Вариационные ряды: определение, виды, основные характеристики. Методика расчета
моды, медианы, средней арифметической в медико-статистических исследованиях
(показать на условном примере).

Вариационный ряд – это ряд числовых значений изучаемого признака, отличающихся друг от друга по своей величине и расположенных в определенной последовательности(в восходящем или убывающем порядке). Каждое числовое значение ряда называют вариантой (V), а числа, показывающие, как часто встречается та или иная варианта в составе данного ряда, называется частотой (р).

Общее число случаев наблюдений, из которых вариационный ряд состоит, обозначают буквой n. Различие в значении изучаемых признаков называется вариацией. В случае если варьирующий признак не имеет количественной меры, вариацию называют качественной, а ряд распределения – атрибутивным (например, распределение по исходу заболевания, по состоянию здоровья и т.д.).

Если варьирующий признак имеет количественное выражение, такую вариацию называют количественной, а ряд распределения – вариационным.

Вариационные ряды делятся на прерывные и непрерывные – по характеру количественного признака, простые и взвешенные – по частоте встречаемости вариант.

В простом вариационном ряду каждая варианта встречается только один раз (р=1), во взвешенном – одна и та же варианта встречается несколько раз (р>1). Примеры таких рядов будут рассмотрены далее по тексту. Если количественный признак носит непрерывный характер, т.е. между целыми величинами имеются промежуточные дробные величины, вариационный ряд называется непрерывным.

Например: 10,0 – 11,9

14,0 – 15,9 и т.д.

Если количественный признак носит прерывный характер, т.е. отдельные его значения (варианты) отличаются друг от друга на целое число и не имеют промежуточных дробных значений, вариационный ряд называют прерывным или дискретным.

Используя данные предыдущего примера о частоте пульса

у 21 студентов, построим вариационный ряд (табл. 1).

Таблица 1

Распределение студентов-медиков по частоте пульса (уд/мин)

Таким образом, построить вариационный ряд – означает имеющиеся числовые значения (варианты) систематизировать, упорядочить, т.е. расположить в определенной последовательности (в восходящем или убывающем порядке) с соответствующими им частотами. В рассматриваемом примере варианты расположены в восходящем порядке и выражены в виде целых прерывных (дискретных) чисел, каждая варианта встречается несколько раз, т.е. мы имеем дело со взвешенным, прерывным или дискретным вариационным рядом.

Как правило, если число наблюдений в изучаемой нами статистической совокупности не превышает 30, то достаточно все значения изучаемого признака расположить в вариационном ряду в нарастающем, как в табл. 1, или убывающем порядке.

При большом количестве наблюдений (n>30) число встречающихся вариант может быть очень большим, в этом случае составляется интервальный или сгруппированный вариационный ряд, в котором для упрощения последующей обработки и выяснения характера распределения варианты объединены в группы.

Обычно число групповых вариант колеблется от 8 до 15.

Их должно быть не меньше 5, т.к. иначе это будет слишком грубое, чрезмерное укрупнение, что искажает общую картину варьирования и сильно сказывается на точности средних величин. При числе групповых вариант более 20-25 увеличивается точность вычисления средних величин, но существенно искажаются особенности варьирования признака и усложняется математическая обработка.

При составлении сгруппированного ряда необходимо учесть,

− группы вариант должны располагаться в определенном порядке (в восходящем или нисходящем);

− интервалы в группах вариант должны быть одинаковыми;

− значения границ интервалов не должны совпадать, т.к. неясно будет, в какие группы относить отдельные варианты;

− необходимо учитывать качественные особенности собираемого материала при установлении пределов интервалов (например, при изучении веса взрослых людей интервал 3-4 кг допустим, а для детей первых месяцев жизни он не должен превышать 100 г.)

Построим сгруппированный (интервальный) ряд, характеризующий данные о частоте пульса (число ударов в минуту) у 55 студентов-медиков перед экзаменом: 64, 66, 60, 62,

64, 68, 70, 66, 70, 68, 62, 68, 70, 72, 60, 70, 74, 62, 70, 72, 72,

64, 70, 72, 76, 76, 68, 70, 58, 76, 74, 76, 76, 82, 76, 72, 76, 74,

79, 78, 74, 78, 74, 78, 74, 74, 78, 76, 78, 76, 80, 80, 80, 78, 78.

Для построения сгруппированного ряда необходимо:

1. Определить величину интервала;

2. Определить середину, начало и конец групп вариант вариационного ряда.

● Величина интервала (i) определяется по числу предполагаемых групп (r), количество которых устанавливается в зависимости от числа наблюдений (n) по специальной таблице

Число групп в зависимости от числа наблюдений:

В нашем случае, для 55 студентов, можно составить от 8 до 10 групп.

Величина интервала (i) определяется по следующей формуле –

i = V max-V min/r

В нашем примере величина интервала равна 82- 58/8= 3.

Если величина интервала представляет собой дробное число, полученный результат следует округлить до целого числа.

Различают несколько видов средних величин:

средняя арифметическая,

● средняя геометрическая,

● средняя гармоническая,

● средняя квадратическая,

● средняя прогрессивная,

● медиана

В медицинской статистике наиболее часто пользуются средними арифметическими величинами.

Средняя арифметическая величина (М) является обобщающей величиной, которая определяет то типичное, что характерно для всей совокупности. Основными способами расчета М являются: среднеарифметический способ и способ моментов (условных отклонений).

Среднеарифметический способ применяется для вычисления средней арифметической простой и средней арифметической взвешенной. Выбор способа расчета средней арифметической величины зависит от вида вариационного ряда. В случае простого вариационного ряда, в котором каждая варианта встречается только один раз, определяется средняя арифметическая простая по формуле:

где: М – средняя арифметическая величина;

V – значение варьирующего признака (варианты);

Σ – указывает действие – суммирование;

n – общее число наблюдений.

Пример расчета средней арифметической простой. Частота дыхания (число дыхательных движений в минуту) у 9 мужчин в возрасте 35 лет: 20, 22, 19, 15, 16, 21, 17, 23, 18.

Для определения среднего уровня частоты дыхания у мужчин в возрасте 35 лет необходимо:

1. Построить вариационный ряд, расположив все варианты в возрастающем или убывающем порядке Мы получили простой вариационный ряд, т.к. значения вариант встречаются только один раз.

M = ∑V/n = 171/9 = 19 дыхательных движений в минуту

Вывод. Частота дыхания у мужчин в возрасте 35 лет в среднем равна 19 дыхательным движениям в минуту.

Если отдельные значения вариант повторяются, незачем выписывать в линию каждую варианту, достаточно перечислить встречающиеся размеры вариант (V) и рядом указать число их повторений (р). такой вариационный ряд, в котором варианты как бы взвешиваются по числу соответствующих им частот, носит название – взвешенный вариационный ряд, а рассчитываемая средняя величина – средней арифметической взвешенной.

Средняя арифметическая взвешенная определяется по формуле: M= ∑Vp/n

где n – число наблюдений, равное сумме частот – Σр.

Пример расчета средней арифметической взвешенной.

Длительность нетрудоспособности (в днях) у 35 больных острыми респираторными заболеваниями (ОРЗ), лечившихся у участкового врача на протяжении I-го квартала текущего года составила: 6, 7, 5, 3, 9, 8, 7, 5, 6, 4, 9, 8, 7, 6, 6, 9, 6, 5, 10, 8, 7, 11, 13, 5, 6, 7, 12, 4, 3, 5, 2, 5, 6, 6, 7 дней.

Методика определения средней длительности нетрудоспособности у больных с ОРЗ следующая:

1. Построим взвешенный вариационный ряд, т.к. отдельные значения вариант повторяются несколько раз. Для этого можно расположить все варианты в возрастающем или убывающем порядке с соответствующими им частотами.

В нашем случае варианты расположены в возрастающем порядке

2. Рассчитаем среднюю арифметическую взвешенную по формуле: M = ∑Vp/n = 233/35 = 6,7 дней

Распределение больных с ОРЗ по длительности нетрудоспособности:

Длительность нетрудоспособности (V) Число больных (p) Vp
∑p = n = 35 ∑Vp = 233

Вывод. Длительность нетрудоспособности у больных с острыми респираторными заболеваниями составила в среднем 6,7 дней.

Мода (Мо) – наиболее часто встречающаяся варианта в вариационном ряду. Для распределения, представленного в таблице, моде соответствует варианта, равная 10, она встречается чаще других – 6 раз.

Распределение больных по длительности пребывания на больничной койке (в днях)

V
p

Иногда точную величину моды установить трудно, поскольку в изучаемых данных может существовать несколько наблюдений, встречающихся «наиболее часто».

Медиана (Ме) – непараметрический показатель, делящий вариационный ряд на две равные половины: в обе стороны от медианы располагается одинаковое число вариант.

Например, для распределения, указанного в таблице, медиана равна 10, т.к. по обе стороны от этой величины располагается по 14 вариант, т.е. число 10 занимает центральное положение в этом ряду и является его медианой.

Учитывая, что число наблюдений в этом примере четное (n=34), медиану можно определить таким образом:

Me = 2+3+4+5+6+5+4+3+2/2 = 34/2 = 17

Это означает, что середина ряда приходится на семнадцатую по счету варианту, которой соответствует медиана, равная 10. Для распределения, представленного в таблице, средняя арифметическая равна:

M = ∑Vp/n = 334/34 = 10,1

Итак, для 34 наблюдений из табл. 8, мы получили: Мо=10, Ме=10, средняя арифметическая (М) равна 10,1. В нашем примере все три показателя оказались равными или близкими друг к другу, хотя они совершенно различны.

Средняя арифметическая является результативной суммой всех влияний, в формировании ее принимают участие все без исключения варианты, в том числе и крайние, часто нетипичные для данного явления или совокупности.

Мода и медиана, в отличие от средней арифметической, не зависят от величины всех индивидуальных значений варьирующего признака (значений крайних вариант и степени рассеяния ряда). Средняя арифметическая характеризует всю массу наблюдений, мода и медиана – основную массу

Различные выборочные значения назовемвариантами ряда значений и обозначим: х 1 , х 2 , …. Прежде всего произведем ранжирование вариантов, т.е. расположение их в порядке возрастания или убывания. Для каждого варианта указывается свой вес, т.е. число, которое характеризует вклад данного варианта в общую совокупность. В качестве весов выступают частоты или частости.

Частотой n i варианта х i называется число, показывающее сколько раз встречается данный вариант в рассматриваемой выборочной совокупности.

Частостью или относительной частотой w i варианта х i называется число, равное отношению частоты варианта к сумме частот всех вариантов. Частость показывает, какая часть единиц выборочной совокупности имеет данный вариант.

Последовательность вариантов с соответствующими им весами (частотами или частостями), записанная в порядке возрастания (или убывания), называется вариационным рядом .

Вариационные ряды бывают дискретными и интервальными.

Для дискретного вариационного ряда задаются точечные значения признака, для интервального – значения признака задаются в виде интервалов. Вариационные ряды могут показывать распределение частот или относительных частот (частостей), в зависимости от того, какая величина указывается для каждого варианта – частота или частость.

Дискретный вариационный ряд распределения частот имеет вид:

Частости находятся по формуле , i = 1, 2, …, m .

w 1 + w 2 + … + w m = 1.

Пример 4.1. Для данной совокупности чисел

4, 6, 6, 3, 4, 9, 6, 4, 6, 6

построить дискретные вариационные ряды распределения частот и частостей.

Решение . Объем совокупности равен n = 10. Дискретный ряд распределения частот имеет вид

Аналогичную форму записи имеют интервальные ряды.

Интервальный вариационный ряд распределения частот записывается в виде:

Сумма всех частот равна общему числу наблюдений, т.е. объему совокупности: n = n 1 + n 2 + … + n m .

Интервальный вариационный ряд распределения относительных частот (частостей) имеет вид:

Частость находится по формуле , i = 1, 2, …, m .

Сумма всех частостей равна единице: w 1 + w 2 + … + w m = 1.

Наиболее часто на практике применяются интервальные ряды. Если статистических выборочных данных очень много и их значения отличаются друг от друга на сколь угодно малую величину, то дискретный ряд для этих данных будет достаточно громоздким и неудобным для дальнейшего исследования. В этом случае применяют группировку данных, т.е. промежуток, содержащий все значения признака, разбивают на несколько частичных интервалов и, подсчитав частоту для каждого интервала, получают интервальный ряд. Запишем более подробно схему построения интервального ряда, предположив, что длины частичных интервалов будут одинаковыми.

2.2 Построение интервального ряда

Для построения интервального ряда нужно:

Определить число интервалов;

Определить длину интервалов;

Определить расположение интервалов на оси.

Для определения числа интервалов k существует формула Стерджеса, по которой

,

где n - объем всей совокупности.

Например, если имеется 100 значений признака (вариант), то рекомендуется для построения интервального ряда взять число интервалов равным интервалам.

Однако очень часто на практике число интервалов выбирает сам исследователь, учитывая, что это число не должно быть очень большим, чтобы ряд не был громоздким, но и не очень маленьким, чтобы не потерять некоторых свойств распределения.

Длина интервала h определяется по следующей формуле:

,

где x max и x min - это соответственно самое большое и самое маленькое значения вариантов.

Величину называют размахом ряда.

Для построения самих интервалов поступают по-разному. Один из самых простых способов заключается в следующем. За начало первого интервала принимают величину
. Тогда остальные границы интервалов находятся по формуле . Очевидно, что конец последнего интервала a m+1 должен удовлетворять условию

После того как найдены все границы интервалов, определяют частоты (или частости) этих интервалов. Для решения этой задачи просматривают все варианты и определяют число вариант, попавших в тот или иной интервал. Полное построение интервального ряда рассмотрим на примере.

Пример 4.2. Для следующих статистических данных, записанных в порядке возрастания, построить интервальный ряд с числом интервалов, равным 5:

11, 12, 12, 14, 14, 15, 21, 21, 22, 23, 25, 38, 38, 39, 42, 42, 44, 45, 50, 50, 55, 56, 58, 60, 62, 63, 65, 68, 68, 68, 70, 75, 78, 78, 78, 78, 80, 80, 86, 88, 90, 91, 91, 91, 91, 91, 93, 93, 95, 96.

Решение. Всего n =50 значений вариантов.

Число интервалов задано в условии задачи, т.е. k =5.

Длина интервалов равна
.

Определим границы интервалов:

a 1 = 11 − 8,5 = 2,5; a 2 = 2,5 + 17 = 19,5; a 3 = 19,5 + 17 = 36,5;

a 4 = 36,5 + 17 = 53,5; a 5 = 53,5 + 17 = 70,5; a 6 = 70,5 + 17 = 87,5;

a 7 = 87,5 +17 = 104,5.

Для определения частоты интервалов посчитываем число вариантов, попавших в данный интервал. Например, в первый интервал от 2,5 до 19,5 попадают варианты 11, 12, 12, 14, 14, 15. Их число равно 6, следовательно, частота первого интервала равна n 1 =6. Частость первого интервала равна . Во второй интервал от 19,5 до 36,5 попадают варианты 21, 21, 22, 23, 25, число которых равно 5. Следовательно, частота второго интервала равна n 2 =5, а частость . Найдя аналогичным образом частоты и частости для всех интервалов, получим следующие интервальные ряды.

Интервальный ряд распределения частот имеет вид:

Сумма частот равна 6+5+9+11+8+11=50.

Интервальный ряд распределения частостей имеет вид:

Сумма частостей равна 0,12+0,1+0,18+0,22+0,16+0,22=1. ■

При построении интервальных рядов, в зависимости от конкретных условий рассматриваемой задачи, могут применяться и другие правила, а именно

1. Интервальные вариационные ряды могут состоять из частичных интервалов разной длины. Неравные длины интервалов позволяют выделить свойства статистической совокупности с неравномерным распределением признака. Например, если границы интервалов определяют численность жителей в городах, то целесообразно в данной задаче использовать неравные по длине интервалы. Очевидно, что для небольших городов имеет значение и небольшая разница в числе жителей, а для больших городов разница в десятки и сотни жителей не имеет существенного значения. Интервальные ряды с неравными длинами частичных интервалов исследуются, в основном, в общей теории статистики и их рассмотрение выходит за рамки данного пособия.

2. В математической статистике иногда рассматривают интервальные ряды, для которых левую границу первого интервала полагают равной –∞, а правую границу последнего интервала +∞. Это делается для того, чтобы приблизить статистическое распределение к теоретическому.

3. При построении интервальных рядов может оказаться, что значение какого-то варианта совпадает в точности с границей интервала. Лучше всего в этом случае поступить следующим образом. Если такое совпадение только одно, то считать, что рассматриваемый вариант со своей частотой попал в интервал, находящийся ближе к середине интервального ряда, если таких вариантов несколько, то либо все их отнести к правым от этих вариант интервалам, либо все – к левым.

4. После определения числа интервалов и их длины, расположение интервалов можно производить и по другому способу. Находят среднее арифметическое всех рассматриваемых значений вариантов х ср. и строят первый интервал таким образом, чтобы это среднее выборочное находилось бы внутри какого-то интервала. Таким образом, получаем интервал от х ср. – 0,5h до х ср.. + 0,5h . Затем влево и вправо, прибавляя длину интервала, строим остальные интервалы до тех пор, пока x min и x max не попадут соответственно в первый и последний интервалы.

5. Интервальные ряды при большом числе интервалов удобно записывать вертикально, т.е. интервалы записывать не в первой строке, а в первом столбце, а частоты (или частости) во втором столбце.

Выборочные данные могут рассматриваться как значения некоторой случайной величины Х . Случайная величина имеет свой закон распределения. Из теории вероятностей известно, что закон распределения дискретной случайной величины можно задать в виде ряда распределения, а непрерывной – с помощью функции плотности распределения. Однако существует универсальный закон распределения, который имеет место и для дискретной и для непрерывной случайных величин. Этот закон распределения задается в виде функции распределения F (x ) = P (X <x ). Для выборочных данных можно указать аналог функции распределения – эмпирическую функцию распределения.

Совокупность предметов или явлений, объединенных каким-либо общим признаком или свойством качественного или количественного характера, называется объектом наблюдения .

Всякий объект статистического наблюдения состоит из отдельных элементов - единиц наблюдения .

Результаты статистического наблюдения представляют собой числовую информацию - данные . Статистические данные - это сведения о том, какие значения принял интересующий исследователя признак в статистической совокупности.

Если значения признака выражаются числами, то признак называется количественным .

Если признак характеризует некоторое свойство или состояние элементов совокупности, то признак называется качественным .

Если исследованию подлежат все элементы совокупности (сплошное наблюдение), то статистическую совокупность называют генеральной.

Если исследованию подлежит часть элементов генеральной совокупности, то статистическую совокупность называют выборочной (выборкой) . Выборка из генеральной совокупности извлекается случайно, так чтобы каждый из n элементов выборки имел равные шансы быть отобранным.

Значения признака при переходе от одного элемента совокупности к другому изменяются (варьируют), поэтому в статистике различные значения признака также называют вариантами . Варианты обычно обозначаются малыми латинскими буквами x, y, z.

Порядковый номер варианта (значения признака) называется рангом . x 1 - 1-й вариант (1-е значение признака), x 2 - 2-й вариант (2-е значение признака), x i - i-й вариант (i-е значение признака).

Упорядоченный в порядке возрастания или убывания ряд значений признака (вариантов) с соответствующими им весами называется вариационным рядом (рядом распределения).

В качестве весов выступают частоты или частости.

Частота (m i) показывает сколько раз встречается тот или иной вариант (значение признака) в статистической совокупности.

Частость или относительная частота (w i) показывает, какая часть единиц совокупности имеет тот или иной вариант. Частость рассчитывается как отношение частоты того или иного варианта к сумме всех частот ряда.

. (6.1)

Сумма всех частостей равна 1.

. (6.2)

Вариационные ряды бывают дискретными и интервальными.

Дискретные вариационные ряды строят обычно в том случае, если значения изучаемого признака могут отличаться друг от друга не менее чем на некоторую конечную величину.

В дискретных вариационных рядах задаются точечные значения признака.

Общий вид дискретного вариационного ряда указан в таблице 6.1.

Таблица 6.1

где i = 1, 2, … , l.

В интервальных вариационных рядах в каждом интервале выделяют верхнюю и нижнюю границы интервала.

Разность между верхней и нижней границами интервала называют интервальной разностью или длиной (величиной) интервала .

Величина первого интервала k 1 определяется по формуле:

k 1 = а 2 - а 1 ;

второго: k 2 = а 3 - а 2 ; …

последнего: k l = a l - a l -1 .

В общем виде интервальная разность k i рассчитывается по формуле:

k i = x i (max) - x i (min) . (6.3)

Если интервал имеет обе границы, то его называют закрытым .

Первый и последний интервалы могут быть открытыми , т.е. иметь только одну границу.

Например, первый интервал может быть задан как "до 100", второй - "100-110", … , предпоследний - "190-200", последний - "200 и более". Очевидно, что первый интервал не имеет нижней границы, а последний - верхней, оба они - открытые.

Часто открытые интервалы приходится условно закрывать. Для этого обычно величину первого интервала принимают равной величине второго, а величину последнего - величине предпоследнего. В нашем примере величина второго интервала равна 110-100=10, следовательно, нижняя граница первого интервала условно составит 100-10=90; величина предпоследнего интервала равна 200-190=10, следовательно, верхняя граница последнего интервала условно составит 200+10=210.

Кроме этого, в интервальном вариационном ряде могут встречаются интервалы разной длины. Если интервалы в вариационном ряде имеют одинаковую длину (интервальную разность), их называют равновеликими , в противном случае - неравновеликими.

При построении интервального вариационного ряда часто встает проблема выбора величины интервалов (интервальной разности).

Для определения оптимальной величины интервалов (в том случае, если строится ряд с равными интервалами) применяют формулу Стэрджесса:

, (6.4)

где n - число единиц совокупности,

x (max) и x (min) - наибольшее и наименьшее значения вариантов ряда.

Для характеристики вариационного ряда наряду с частотами и частостями используются накопленные частоты и частости.

Накопленные частоты (частости) показывают сколько единиц совокупности (какая их часть) не превышают заданного значения (варианта) х.

Накопленные частоты (v i ) по данным дискретного ряда можно рассчитать по следующей формуле:

. (6.5)

Для интервального вариационного ряда - это сумма частот (частостей) всех интервалов, не превышающих данный.

Дискретный вариационный ряд графически можно представить с помощьюполигона распределения частот или частостей .

При построении полигона распределения по оси абсцисс откладываются значения признака (варианты), а по оси ординат - частоты или частости. На пересечении значений признака и соответствующих им частот (частостей) откладываются точки, которые, в свою очередь, соединяются отрезками. Получающаяся таким образом ломаная называется полигоном распределения частот (частостей).

x k
x 2
x 1 x i


Рис. 6.1.

Интервальные вариационные ряды графически можно представить с помощью гистограммы , т.е. столбчатой диаграммы.

При построении гистограммы по оси абсцисс откладываются значения изучаемого признака (границы интервалов).

В том случае, если интервалы - одинаковой величины, по оси ординат можно откладывать частоты или частости.

Если же интервалы имеют разную величину, по оси ординат необходимо откладывать значения абсолютной или относительной плотности распределения.

Абсолютная плотность - отношение частоты интервала к величине интервала:

; (6.6)

где: f(a) i - абсолютная плотность i-го интервала;

m i - частота i-го интервала;

k i - величина i-го интервала (интервальная разность).

Абсолютная плотность показывает, сколько единиц совокупности приходится на единицу интервала.

Относительная плотность - отношение частости интервала к величине интервала:

; (6.7)

где: f(о) i - относительная плотность i-го интервала;

w i - частость i-го интервала.

Относительная плотность показывает, какая часть единиц совокупности приходится на единицу интервала.

a l
a 1 x i
a 2

И дискретные и интервальные вариационные ряды графически можно представить в виде кумуляты и огивы.

При построении кумуляты по данным дискретного ряда по оси абсцисс откладываются значения признака (варианты), а по оси ординат - накопленные частоты или частости. На пересечении значений признака (вариантов) и соответствующих им накопленных частот (частостей) строятся точки, которые, в свою очередь, соединяются отрезками или кривой. Получающаяся таким образом ломаная (кривая) называется кумулятой (кумулятивной кривой).

При построении кумуляты по данным интервального ряда по оси абсцисс откладываются границы интервалов. Абсциссами точек являются верхние границы интервалов. Ординаты образуют накопленные частоты (частости) соответствующих интервалов. Часто добавляют еще одну точку, абсциссой которой является нижняя граница первого интервала, а ордината равна нулю. Соединяя точки отрезками или кривой, получим кумуляту.

Огива строится аналогично кумуляте с той лишь разницей, что на оси абсцисс наносятся точки, соответствующие накопленным частотам (частостям), а по оси ординат - значения признака (варианты).

  • Вводный урок бесплатно ;
  • Большое число опытных преподавателей (нейтивов и русскоязычных);
  • Курсы НЕ на определенный срок (месяц, полгода, год), а на конкретное количество занятий (5, 10, 20, 50);
  • Более 10 000 довольных клиентов.
  • Стоимость одного занятия с русскоязычным преподавателем - от 600 рублей , с носителем языка - от 1500 рублей

Понятие вариационного ряда. Первым шагом систематизации материалов статистического наблюдения является подсчет числа единиц, обладающих тем или иным признаком. Расположив единицы в порядке возрастания или убывания их количественного признака и подсчитав число единиц с конкретным значением признака, получаем вариационный ряд. Вариационный ряд характеризует распределение единиц определенной статистической совокупности по какому–либо количественному признаку.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f).

Схематично вариационный ряд можно представить в виде табл.5.1:

Таблица 5.1

Вид вариационного ряда

Варианты (x)

Частоты (f)

В правой колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуют частостями и условно обозначают через , т.е. . Сумма всех частостей равна единице. Частости могут быть выражены и в процентах, и тогда их сумма будет равна 100%.

Варьирующие признаки могут носить разный характер. Варианты одних признаков выражаются в целых числах, например, число комнат в квартире, число изданных книг и т.д. Эти признаки именуют прерывными, или дискретными. Варианты других признаков могут принимать любые значения в определенных пределах, как, например, выполнение плановых заданий, заработная плата и др. Эти признаки называют непрерывными.

Дискретный вариационный ряд. Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд называют дискретным, его внешний вид представлен в табл. 5.2:

Таблица 5.2

Распределение студентов по оценкам, полученным на экзамене

Оценки (х)

Количество студентов (f)

В % к итогу ()

Характер распределения в дискретных рядах изображается графически в виде полигона распределения, рис.5.1.

Рис. 5.1. Распределение студентов по оценкам, полученным на экзамене.

Интервальный вариационный ряд. Для непрерывных признаков вариационные ряды строятся интервальные, т.е. значения признака в них выражаются в виде интервалов «от и до». При этом минимальное значение признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей интервала.

Интервальные вариационные ряды строят как для прерывных признаков (дискретных), так и для варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами. В экономической практике в большинстве своем применяются неравные интервалы, прогрессивно возрастающие или убывающие. Такая необходимость возникает особенно в тех случаях, когда колеблемость признака осуществляется неравномерно и в больших пределах.

Рассмотрим вид интервального ряда с равными интервалами, табл. 5.3:

Таблица 5.3

Распределение рабочих по выработке

Выработка, т.р. (х)

Число рабочих (f)

Кумулятивная частота (f´)

Интервальный ряд распределения графически изображается в виде гистограммы, рис.5.2.

Рис.5.2. Распределение рабочих по выработке

Накопленная (кумулятивная) частота. В практике возникает потребность в преобразовании рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. С их помощью можно определить структурные средние, которые облегчают анализ данных ряда распределения.

Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Для иллюстрации рядов распределения используются кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат – нарастающие итоги частот (кумулята), рис.5.3.

Рис. 5.3. Кумулята распределения рабочих по выработке

Если шкалы частот и вариантов поменять местами, т.е. на оси абсцисс отражать накопленные частоты, а на оси ординат – значения вариантов, то кривая, характеризующая изменение частот от группы к группе, будет носит название огивы распределения, рис.5.4.

Рис. 5.4. Огива распределения рабочих по выработке

Вариационные ряды с равными интервалами обеспечивают одно из важнейших требований, предъявляемых к статистическим рядам распределения, обеспечение сравнимости их во времени и пространстве.

Плотность распределения. Однако частоты отдельных неравных интервалов в названных рядах непосредственно не сопоставимы. В подобных случаях для обеспечения необходимой сравнимости исчисляют плотность распределения, т.е. определяют, сколько единиц в каждой группе приходится на единицу величины интервала.

При построении графика распределения вариационного ряда с неравными интервалами высоту прямоугольников определяют пропорционально не частотам, а показателям плотности распределения значений изучаемого признака в соответствующих интервалах.

Составление вариационного ряда и его графическое изображение является первым шагом обработки исходных данных и первой ступенью анализа изучаемой совокупности. Следующим шагом в анализе вариационных рядов является определение основных обобщающих показателей, именуемых характеристиками ряда. Эти характеристики должны дать представление о среднем значении признака у единиц совокупности.

Средняя величина . Средняя величина представляет собой обобщенную характеристику изучаемого признака в исследуемой совокупности, отражающая ее типический уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Перед вычислением средних величин необходимо произвести группировку единиц исследуемой совокупности, выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом называется общей средней, а для каждой группы – групповыми средними.

Существуют две разновидности средних величин: степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая); структурные (мода, медиана, квартили, децили).

Выбор средней для расчета зависит от цели.

Виды степенных средних и методы их расчета. В практике статистической обработки собранного материала возникают различные задачи, для решения которых требуются различные средние.

Математическая статистика выводит различные средние из формул степенной средней:

где средняя величина; x – отдельные варианты (значения признаков); z – показатель степени (при z = 1 – средняя арифметическая, z = 0 средняя геометрическая, z = - 1 – средняя гармоническая, z = 2 – средняя квадратическая).

Однако вопрос о том, какой вид средней необходимо применить в каждом отдельном случае, разрешается путем конкретного анализа изучаемой совокупности.

Наиболее часто встречающимся в статистике видом средних величин является средняя арифметическая . Она исчисляется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

В зависимости от характера исходных данных средняя арифметическая определяется различными способами:

Если данные несгруппированные, то расчет ведется по формуле простой средней величины

Расчет средней арифметической в дискретном ряду происходит по формуле 3.4.

Расчет средней арифметической в интервальном ряду. В интервальном вариационном ряду, где за величину признака в каждой группе условно принимается середина интервала, средняя арифметическая может отличаться от средней, рассчитанной по несгруппированным данным. Причем, чем больше величина интервала в группах, тем больше возможные отклонения средней, вычисленной по сгруппированным данным, от средней, рассчитанной по несгруппированным данным.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. А затем рассчитывают среднюю величину по формуле средней арифметической взвешенной.

Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые позволяют упрощать вычисления, рассмотрим их.

1. Средняя арифметическая из постоянных чисел равна этому постоянному числу.

Если х = а. Тогда .

2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится.

Если все веса f уменьшить в k раз, то .

3. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю, т.е.

Если , то . Отсюда .

Если все варианты уменьшить или увеличить на какое- либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же.

Уменьшим все варианты x на a , т.е. x ´ = x a.

Тогда

Среднюю арифметическую первоначального ряда можно получить, прибавляя к уменьшенной средней ранее вычтенное из вариантов числа a , т.е. .

5. Если все варианты уменьшить или увеличить в k раз, то средняя арифметическая нового ряда уменьшится или увеличится во столько же, т.е. в k раз.

Пусть , тогда .

Отсюда , т.е. для получения средней первоначального ряда среднюю арифметическую нового ряда (с уменьшенными вариантами) надо увеличить в k раз.

Средняя гармоническая. Средняя гармоническая это величина обратная средней арифметической. Ее используют, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение (М= xf). Средняя гармоническая будет рассчитываться по формуле 3.5

Практическое применение средней гармонической – для расчета некоторых индексов, в частности, индекса цен.

Средняя геометрическая. При применении средней геометрической индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста.

Средняя геометрическая величина используется также для определения равноудаленной величины от максимального и минимального значений признака. Например, страховая компания заключает договоры на оказание услуг автострахования. В зависимости конкретного страхового случая страховая выплата может колебаться от 10000 до 100000 долл. в год. Средняя сумма выплат по страховке составит долл.

Средняя геометрическая это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии, когда z = 0. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел.

Формулы для расчета следующие

где – варианты осредняемого признака; – произведение вариантов; f – частота вариантов.

Средняя геометрическая используется в расчетах среднегодовых темпов роста.

Средняя квадратическая. Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

Средняя квадратическая величина рассчитывается по формуле

В экономических исследованиях средняя квадратическая в измененном виде широко используется при расчете показателей вариации признака, таких как дисперсия, среднее квадратическое отклонение.

Правило мажорантности. Между степенными средними существует следующая зависимость – чем больше показатель степени, тем больше значение средней, табл.5.4:

Таблица 5.4

Соотношение между средними величинами

Значение z

Соотношение между средними

Это соотношение называется правилом мажорантности.

Структурные средние величины. Для характеристики структуры совокупности применяются особые показатели, которые можно назвать структурными средними. К таким показателям относятся мода, медиана, квартили и децили.

Мода. Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности. Модой называется то значение признака, которое соответствует максимальной точке теоретической кривой распределения.

Мода широко используется в коммерческой практике при изучении покупательского спроса (при определении размеров одежды и обуви, которые пользуются широким спросом), регистрации цен. Мод в совокупности может быть несколько.

Расчет моды в дискретном ряду. В дискретном ряду мода – это варианта с наибольшей частотой. Рассмотрим нахождение моды в дискретном ряду.

Расчет моды в интервальном ряду. В интервальном вариационном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту (частость). В пределах интервала надо найти то значение признака, которое является модой. Для интервального ряда мода будет определяться формулой

где – нижняя граница модального интервала; – величина модального интервала; – частота, соответствующая модальному интервалу; – частота, предшествующая модальному интервалу; – частота интервала, следующего за модальным.

Медиана. Медианой () называется значение признака у средней единицы ранжированного ряда. Ранжированный ряд – это ряд, у которого значения признака записаны в порядке возрастания или убывания. Или медиана это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значение варьирующего признака меньшие, чем средний вариант, а другая – большие.

Чтобы найти медиану, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица и все делится на два. При четном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер который определяется по общей сумме частот, деленной на два. Зная порядковый номер медианы, легко по накопленным частотам найти ее значение.

Расчет медианы в дискретном ряду. По данным выборочного обследования получены данные о распределении семей по числу детей, табл. 5.5. Для определения медианы сначала определим ее порядковый номер

=

Затем построим ряд накопленных частот (, по порядковому номеру и накопленной частоте найдем медиану. Накопленная частота 33 показывает, что в 33 семьях количество детей не превышает 1 ребенка, но так как номермедианы 50, то медиана будет находится в промежутке с 34 по 55 семью.

Таблица 5.5

Распределение числа семей от количества детей

Число детей в семье

Количество семей, –величина медианного интервала;

Все рассмотренные формы степенной средней обладают важным свойством (в отличие от структурных средних) – в формулу определения средней входят все значения ряда т.е. на размеры средней оказывают влияние значение каждого варианта.

С одной стороны, это весьма положительное свойство т.к. в этом случае учитывается действие всех причин, воздействующих на все единицы изучаемой совокупности. С другой стороны, даже одно наблюдение, попавшее в исходные данные случайно, может существенным образом исказить представление об уровне развития изучаемого признака в рассматриваемой совокупности (особенно в коротких рядах).

Квартили и децили. По аналогии с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, в частности, можно найти значение признака у единиц, делящих ряд на 4 равные части, на 10 и т.п.

Квартили. Варианты, которые делят ранжированный ряд на четыре равные части, называют квартилями.

При этом различают: нижний (или первый) квартиль (Q1) – значение признака у единицы ранжированного ряда, делящей совокупность в соотношении ¼ к ¾ и верхний (или третий) квартиль(Q3) – значение признака у единицы ранжированного ряда, делящий совокупность в соотношении ¾ к ¼.

Второй квартиль, есть медиана Q2 = Ме. Нижний и верхний квартили в интервальном ряду рассчитываются по формуле аналогично медиане.

где – нижняя граница интервала, содержащего соответственно нижний и верхний квартиль;

– накопленная частота интервала, предшествующего интервалу, содержащему нижний или верхний квартиль;

– частоты квартильных интервалов (нижнего и верхнего)

Интервалы, в которых содержатся Q1 и Q3 определяют по накопленным частотам (или частостям).

Децили. Кроме квартилей рассчитывают децили – варианты, делящие ранжированный ряд на 10 равных частей.

Обозначаются они через D, первый дециль D1 делит ряд в соотношении 1/10 и 9/10, второй D2 – 2/10 и 8/10 и т.д. Вычисляются они по той же схеме, что и медиана и квартили.

И медиана, и квартили, и децили принадлежат к так называемым порядковым статистикам, под которым понимают вариант, занимающий определенное порядковое место в ранжированном ряду.