусоидальная, косанусоидальная, прямоугольная, треугольная, пилообразная, трапецеидальная и т.д.).

Механический удар характеризуется быстрым выделением энергия, в результате чего возникают местные упругие или пластические деформации, возбуждение волн напряжения и другие эффекты, приводящие иногда к нарушению функционирования и к разрушению конструкции ЛА. Ударная нагрузка, приложенная к ЛА, возбуждает в нем быстро затухающие собственные колебания. Значение перегрузки при ударе, характер и скорость распределения напряжений по конструкции ЛА определяются силой и продолжительностью удара, и характером изменения ускорения. Удар, воздействуя на ЛА, может вызвать его механическое разрушение. В зависимости от длительности, сложности ударного процесса и его максимального ускорения при испытаниях определяют степень жесткости элементов конструкции ЛА. Простой удар может вызвать разрушение вследствие возникновения сильных, хотя и кратковременных перенапряжений в материале. Сложный удар может привести к накоплению микродеформации усталостного характера. Так как конструкция ЛА обладает резонансными свойствами, то даже простой удар может вызвать колебательную реакцию в ее элементах, также сопровождающуюся усталостными явлениями.


Механические перегрузки вызывают деформацию и поломку деталей, ослабление соединений (сварных, резьбовых и заклепочных), отвинчивание винтов и гаек, перемещение механизмов и органов управления, в результате чего изменяется регулировка и настройка приборов и появляются другие неисправности.

Борьба с вредным действием механических перегрузок ведется различными путями: увеличением прочности конструкции, использованием деталей и элементов с повышенной механической прочностью, применением амортизаторов и специальной упаковки, рациональным размещением приборов. Меры защиты от вредного воздействия механических перегрузок делят на две группы:

  1. меры, направленные на обеспечение требуемой механической прочности и жесткости конструкции;
  2. меры, направленные на изоляцию элементов конструкции от механических воздействий.

В последнем случае применяют различные амортизирующие средства, изолирующие прокладки, компенсаторы и демпферы.

Общая задача испытаний ЛА на воздействие ударных нагрузок состоит в проверке способности ЛА и всех его элементов выполнять свои функции в процессе ударного воздействия и после него, т.е. сохранять свои технические параметры при ударном воздействии и после него в пределах, указанных в нормативно-технических документах.

Основные требования при ударных испытаниях в лабораторных условиях — максимальная приближенность результата испытательного удара на объект к эффекту реального удара в натурных условиях эксплуатации и воспроизводимость ударного воздействия.

При воспроизведении в лабораторных условиях режимов ударного нагружения накладывают ограничения на0форму импульса мгновенного ускорения как функции времени (рис. 2.50), а также на допустимые пределы отклонений формы импульса. Практически каждый ударный импульс на лабораторном стенде сопровождается пульсацией, являющейся следствием резонансных явлений в ударных установках и вспомогательном оборудовании. Так как спектр ударного импульса в основном является характеристикой разрушающего действия удара, то наложенная даже небольшая пульсация может сделать результаты измерений недостоверными.

Испытательные установки, имитирующие отдельные удары с последующими колебаниями, составляют специальный класс оборудования для механических испытаний. Ударные стенды можно классифицировать по различным признакам (рис. 2.5!):

I — по принципу формирования ударного импульса;

II — по характеру испытаний;

III — по виду воспроизводимого ударного нагружения;

IV — по принципу действия;

V — по источнику энергии.

В общем виде схема ударного стенда состоит из следующих элементов (рис. 2.52): испытуемого объекта, укрепленного на платформе или контейнере вместе с датчиком ударной перегрузки; средства разгона для сообщения объекту необходимой скорости; тормозного устройства; системы управления; регистрирующей аппаратуры для записей исследуемых параметров объекта и закона изменения ударной перегрузки; первичных преобразователей; вспомогательных приборов для регулировки режимов функционирования испытуемого объекта; источников питания, необходимых для работы испытуемого объекта и регистрирующей аппаратуры.

Простейшим стендом для ударных испытаний в лабораторных условиях является стенд, работающий по принципу сбрасывания закрепленного на каретке испытуемого объекта с некоторой высоты, т.е. использующий для разгона силы земного тяготения. При этом форма ударного импульса определяется материалом и формой соударяющихся поверхностей. На таких стендах можно обеспечить ускорение до 80000 м/с2. На рис. 2.53, а и б приведены принципиально возможные схемы таких стендов.

В первом варианте (рис. 2.53, а) специальный кулачок 3 с храповым зубом приводится во вращение мотором. По достижении кулачком максимальной высоты H стол 1 с объектом испытания 2 падает на тормозные устройства 4, которые и сообщают ему удар. Ударная перегрузка зависит от высоты падения Н, жесткости тормозящих элементов к, суммарной массы стола и объекта испытания M и определяется следующей зависимостью:

Варьируя эта величины, можно получить различные перегрузки. Во втором варианте (рис. 2.53, б) стенд работает по методу сбрасывания.

Испытательные стенды, использующие гидравлический либо пневматический привод для разгона каретки, практически не зависят от действия гравитации. На рис. 2.54 показаны два варианта ударных пневматических стендов.

Принцип работы стенда с пневмопушкой (рис. 2.54, а) заключается в следующем. В рабочую камеру / подается сжатый газ. При достижении заданного давления, которое контролируется манометром, срабатывает автомат 2 освобождения контейнера 3, где размещен испытуемый объект. При выходе из ствола 4 пневмопушки контейнер контактирует с устройством 5, которое позволяет измерять скорость движения контейнера. Пневмопушка через амортизаторы крепится к опорным стойкам б. Заданный закон торможения на амортизаторе 7 реализуется за счет изменения гидравлического сопротивления перетекающей жидкости 9 в зазоре между специально спрофилированной иглой 8 и отверстием в амортизаторе 7.

Конструктивная схема другого пневматического ударного стенда, (рис. 2.54, б) состоит из объекта испытаний 1, каретки 2, на которой установлен объект испытаний, прокладки 3 и тормозного устройства 4, клапанов 5, позволяющих создавать заданные перепады давления газа на поршне б, и системы подачи газа 7. Тормозное устройство включается сразу же после соударения каретки и прокладки, чтобы предотвратить обратный ход каретки и искажение форм ударного импульса. Управление такими стендами может быть автоматизировано. На них можно воспроизвести широкий диапазон ударных нагрузок.

В качестве разгонного устройства могут быть использованы резиновые амортизаторы, пружины, а также, в отдельных случаях, линейные асинхронные двигатели.

Возможности практически всех ударных стендов определяются конструкцией тормозных устройств:

1. Удар испытуемого объекта с жесткой плитой характеризуется торможением за счет возникновения упругих сил в зоне контакта. Такой способ торможения испытуемого объекта позволяет получать большие значения перегрузок с малым фронтом их нарастания (рис. 2.55, а).

2. Для получения перегрузок в широком диапазоне, от десятков до десятков тысяч единиц, с временем нарастания их от десятков микросекунд до нескольких миллисекунд используют деформируемые элементы в виде пластины или прокладки, лежащей на жестком основании. Материалами этих прокладок могут быть сталь, латунь, медь, свинец, резина и т.д. (рис. 2.55, б).

3. Для обеспечения какого-либо конкретного (заданного) закона изменения п и т в небольшом диапазоне используют деформируемые элементы в виде наконечника (крешера), который устанавливается между плитой ударного стенда и испытуемым объектом (рис. 2.55, в).

4. Для воспроизведения удара с относительно большим путем торможения применяют тормозное устройство, состоящее из свинцовой, пластически деформируемой плиты, расположенной на жестком основании стенда, и внедряющегося в нее жесткого наконечника соответствующего профиля (рис. 2.55, г), закрепленного на объекте или платформе стенда. Такие тормозные устройства позволяют получать перегрузки в широком диапазоне n(t) с небольшим временем их нарастания, доходящим до десятков миллисекунд.

5. В качестве тормозного устройства может быть использован упругий элемент в виде рессоры (рис. 2.55, д), установленной на подвижной части ударного стенда. Такой вид торможения обеспечивает получение относительно малых перегрузок полусинусоидальной формы с продолжительностью, измеряемой миллисекундами.

6. Пробиваемая металлическая пластина, закрепленная по контуру в основании установки, в сочетании с жестким наконечником платформы или контейнера, обеспечивает получение относительно малых перегрузок (рис. 2.55, е).

7. Деформируемые элементы, установленные на подвижной платформе стенда (рис. 2.55, ж), в сочетании с жестким коническим уловителем обеспечивают получение длительно действующих перегрузок с временем нарастания до десятков миллисекунд.

8. Тормозное устройство с деформируемой шайбой (рис. 2.55, з) позволяет получать большие пути торможения объекта (до 200 — 300 мм) при малых деформациях шайбы.

9. Создание в лабораторных условиях интенсивных ударных импульсов с большими фронтами возможно при использовании пневматического тормозного устройства (рис. 2.55, ы). К числу достоинств пневмодемпфера следует отнести его многоразовое действие, а также возможность воспроизведения ударных импульсов различной формы, в том числе и со значительным заданным фронтом.

10. В практике проведения ударных испытаний широкое применение получило тормозное устройство в виде гидравлического амортизатора (см. рис. 2.54, а). При ударе испытуемого объекта об амортизатор его шток погружается в жидкость. Жидкость выталкивается через очко штока по закону, определяемому профилем регулирующей иглы. Изменяя профиль иглы, можно реализовать различный вид закона торможения. Профиль иглы можно получить расчетным путем, но при этом слишком трудно учесть, например, наличие воздуха в полости поршня, силы трения в уплотнительных устройствах и т.д. Поэтому расчетный профиль необходимо экспериментально корректировать. Таким образом, расчетно-экспериментальным методом можно получить профиль, необходимый для реализации любого закона торможения.

Проведение ударных испытаний в лабораторных условиях выдвигает и ряд специальных требований к монтажу объекта. Так, например, максимально допустимое перемещение в поперечном направлении не должно превышать 30% номинальной величины; как при испытаниях на ударную устойчивость, так и при испытаниях на ударную прочность изделие должно иметь возможность устанавливаться в трех взаимно перпендикулярных положениях с воспроизведением необходимого количества ударных импульсов. Разовые характеристики измерительного и регистрирующего оборудования должны быть идентичными в широком диапазоне частот, что гарантирует правильную регистрацию соотношений различных частотных составляющих измеряемого импульса.

Вследствие разнообразия передаточных функций различных механических систем один и тот же ударный спектр может быть вызван ударным импульсом различной формы. Это означает, что не существует однозначного соответствия некоторой временной функции ускорения и ударного спектра. Поэтому с технической точки зрения более правильно задавать технические условия на ударные испытания, содержащие требования к ударному спектру, а не к временной характеристике ускорения. В первую очередь это относится к механизму усталостного разрушения материалов вследствие накопления циклов нагружений, которые могут быть различными от испытаний к испытанию, хотя пиковые значения ускорения и напряжения будут оставаться постоянными.

При моделировании ударных процессов системы определяющих параметров целесообразно составлять по выявленным факторам, необходимых для достаточно полного определения искомой величины, которую иногда можно найти только экспериментальным путем.

Рассматривая удар массивного, свободно движущегося жесткого тела по деформируемому элементу относительно малого размера (например, по тормозному устройству стенда), закрепленному на жестком основании, требуется определить параметры ударного процесса и установить условия, при которых такие процессы будут подобными друг другу. В общем случае пространственного движения тела можно составить шесть уравнений, три из которых дает закон сохранения количества движения, два — законы сохранения массы и энергии, шестым является уравнение состояния. В указанные уравнения входят следующие величины: три компоненты скорости Vx Vy \ Vz> плотность р, Давление р и энтропия. Пренебрегая диссипативными силами и считая состояние деформируемого объема изоэнтропическим, можно исключить из числа определяющих параметров энтропию. Так как рассматривается только движение центра масс тела, то можно не включать в число определяющих параметров компоненты скоростей Vx, Vy; Vz и координаты точек Л", Y, Z внутри деформируемого объекта. Состояние деформируемого объема будет характеризоваться следующими определяющими параметрами:

  • плотностью материала р;
  • давлением р, которое целесообразней учитывать через величину максимальной местной деформации и Otmax, рассматривая ее как обобщенный параметр силовой характеристики в зоне контакта;
  • начальной скоростью удара V0, которая направлена по нормали к поверхности, на которой установлен деформируемый элемент;
  • текущим временем t;
  • массой тела т;
  • ускорением свободного падения g;
  • модулем упругости материалов Е, так как напряженное состояние тела при ударе (за исключением зоны контакта) считается упругим;
  • характерным геометрическим параметром тела (или деформируемого элемента) D.

В соответствии с тс-теоремой, из восьми параметров, среди которых три имеют независимые размерности, можно составить пять независимых безразмерных комплексов:

Безразмерные комплексы, составленные из определяемых параметров ударного процесса, будут некоторыми функциями независимы] безразмерных комплексов П1 — П5.

К числу определяемых параметров относятся:

  • текущая местная деформация а;
  • скорость тела V;
  • контактная сила Р;
  • напряжение внутри тела а.

Следовательно, можно записать функциональные соотношения:

Вид функций /1, /2, /э, /4 может быть установлен экспериментально, с учетом большого количества определяющих параметров.

Если при ударе в сечениях тела за пределами зоны контакта не появляются остаточные деформации, то деформация будет иметь местный характер, и, следовательно, комплекс Я5 = рУ^/Е можно исключить.

Комплекс Jl2 = Pttjjjax) ~ Cm называется коэффициентом относительной массы тела.

Коэффициент силы сопротивления пластическому деформированию Cp связан непосредственно с показателем силовой характеристики N (коэффициентом податливости материала, зависящим от формы соударяющихся тел) следующей зависимостью:

где р — приведенная плотность материалов в зоне контакта; Cm = т/(ра?) — приведенная относительная масса соударяющихся тел, характеризующая отношение их приведенной массы M к приведенной массе деформируемого объема в зоне контакта; xV — безразмерный параметр, характеризующий относительную работу деформирования.

Функцией Cp - /з(Я1(Яг, Я3, Я4) можно воспользоваться для определения перегрузок:

Если обеспечить равенство числовых значений безразмерных комплексов IJlt Я2, Я3, Я4 для двух ударных процессов, то эти условия, т.е.

будут представлять собой критерии подобия данных процессов.

При выполнении указанных условий одинаковыми будут и числовые значения функций /ь/г./з» Л» те- в сходственные моменты времени -V CtZoimax- const; ^r= const; Cp = const, что и позволяет определять параметры одного ударного процесса простым пересчетом параметров другого процесса. Необходимые и достаточные требования физического моделирования ударных процессов можно сформулировать следующим образом:

  1. Рабочие части модели и натурного объекта должны быть геометрически подобными.
  2. Безразмерные комплексы, составленные из определяющих пара, метров, должны удовлетворять условию (2.68). Вводя масштабные коэффициенты.

Необходимо иметь в виду, что при моделировании только параметров ударного процесса напряженные состояния тел (натуры и модели) будут обязательно различными.

Попытка проанализировать травмоопасность ударов в голову голым кулаком, по сравнению с ударами в боксерской перчатке.

Теория удара.

Ударом в механике называется кратковременное взаимодействие тел, в результате которого изменяются их скорости. Ударная сила зависит, согласно закону Ньютона, от эффективной массы ударяющего тела и его ускорения:

Рис. 1 Кривая развития силы удара во времени

F = m*a (1),

где
F – сила,
m – масса,
a – ускорение.

Если рассматривать удар во времени, то взаимодействие длится очень короткое время – от десятитысячных (мгновенные квазиупругие удары), до десятых долей секунды (неупругие удары). Ударная сила в начале удара быстро возрастает до наибольшего значения, а затем падает до нуля (рис. 1). Максимальное ее значение может быть очень большим. Однако основной мерой ударного взаимодействия является не сила, а ударный импульс, численно равный площади под кривой F(t). Он может быть вычислен как интеграл:

(2)

где
S – ударный импульс,
t1 и t2 – время начала и конца удара,
F(t) – зависимость ударной силы F от времени t.

Так как процесс соударения длится очень короткое время, то в нашем случае его можно рассматривать как мгновенное изменение скоростей соударяющихся тел.

В процессе удара, как и в любых явлениях природы должен соблюдаться закон сохранения энергии. Поэтому закономерно записать следующее уравнение:

E1 + E2 = E’1 + E’2 + E1п + E2п (3)

где
E1 и E2 – кинетические энергии первого и второго тела до удара,
E’1 и E’2 – кинетические энергии после удара,
E1п и E2п – энергии потерь при ударе в первом и во втором тел
е.

Соотношение между кинетической энергией после удара и энергией потерь составляет одну из основных проблем теории удара.

Последовательность механических явлений при ударе такова, что сначала происходит деформация тел, во время которой кинетическая энергия движения переходит в потенциальную энергию упругой деформации. Затем потенциальная энергия переходит обратно в кинетическую. В зависимости от того, какая часть потенциальной энергии переходит в кинетическую, а какая теряется, рассеиваясь на нагрев и деформацию, различают три вида удара:

  1. Абсолютно упругий удар – вся механическая энергия сохраняется. Это идеализированная модель соударения, однако, в некоторых случаях, например в случае ударов бильярдных шаров, картина соударения близка к абсолютно упругому удару.
  2. Абсолютно неупругий удар – энергия деформации полностью переходит в тепло. Пример: приземление в прыжках и соскоках, удар шарика из пластилина в стену и т. п. При абсолютно неупругом ударе скорости взаимодействующих тел после удара равны (тела слипаются).
  3. Частично неупругий удар - часть энергии упругой деформации переходит в кинетическую энергию движения.

В реальности все удары являются либо абсолютно, либо частично неупругими. Ньютон предложил характеризовать неупругий удар так называемым коэффициентом восстановления. Он равен отношению скоростей взаимодействующих тел после и до удара. Чем этот коэффициент меньше, тем больше энергии расходуется на некинетические составляющие E1п и E2п (нагрев, деформация). Теоретически этот коэффициент получить нельзя, он определяется опытным путем и может быть рассчитан по следующей формуле:

где
v1 , v2 – скорости тел до удара,
v’1 , v’2 – после удара.

При k = 0 удар будет абсолютно неупругим, а при k = 1 – абсолютно упругим. Коэффициент восстановления зависит от упругих свойств соударяемых тел. Например, он будет различен при ударе теннисного мяча о разные грунты и ракетки разных типов и качества. Коэффициент восстановления не является просто характеристикой материала, так как зависит еще и от скорости ударного взаимодействия – с увеличением скорости он уменьшается. В справочниках приведены значения коэффициента восстановления для некоторых материалов для скорости удара менее 3 м/с.

Биомеханика ударных действий

Ударными в биомеханике называются действия, результат которых достигается механическим ударом. В ударных действиях различают:

  1. Замах – движение, предшествующее ударному движению и приводящее к увеличению расстояния между ударным звеном тела и предметом, по которому наносится удар. Эта фаза наиболее вариативна.
  2. Ударное движение – от конца замаха до начала удара.
  3. Ударное взаимодействие (или собственно удар) – столкновение ударяющихся тел.
  4. Послеударное движение – движение ударного звена тела после прекращения контакта с предметом, по которому наносится удар.

При механическом ударе скорость тела (например, мяча) после удара тем выше, чем больше скорость ударяющего звена непосредственно перед ударом. При ударах в спорте такая зависимость необязательна. Например, при подаче в теннисе увеличение скорости движения ракетки может привести к снижению скорости вылета мяча, так как ударная масса при ударах, выполняемых спортсменом, непостоянна: она зависит от координации его движений. Если, например, выполнять удар за счет сгибания кисти или с расслабленной кистью, то с мячом будет взаимодействовать только масса ракетки и кисти. Если же в момент удара ударяющее звено закреплено активностью мышц-антагонистов и представляет собой как бы единое твердое тело, то в ударном взаимодействии будет принимать участие масса всего этого звена.

Иногда спортсмен наносит два удара с одной и той же скоростью, а скорость вылета мяча или сила удара оказывается различной. Это происходит из-за того, что ударная масса неодинакова. Величина ударной массы может использоваться как критерий эффективности техники ударов. Поскольку рассчитать ударную массу довольно сложно, то эффективность ударного взаимодействия оценивают как отношение скорости снаряда после удара и скорости ударного элемента до удара. Этот показатель различен в ударах разных типов. Например, в футболе он изменяется от 1,20 до 1,65. Зависит, он и от веса спортсмена.

Некоторые спортсмены, владеющие очень сильным ударом (в боксе, волейболе, футболе и др.), большой мышечной силой не отличаются. Но они умеют сообщать большую скорость ударяющему сегменту и в момент удара взаимодействовать с ударяемым телом большой ударной массой.

Многие ударные спортивные действия нельзя рассматривать как «чистый» удар, основа теории которого изложена выше. В теории удара в механике предполагается, что удар происходит настолько быстро и ударные силы настолько велики, что всеми остальными силами можно пренебречь. Во многих ударных действиях в спорте эти допущения не оправданы. Время удара в них хотя и мало, но все-таки пренебрегать им нельзя; путь ударного взаимодействия, по которому во время удара движутся вместе соударяющиеся тела, может достигать 20-30 см.

Поэтому в спортивных ударных действиях, в принципе, можно изменить количество движения во время соударения за счет действия сил, не связанных с самим ударом. Если ударное звено во время удара дополнительно ускоряется за счет активности мышц, ударный импульс и соответственно скорость вылета снаряда увеличиваются; если оно произвольно тормозится, ударный импульс и скорость вылета уменьшаются (это бывает нужно при точных укороченных ударах, например при передачах мяча партнеру). Некоторые ударные движения, в которых дополнительный прирост количества движения во время соударения очень велик, вообще являются чем-то средним между метаниями и ударами (так иногда выполняют вторую передачу в волейболе).

Координация движений при максимально сильных ударах подчиняется двум требованиям:

  1. сообщение наибольшей скорости ударяющему звену к моменту соприкосновения с ударяемым телом. В этой фазе движения используются те же способы увеличения скорости, что и в других перемещающих действиях;
  2. увеличение ударной массы в момент удара. Это достигается «закреплением» отдельных звеньев ударяющего сегмента путем одновременного включения мышц-антагонистов и увеличения радиуса вращения. Например, в боксе и карате сила удара правой рукой увеличивается примерно вдвое, если ось вращения проходит вблизи левого плечевого сустава, по сравнению с ударами, при которых ось вращения совпадает с центральной продольной осью тела.

Время удара настолько кратковременно, что исправить допущенные ошибки уже невозможно. Поэтому точность удара в решающей мере обеспечивается правильными действиями при замахе и ударном движении. Например, в футболе место постановки опорной ноги определяет у начинающих целевую точность примерно на 60-80%.

Тактика спортивных состязаний нередко требует неожиданных для противника ударов («скрытых»). Это достигается выполнением ударов без подготовки (иногда даже без замаха), после обманных движений (финтов) и т. п. Биомеханические характеристики ударов при этом меняются, так как они выполняются в таких случаях обычно за счет действия лишь дистальных сегментов (кистевые удары).

Дистальный – [напр. конец, фаланга] (distalis) - конец мышцы или кости конечности или целая структура (фаланга, мышца) наиболее удалённая от туловища.

Удар в боксерской перчатке и без.

В последнее время в некоторых спортивных кругах разгораются серьезные споры по поводу большей травматичности для мозга ударов в боксерской перчатке, нежели ударов голой рукой. Попытаемся получить ответ на этот вопрос используя имеющиеся исследовательские данные и элементарные законы физики.

Откуда могли родиться подобные мысли? Смею предположить, что в основном из наблюдений процесса удара по боксерскому мешку. Проводились исследования, в которых Смит и Хемил в своей работе, опубликованной в 1986 году измеряли скорость кулака спортсмена и скорость боксерского мешка. Строго говоря, опасность сотрясения мозга определяется величиной ускорения головы, а не скоростью. Однако по сообщаемой скорости мешка можно лишь косвенно судить о величине ускорения, т.к. предполагается, что данная скорость была развита за короткий промежуток времени удара.

Удары по мешку проводились тремя разными способами: голым кулаком, в перчатке для карате и в перчатке для бокса. И действительно, скорость мешка при ударе перчаткой оказалась выше примерно на 15%, чем при ударе кулаком. Рассмотрим физическую подоплеку проведенного исследования. Как уже говорилось выше, все удары являются частично неупругими и часть энергии ударного звена расходуется на остаточную деформацию снаряда, остальная энергия тратится на сообщение снаряду кинетической энергии. Доля этой энергии характеризуется коэффициентом восстановления.

Сразу оговоримся для большей ясности, что при рассмотрении энергии деформации и энергии поступательного движения, большая энергия деформации играет положительную роль, т.к. на поступательное движение остается меньше энергии. В данном случае речь идет об упругих деформациях, не представляющих опасность для здоровья, тогда как энергия поступательного движения напрямую связана с ускорением и опасна для мозга.

Рассчитаем коэффициент восстановления боксерского мешка по данным полученным Смитом и Хемилом. Масса мешка составляла 33 кг. Результаты экспериментов показали незначительные различия в скорости кулака для разных типов перчаток (голый кулак: 11.03±1.96 м/с, в каратистской перчатке: 11.89±2.10 м/с, в боксерской перчатке: 11.57±3.43 м/с). Среднее значение скорости кулака составило 11.5 м/с. Были найдены различия в импульсе мешка для разных типов перчаток. Удар в боксерской перчатке вызывал больший импульс мешка (53.73±15.35 Н с), чем удар голым кулаком (46.4±17.40 Н с) или в каратистской перчатке (42.0±18.7 Н с), которые имели почти равные значения. Для определения скорости мешка по его импульсу, нужно импульс мешка разделить на его массу:

v = p/m (5)

где
v – скорость мешка,
p – импульс мешка,
m – масса мешка.

Используя формулу расчета коэффициента восстановления (4) и допуская, что скорость кулака после удара равна нулю, получаем значение для удара голым кулаком около 0,12, т.е. k = 12%. Для случая удара боксерской перчаткой k = 14%. Это подтверждает наш жизненный опыт – удар по боксерскому мешку практически полностью неупругий и почти вся энергия удара уходит на его деформацию.

Следует отдельно отметить, что наибольшая скорость была у кулака в каратистской перчатке. Импульс же мешка при ударе каратистской перчаткой был самый меньший. Показатели ударов голым кулаком в этом исследовании занимали промежуточное положение. Это можно объяснить тем фактом, что спортсмены боялись повредить руку и рефлекторно снижали скорость и силу удара. При ударе в каратистской перчатке такого страха не возникало.

А что же будет при ударе в голову? Обратимся к другому исследованию Валилко, Виано и Бира за 2005 год , в котором исследовались боксерские удары в перчатках по специально сконструированному манекену (рис.2). В данной работе были детально исследованы все параметры удара и ударное воздействие на голову и шею манекена. Шея манекена представляла собою упругую металлическую пружину, поэтому данную модель можно считать, как модель боксера готового к удару с напряженными мышцами шеи. Воспользуемся данными по поступательному движению головы манекена и рассчитаем коэффициент восстановления (k) при прямом ударе в голову.

Рис. 2 Исследование Валилко, Виано и Бира – боксер наносит удар по манекену.

Средняя скорость руки до удара была 9,14 м/с, а средняя скорость головы после удара 2,97 м/с. Таким образом, согласно той же формуле (4) коэффициент восстановления k = 32%. Это значит, что 32% энергии ушло в кинетическое движение головы, а 68% ушло в деформацию шеи и перчатки. Говоря об энергии деформации шеи, речь идет не о геометрической деформации (искривлении) шейного отдела, а об энергии, которую затратили мышцы шеи (в данном случае пружина), чтобы удержать голову в неподвижном состоянии. Фактически это энергия сопротивления удару. О деформации лица манекена, так же как и лицевого черепа человека, не может быть и речи. Кости человека являются очень крепким материалом. В табл. 1 приведены коэффициент упругости (модули Юнга) нескольких материалов. Чем этот коэффициент больше, тем жестче материал. Из таблицы видно, что по жесткости кость немногим уступает бетону.

Таблица 1. Коэффициенты упругости (модули Юнга) разных материалов.

Каков же будет коэффициент восстановления при ударе в голову голым кулаком? Исследований на этот счет нет. Но попытаемся прикинуть возможные последствия. При ударе кулаком, так же как и при ударе перчаткой, большую часть энергии возьмут на себя мышцы шеи, при условии, конечно, что они напряжены. В работе Валилко, Виано и Бира невозможно отделить энергию деформации перчатки от энергии деформации шеи манекена, но можно предположить, что в деформацию шеи ушла львиная доля суммарной энергии деформации. Поэтому можно считать, что при ударе голым кулаком разница в коэффициенте восстановления не будет превышать 2-5% по сравнению с ударом в перчатке, как это было в работе Смита и Хемила, где разница составила 2%. Очевидно, что разница в 2% – это несущественно.

Приведенные выше расчеты делались на основе данных о прямолинейном ускорении головы после удара. Но при всей их относительной сложности они очень далеки от предсказания травматичности удара. Английский физик Холборн, работавший с гелевыми моделями мозга в 1943 году, был одним из первых, кто выдвинул главным параметром травмы мозга вращательное ускорение головы . В работе Оммая и др. говорится, что вращательное ускорение в 4500 рад/с2 приводит к сотрясению и серьезным аксональным травмам. В более ранней работе того же автора говорится, что вращательное ускорение выше 1800 рад/с2 создает 50% вероятность сотрясения мозга. В статье Валилко, Виано и Бира приведены параметры 18-ти разных ударов. Если взять одного и того же боксера и его удар со скоростью руки 9,5 м/с и удар со скоростью 6,7 м/с, то в первом случае коэффициент восстановления равен 32%, а во втором уже 49%. По всем нашим расчетам получается, что второй удар более травматичный: больший коэффициент восстановления (больше энергии ушло в поступательное движение головы), большая эффективная масса (2,1 кг и 4,4 кг), чуть большее ускорение головы (67 g и 68 g). Однако, если мы сравним вращательное ускорение головы, произведенное этими двумя ударами, то увидим, что более травматичным является первый удар (7723 рад/с2 и 5209 рад/с2 соответственно). Причем разница в цифрах довольно существенная. Данный факт свидетельствует о том, что травматичность удара зависит от большого количества переменных и нельзя руководствоваться только одним лишь импульсом p = mv, оценивая эффективность удара. Большое значение здесь играет и место удара, так чтобы вызвать наибольшее вращение головы. В связи с приведенными данными выходит, что фактор боксерской перчатки в травмах и сотрясениях мозга играет далеко не главную роль.

Подведя итог нашей статье, отметим следующее. Факторы влияющие на травмы головного мозга при ударе в боксерской перчатке и без нее отличаются не значительно и могут меняться то в одну, то в другую сторону в зависимости от боксера и вида удара. Гораздо более существенные факторы влияющие на сотрясение мозга лежат вне рассматриваемой плоскости, такие как вид и место удара в голову, определяющие ее вращательный момент.

Вместе с тем, не надо забывать, что боксерские перчатки созданы прежде всего для предохранения мягких тканей лица. Удары без перчаток приводят к повреждениями костей, суставов и мягких тканей как у атакующего, так и у атакуемого спортсмена. Наиболее распространеным и болезненым из них является травма, именуемая “костяшка боксера”.

Костяшка боксера – известный в спортивной медицине термин, используемый для описания травмы кисти – повреждения суставной капсулы пястно-фалангового сустава (обычно II или III), а именно волокон, удерживающих сухожилие мышцы-разгибателя пальцев.

Опасность заражения различными инфекциями, в том числе вирусами гепатита С или ВИЧ и масса других неприятных последствий, включая малопривлекательную внешность, всячески отметают тезис о том, что драться голыми руками безопаснее для здоровья.

Использованная литература:

1. Ламаш Б.Е. Лекции по биомеханике. https://www.dvgu.ru/meteo/book/BioMechan.htm
2. Smith PK, Hamill J. The effect of punching glove type and skill level on momentum transfer. 1986, J. Hum. Mov. Stud. vol.12, pp. 153-161.
3. Walilko T.J., Viano D.C. and Bir C.A. Biomechanics of the head for Olympic boxer punches to the face. 2005, Br J Sports Med. vol.39, pp.710-719
4. Holbourn A.H.S. Mechanics of head injury. 1943, Lancet. vol.2, pp.438-441.
5. Ommaya A.K., Goldsmith W., Thibault L. Biomechanics and neuropathology of adult and paediatric head injury. 2002, Br J Neurosurg. vol.16, №3, pp.220–242.

6. sportmedicine.ru

12 ступеней увеличения скорости удара

Скорость. Ослепляющая, завораживающая, скорость, возможно, является наиболее желанным и зритильно впечатляющим мастерством в боевых искусствах. Молниеносные удары Брюса Ли создали ему репутацию. Скорость присуща большинству из выдающихся профессиональных боксеров, таких, как Шугар Рэй Леонард и Мухаммед Али. Сила Али была лишь адекватна его телосложению в то время, как быстрота удара - просто феноменальной. А руки Леонарда, возможно, были самыми быстрыми из всех тех, которых когда-либо видел мир. Также, бывший чемпион фул-контакт каратэ Билл Уоллес никогда не обладал большой силой удара, но молниеносные удары ногами завоевали ему, до сих не побитый, профессиональный рекорд на ринге.

Заложена ли эта магическая сила в генах человека, или ее можно приобрести и увеличить с помощью тренировок? По словам Др. Джона ЛяТурретта - обладателя черного пояса в кэнпо-каратэ и докторской степени в спортивной психологии - любой может стать “самым быстрым”, если будет следовать нескольким основным принципам.

“Тренировка скорости на 90% является психологической, А может и на 99%”, говорят ЛяТурретт. Такой психологический подход к тренировке, кажется, принес результаты 50-летнему инструктуру каратэ из Медфорда, штат Орегон. Официально было зарегистрировано, что он сумел сделать 16,5 ударов за одну секунду, и он утверждает, что его ученики могут сделать это даже еще быстрее. Следуя 12 ступеням программы по увеличению скорости.

1. УЧИТЕСЬ, НАБЛЮДАЯ ЗА СПЕЦИАЛИСТАМИ. “Если человек хочет стать быстрым бегуном, но не выходит из дома, то он учится быть калекой в инвалидном кресле”, говорит ЛяТурретт. “Все, что ему нужно сделать, это выйти из дома, найти быстрого бегуна его возраста, силы и физиологии тела и изучать его движения, в точности делая то, что тот делает”.

2. ИСПОЛЬЗУЙТЕ ПЛАВНЫЕ, ТЕКУЧИЕ УДАРЫ. Плавная техника ударов китайского стиля обладает намного большей взрывной силой, чем традиционные реверсивные удары в каратэ и в боксе, утверждает ЛяТурретт, т. к. скорость удара генерируется импульсом. Вы можете натренировать мозг и нервную систему для нанесения быстрых ударов. Чтобы достичь этого, выполняйте “плавное” упражнение, состоящее из последовательности движений, начиная с трех-четырех ударов за раз. Как только вы начинаете выполнять эту комбинацию автоматически, добавьте немного больше движений, затем еще немного, до тех пор, пока ваше подсознание не научится связывать каждое отдельное движение в один поток, подобный водопаду. Спустя некоторое время, вы сможете делать 15-20 полных движений за одну или даже менее секунд.

3. ИСПОЛЬЗУЙТЕ СФОКУСИРОВАННУЮ АГРЕССИЮ . Вы должны научиться мгновенно переходить из пассивного состояния в состояние боевой готовности для того, чтобы атаковать до того, как противник сумеет предугадать ваши действия. Любые сомнения о вашей способности защитить себя должны быть искоренены путем психологической подготовки, прежде чем вы попадете в стрессовое состояние.

Время реакции на какое-либо действие делится на три фазы - восприятие, решение и действие - что вместе занимает, приблизительно шестую часть секунды. Воспринимать информацию и принимать соответствующие решения следует в расслабленном состоянии, чтобы не дать намек противнику о ваших последующих действиях. Как только вы сфокусировались, вы можете произвести атаку настолько быстро, что ваш соперник не успеет и глазом моргнуть.

Чтобы правильно выполнить этот тип атаки, вы должны быть абсолютно уверены в своей правоте и способности правильно действовать, иначе вы проиграете. Как выражается сам Ля Турретт: “Болтая, не готовьте рис”. Вы должны быть агрессивны и уверены в своем мастерстве. Уверенность в себе должна рождаться в бою с реальным противником в большей степени, чем при выполнении ката, где вы атакуете воображаемого противника.

Вы также должны сохранять постоянное состояние готовности, внимательно наблюдать за происходящими вокруг вас событиями, быть в любой момент готовым, в случае опасности, реализовать потенциальную силу. Это особенное физическое, психическое и эмоциональное состояние может освоить любой человек, но только в условиях непосредственной конфронтации с противником.

Как только вы достигли этого уровня подготовки, проанализируйте и постарайтесь разложить по категориям появившиеся у вас ощущения. Позже, в условиях поединка, вы можете извлечь из памяти полученный опыт, что даст вам несомненное преимущество перед противником.

Задайте себе следующие вопросы: Что в особенности отвлекает меня? Может быть расстояние между мной и противником? Или его нескрываемая злоба по отношению ко мне? Его манера выражаться? Какое внимание оказывает на меня это психическое состояние? Какие ощущения я переживаю? Как я выглядел? Какое у меня было выражение лица? Какие мышцы были напряжены? Какие расслаблены? Что я сам себе говорил, находясь в этом состоянии? (Лучше всего было бы, если бы вы не “бормотали” что-то там про себя.) Какие мысленные образы возникали у меня? На чем я был зрительно сосредоточен?

После того, как вы найдете себе ответы на заданные вопросы, воспроизведите ситуацию вновь, постарайтесь, чтобы в вашем мозгу снова ярко возникли ощущения, окружающая обстановка и звуки. Повторяйте это снова и снова до тех пор, пока вы не будете в состоянии ввести себя в это психическое состояние в любой момент.

4. ИСПОЛЬЗУЙТЕ ГОТОВЫЕ СТОЙКИ, КОТОРЫЕ МОГУТ ДАТЬ ВАМ ВОЗМОЖНОСТЬ ВЫБОРА. Один из секретов успеха Уоллеса заключался в том, что он из одной единственной позиции ног мог мгновенно произвести боковой удар ногой, круговой удар и обратный круговой с одинаковой точностью. Одним словом, ваша стойка должна дать вам возможность делать рубящие удары, удары в стиле “коготь”, локтями, толчки или удары “молот”, в зависимости от действий противника.

Используйте боевую технику, которая, как вы считаете, в наибольшей степени подходит вам. Научитесь занимать такую позицию, из которой вам достаточно сделать лишь незначительное движение, чтобы передвинуться от одной мишени к другой. Подбор натуральной (природной) боевой позиции исключает необходимость в выборе стойки и позволяет вам поймать противника врасплох. А озадаченный противник - уже наполовину побежденный.

5. ОСТЕРЕГАЙТЕСЬ ПСИХОЛОГИИ ОДНОГО СМЕРТЕЛЬНОГО УДАРА. Это заключение правила номер один. Ваша начальная атака должна быть последовательностью, состоящей из трех ударов даже в том случае, если первый удар был способен остановить атакующего противника. Первый удар является “закуской”, второй - “главным блюдом”, ну, а третий - “десертом”.

В то время, как ничего не подозревающий противник готовится к прямому удару или удару “задней” ногой, - говорит ЛяТурретт, - вы можете ослепить его шлепком по глазам, кулаком левой руки ударить в висок, правым локтем в другой висок. Затем вы можете ударить его правым локтем в челюсть, а левой рукой по глазам. Опуститесь в стойку на коленях и ударьте правым кулаком в пах, а двумя пальцами левой руки - по глазам противника. Вот и конец этой истории”.

6. ИСПОЛЬЗУЙТЕ УПРАЖНЕНИЯ ПО ВИЗУАЛИЗАЦИИ. Во время занятий упражнениями на развитие скорости удара, вы должны думать, что выполняете удары с желанной для вас скоростью. “Если вы не видите, вы не сможете это сделать”, - говорит ЛяТурретт. Такая психологическая подготовка во многом дополняет физическую.

Визуализация не так уж сложна, как думают многие люди. Попробуйте сделать следующий эксперимент: остановитесь прямо сейчас и опишите себе цвет вашей машины. Потом апельсин. Затем вашего лучшего друга. Каким образом вы сумели все это описать? Вы ВООБРАЗИЛИ их себе.

Многие люди не знают, что они часто создают “образы” в своей голове на подсазнательном уровне. Ту часть мозга, которая ответственна за создание и воспроизведение образов, вполне можно точно настроить даже в том случае, если они не привыкли обращаться к ней.

Как только вы научились представлять себя в условиях реального боя, попробуйте увидеть и почувствовать, что ваши действия достигают выбранных вами мишеней. Почувствуйте, что ваши согнутые колени добавляют мощи вашим ударам. Почувствуйте толчок вашей ноги по мячу во время удара, и т. д…

7. ИДЕНТИФИЦИРУЙТЕ ОТКРЫТЫЕ МИШЕНИ. Чтобы научиться идентифицировать открытые мишени и предугадывать действия противника, необходимо тренироваться с реальным противником. Чувства синхронности можно добиться путем многократного воспроизведения атак до тех пор, пока у вас не появится твердая уверенность в том, что вы сможете применять его в условиях реального боя.

Одной из причин того, что у боксеров настолько хорошая скорость удара является то, что они тысячи раз отрабатывают свою технику в спарринге. И когда перед ними возникает цель, они не думают, они ДЕЙСТВУЮТ. Этот подсознательный навык можно легко приобрести, но короткого пути достижения этого нет. Вы должны тренироваться вновь и вновь до тех пор, пока ваши действия не станут инстинктивными.

8. НЕ “ТЕЛЕГРАФИРУЙТЕ” ВАШИ ДЕЙСТВИЯ. Не имеет значения, насколько вы быстры, т. к. если ваш противник предугадал ваши действия, вы уже не достаточно быстры. Можете верить или нет, вашему противнику сложнее увидеть удар, идущий на уровне его глаз, чем круговой удар сбоку.

Удар “хук” (не круговой, а хук) требует намного больше движений, и его намного легче блокировать. Одним словом, правильно произведенный удар в область переносицы может поразить противника раньше, чем он поймет, что вы его ударили. Прежде всего, не выдавайте своих намерений сжимая кулаки, двигая плечом или глубоким вздохом перед нанесением удара.

Как только вы усвоите физическую структуру техники упражнений, попрактикуйтесь в извлечении преимуществ из ограничений восприятия человека, пытаясь занять положение, ограничивающее возможность противника увидеть и предугадать ваши действия. Этот навык требует много практики, но как только вы усвоите его, вы сможете атаковать противника, практически безнаказанно.

9. ИСПОЛЬЗУЙТЕ ПРАВИЛЬНУЮ ДЫХАТЕЛЬНУЮ ТЕХНИКУ. Во время боя многие спортсмены задерживают дыхание, чем наносят себе большой вред. Тело становится напряженным, в следствие чего уменьшается скорость и сила ваших ударов. Киай во время выполнения техники даже вредит вам, т. к. гасит ваш импульс. Ключом к высокой скорости ударов является то, что вы должны выдыхать воздух в соответствии с ударами.

10. ПОДДЕРЖИВАЙТЕ ХОРОШУЮ ФИЗИЧЕСКУЮ ФОРМУ. Гибкость, сила и выносливость играют важнейшую роль при самозащите даже учитывая то, что большинство уличных боев длятся секунды. Если ваше тело одновременно гибкое и расслабленное, то вы сможете наносить удары практически под любым углом, поражая высокие и низкие цели без неудобной перемены стоек. Также, чрезвычайно важна и сила ног. Чем сильнее будут ваши ноги, тем сильнее будет ваш удар, и тем быстрее вы сможете сокращать расстояние между вами и противником. Важно увеличить силу рук и предплечий путем тренировок с отягощениями и специальными упражнениями на удары. Упражнения помогут вам укрепить ладони и запястья, улучшат точность и проникновение ударов.

11. БУДЬТЕ УПОРНЫМИ. Вы должны дать себе обязательство три раза в неделю в течение 20-30 минут стараться заметно улучшить скорость удара. Будьте готовы к тому, что неизбежно наступят периоды, когда вам будет казаться, чтовы не делаете значительного прогресса. Большинство людей испытывают пять уровней чувства прогресса или отсутствия зримых результатов во время тренировок.

Существует “бессознательная некомпетентность” (буквально) когда Вы не осознаете проблемы и пути их решения.

Это такая точка, когда вы пониматете, что ваши знания и мастерство недостаточны, и вы начинаете искать пути решения проблемы. “Бессознательная некомпетентность” означает то, что вы можете выполнить новые упражнения только тогда, когда ваше внимание предельно сфокусированно.

Это наиболее трудная ступень ориентировок, и вам кажется, что она будет длиться целую вечность. Процесс трансформации сознания в рефлексивные действия занимает приблизительно от 3000 до 5000 повторений. “Бессознательная некомпетентность” является единственным уровнем мастерства, когда настоящая скорость становится достижимой. В то время, как вы учитесь реагировать инстинктивно. Достичь этого уровня можно лишь путем тысяч повторений техники. Большинство людей находится в этом рефлексивном или автоматическом психическом состоянии, когда ведут свою машину, что позволяет им реагировать на дорожные неприятности с бессознательным хладнокровием, они не задумываются над тем, как переключить передачи или нажимать на тормоз. Вы не сможете увеличить скорость удара до тех пор, пока ваши базовые движения не будут основываться на рефлексах. Финальной ступенью мастерства является “сознание вашей бессознательной некомпетентности”, точки, которой сумели за все время достичь лишь несколько людей.

12. СОХРАНЯЙТЕ ЕСТЕСТВЕННУЮ, РАССЛАБЛЕННУЮ, СБАЛАНСИРОВАННУЮ СТОЙКУ. Лучшей боевой стойкой является та, что не выглядит как боевая стойка. Как точно отметил легендарный мастер меча из Японии Мусаси Миямото “Ваша боевая стойка становится вашей повседневной стойкой, а ваша повседневная стойка становится боевой”. Вы должны точно знать, какие техники вы можете применить из каждой позиции, и должны уметь выполнить их естественным путем, без колебаний или перемены стоек.

Практикуйте эти 12 принципов каждый день в течение 20-ти минут. После месяца тренировок вы будете совершенствовать новую, сокрушительную скорость. ЛяТурретт говорит: “Не существует от природы быстрых бойцов. Каждому приходилось так же, как и вам, тренироваться. Чем с большим усердием вы тренируетесь, тем менее вы уязвимы в бою”.