Температура нашей ближайшей звезды неоднородна и значительно варьируется. В ядре солнца гравитационное притяжение производит огромное давление и температуру, которая может достигать 15 млн градусов Цельсия. Атомы водорода сжимаются и сливаются воедино, создавая гелий. Этот процесс называется термоядерной реакцией.
Термоядерная реакция производит огромные объемы энергии. Энергия исходит к поверхности солнца, атмосфере и далее. От ядра энергия движется к радиационной зоне, где она проводит до 1 млн лет, а потом движется к конвективной зоне, верхнему слою внутренней части Солнца. Температура здесь падает ниже 2 млн градусов Цельсия. Огромные пузыри горячей плазмы формируют «суп» из ионизированных атомов и двигаются вверх к фотосфере.
Температура в фотосфере равна почти 5,5 тысячи градусов Цельсия. Здесь солнечная радиация становится видимым светом. Солнечные пятна на фотосфере холоднее и темнее, чем в окружающей области. В центре больших солнечных пятен температура может опускаться до нескольких тысяч градусов Цельсия.
Хромосфера, следующий слой солнечной атмосферы, немного холоднее - 4320 градусов. Согласно Национальной солнечной обсерватории, хромосфера буквально означает «цветная сфера». Видимый свет от хромосферы обычно слишком слаб, чтобы быть видным на фоне более яркой фотосферы, но во время полных солнечных затмений, когда луна покрывает фотосферу, хромосфера видна как красный ободок вокруг Солнца.
«Хромосфера кажется красной из-за огромного объема водорода в ней», - пишет Национальная солнечная обсерватория на своем сайте.
Температура значительно повышается в короне, которая также может быть видна во время затмения, когда плазма притекает наверх. Корона может быть удивительно горячей по сравнению с телом солнца. Температура здесь варьируется от 1 млн градусов до 10 млн градусов Цельсия.
Когда корона остывает, теряя тепло и радиацию, вещество выдувается в виде солнечного ветра, который иногда пересекается с Землей.
Солнце - крупнейший и самый массивный объект в Солнечной системе. Он находится в 149,5 млн км от Земли. Это расстояние называется астрономической единицей и используется, чтобы измерять расстояния по всей Солнечной системе. Солнечному свету и теплу требуется около 8 минут, чтобы долететь до нашей планеты, поэтому есть другой способ определить расстояние до Солнца - 8 световых минут.

Раньше мы публиковали статью "", в которой мы писали о том, что "В Больницу медицинского колледжа Калькутты (Calcutta Medical College and Hospital) поступил пациент, жаловавшийся на рвоту и боль в желудке. Врачи обследовали 48-летнего мужчину и обнаружили… "

Вам так же может быть интересна статья "", из который вы узнаете о том, что "Вы узнали бы инопланетянина? Ученые предполагают, что внеземные существа могут «выглядеть как мы». Предыдущие исследования сформировали представления о пришельцах на основе того, что мы видим… "

И конечно, не пропустите "", только здесь вы узнаете о том, что "Сотрудники Детской больницы Бениоффа (UCSF Benioff Children’s Hospital) в Окленде впервые в США опробовали методику редактирования генома непосредственно в организме живого человека, а не путём… "

Масса: 1,99×10 30 кг;

Диаметр: 1 392 000 км;

Объем: 1,41×10 18 км³;
Площадь пов-ти: 6,08×10 12 км²;

Средняя плотность: 1409 кг/м³ ;
Спектральный класс: G2V;
Температура поверхности: 5778 К;
Температура ядра: 13 500 000 К;

Светимость: 3,88×10 26 Вт;
Галактический год: 230-250 млн. лет;

Возраст: около 5 млрд. лет;

Расстояние от Земли: 149,6 млн. км.

На протяжении всей истории человеческой цивилизации во многих культурах Солнце было объектом поклонения. Культ Солнца существовал в Древнем Египте, где солнечным божеством являлся Ра. У древних греков богом Солнца был Гелиос, который, по преданию, ежедневно проезжал по небу на своей колеснице. Греки считали, что Гелиос живет на востоке в прекрасном дворце, окруженном временами года — Летом, Зимой, Весной и Осенью. Когда утром Гелиос выезжает из своего дворца, звезды гаснут, ночь сменяется днем. Звезды вновь появляются на небе, когда Гелиос исчезает на западе, где он из колесницы пересаживается в прекрасную лодку и переплывает море к месту восхода. В древнерусском языческом пантеоне было два солнечных божества — Хорс (собственно олицетворённое солнце) и Даждьбог. Даже современному человеку, стоит только взглянуть на Солнце, как он начинает понимать, насколько он зависим от него. Ведь если бы не было мирового светила, то и не существовало бы тепла, необходимого для биологического развития и жизни. Наша Земля превратилась бы в замершую на веки ледяную планету, ситуация, подобная на Южном и Северном полушариях, была бы по всему миру.

Наше Солнце — это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объём Солнца можно разделить на несколько областей. Вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не даёт ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причём чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. Кельвинов, происходит выделение энергии. Эта энергия выделяется в результате слияния атомов лёгких химических элементов в атомы более тяжёлых. В недрах Солнца из четырёх атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалёком будущем человек сможет научиться использовать её и в мирных целях. Ядро имеет радиус примерно 150-175 тыс км (25% от радиуса Солнца). В его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. За каждую секунду в центре Солнца в лучистую энергию превращается около 4,26 млн. тонн вещества . Это настолько огромная энергия, что когда все топливо израсходуется (водород полностью превратится в гелий), ее хватит для поддержания жизни на еще на миллионы лет вперед.

С троение Солнца. В центре Солнца находится солнечное ядро.

Фотосфера — это видимая поверхность Солнца,

которая и является основным источником излучения. Солнце

окружает солнечная корона, которая имеет очень высокую температуру,

однако она крайне разрежена, поэтому видима невооружённым

глазом только в периоды полного солнечного затмения.

Примерное распределение температуры в солнечной
атмосфере вплоть до самого ядра

Энергия Солнца

Почему Солнце светит и не остывает уже миллиарды лет? Какое «топливо» даёт ему энергию? Ответы на эти вопросы учёные искали веками, и только в начале XX в. было найдено правильное решение. Теперь известно, что Солнце, как и другие звёзды, светит благодаря протекающим в его недрах термоядерным реакциям. Основное вешество, составляющее Солнце, — водород, на его долю приходится около 71% всей массы светила. Почти 27% принадлежит гелию, а остальные 2% — более тяжёлым элементам, таким, как углерод, азот, кислород и металлы. Главным «топливом» на Солнце служит именно водород. Из четырёх атомов водорода в результате цепочки превращений образуется один атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6,×10 11 Дж энергии! На Земле такого количества энергии хватило бы для того, чтобы нагреть от температуры 0° С до точки кипения 1000 м 3 воды. В ядре происходит слияние ядра атомов легких элементов водорода в ядро атома более тяжелого водорода (такое ядро называется дейтерий). Масса нового ядра значительно меньше, чем суммарная масса тех ядер из которого оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло. Результатом таких цепочек-превращений является возникновение нового ядра, состоящего из двух протонов и двух нейтронов, - ядра гелия. Такая термоядерная реакция превращения водорода в гелий, называется протон-протонной, так как начинается с тесного сближения двух ядер атомов водорода-протонов.

Реакция превращения водорода в гелий ответственна за то, что внутри Солнца сейчас гораздо больше гелия, чем на его поверхности. Естественно, возникает вопрос: что же будет с Солнцем, когда весь водород в его ядре выгорит и превратится в гелий, и как скоро это произойдет? Оказывается, примерно через 5 млрд лет содержание водорода в ядре Солнца настолько уменьшится, что его "горение" начнется в слое вокруг ядра. Это приведет к "раздуванию" солнечной атмосферы, увеличению размеров Солнца, падению температуры на поверхности и повышению ее в ядре. Постепенно Солнце превратится в красный гигант - сравнительно холодную звезду огромного размера с , превосходящей границы орбиты . Жизнь Солнца на этом не закончится, оно будет претерпевать еще много изменений, пока в конце концов не станет холодным и плотным газовым шаром, внутри которого уже не происходит никаких термоядерных реакций.

Примерно так будет выглядеть Солнце с поверхности Земли через

5 млрд. лет,когда водород в ядре полностью израсходуется. Солнце

превратится в Красного Гиганта, ядро которого будет сильно сжато,

а внешние слои находится в достаточно разряженном состоянии.

Наша звезда настолько огромная. что в нее может вместится около

1 300 000 объемов Земли. Длина окружности Солнца по экватору

составляет 4,37 млн. км (для примера у Земли - 40 000 км)

Как образовалось Солнце

Как и все звезды, наше Солнце возникло в результате длительного воздействия межзвездной материи (газа и пыли). Первоначально звезда представляла из себя шаровое скопления, состоящее преимущественно из водорода. Затем за счет гравитационных сил атомы водорода стали прижиматься друг к другу, плотность увеличивалась и в результате образовалось достаточно сжатое ядро. В момент загорания первой термоядерной реакции начинается официальное рождение звезды.

Звезда такой массы, как Солнце , должна существовать в общей сложности примерно 10 млрд лет. Таким образом, сейчас Солнце находится примерно в середине своего жизненного цикла (на данный момент ее возврат составляет около 5 млрд. лет). Через 4—5 млрд лет оно превратится в звезду типа красный гигант. По мере того, как водородное топливо в ядре будет выгорать, его внешняя оболочка будет расширяться, а ядро — сжиматься и нагреваться. Примерно через 7,8 млрд лет , когда температура в ядре достигнет приблизительно 100 млн К , в нём начнётся термоядерная реакция синтеза углерода и кислорода из гелия. На этой фазе развития температурные неустойчивости внутри Солнца приведут к тому, что оно начнёт терять массу и сбрасывать оболочку. По-видимому, расширяющиеся внешние слои Солнца в это время достигнут современной орбиты Земли. При этом исследования показывают, что ещё до этого момента потеря Солнцем массы приведёт к тому, что перейдёт на более далёкую от Солнца орбиту и, таким образом, избежит поглощения внешними слоями солнечной плазмы.

Несмотря на это, вся вода на Земле перейдёт в газообразное состояние, а большая часть её рассеется в космическое пространство. Увеличение температуры Солнца в этот период таково, что в течение следующих 500—700 млн лет поверхность Земли будет слишком горяча для того, чтобы на ней могла существовать жизнь в её современном понимании.

После того, как Солнце пройдёт фазу красного гиганта , термические пульсации приведут к тому, что его внешняя оболочка будет сорвана и из неё образуется планетарная туманность. В центре этой туманности останется сформированная из очень горячего ядра Солнца звезда типа белый карлик, которая в течение многих миллиардов лет будет постепенно остывать и угасать.

Почти весь цикл своей жизни, Солнце представляется
как звезда желтого цвета, с привыкшей нам светимостью

Солнце освещает и согревает нашу планету, без этого была бы невозможна жизнь на ней не только человека, но и микроорганизмов. Наша звезда - главный (хотя и не единственный) двигатель происходящих на Земле процессов. Но не только тепло и свет получает Земля от Солнца. различные виды солнечного излучения и потоки частиц оказывают постоянное воздействие на ее жизнь. Солнце посылает на Земля электромагнитные волны всех областей спектра - от многокилометровых радиоволн до гамма-лучей. Атмосферы планеты также достигают заряженные частицы разных энергий - как высоких (солнечные космические лучи, так и низких и средних (потоки солнечного ветра, выбросы от вспышек).Однако очень малая часть заряженных частиц из межпланетного пространства попадает в (остальные отклоняют или задерживают геомагнитное поле). Но их энергии достаточно для того, чтобы вызвать полярное сияние и возмущение магнитного поля нашей планеты.

Солнце расположено от на расстоянии в 149,6 млн. км . Именно эту величину в астрономии принято называть астрономической единицей (а. е). Если вдруг наша звезда в данный момент погаснет, то мы не будем знать об этом целых 8,5 минут - именно столько времени необходимо солнечному свету, чтобы преодолеть путь от Солнца до Земли со скоростью 300 000 км/с. Наше расположение является наиболее благоприятным для поддержания необходимого климата для зарождения биологической жизни. Если бы Земля была хотя бы чуть ближе к Солнцу, чем сейчас, то наша планета испепелилась бы от жары, и нарушился бы круговорот воды в природе, и все живое прекратило бы свое существование. В то время отдаленность планеты от Солнца характеризовалась бы невероятным падением температуры, замерзанием воды, возникновением нового ледникового периода. Что привело бы, в конце концов, к полному вымиранию всех организмов на планете.

Температура поверхности Солнца определяется путем анализа солнечного спектра. Известно, что является источником энергии всех природных процессов на Земле поэтому ученые определили количественную величину нагретости различных частей нашей звезды.

Интенсивность излучения в отдельных цветовых частях спектра соответствует температуре 6000 градусов. Такова температура поверхности Солнца или фотосферы.

Во внешних слоях солнечной атмосферы – в хромосфере и в короне - наблюдается более высокая температура. В короне она составляет примерно от одного до двух миллионов градусов. Над местами сильных вспышек температура на короткое время может достигать даже пятидесяти миллионов. Из-за высокой нагретости в короне над вспышкой сильно возрастает интенсивность рентгеновского и радиоизлучений.

Расчеты нагретости нашей звезды

Важнейшим процессом, протекающим на Солнце, является превращение водорода в гелий. Именно этот процесс является источником всей энергии Солнца.
Солнечное ядро отличается большой плотностью и очень высокой температурой. Часто имеют место резкие столкновения электронов, протонов и других ядер. Иногда столкновения протонов настолько стремительны, что они, преодолев силу электрического отталкивания, приближаются друг к другу на расстояние своего диаметра. На таком расстоянии начинает действовать ядерная сила, вследствие которой протоны соединяются с выделением энергии.

Четыре протона постепенно соединяются в ядро гелия, причем два протона превращаются в нейтроны, два положительных заряда освобождаются в виде позитронов и появляются две незаметные нейтральные частицы – нейтрино. При встрече с электронами оба позитрона превращаются в фотоны гамма-излучения (аннигиляция).

Энергия покоя атома гелия меньше энергии покоя четырех атомов водорода.

Разница в массах превращается в гамма-фотоны и нейтрино. Общая энергия всех возникших гамма-фотонов и двух нейтрино составляет 28 МэВ. Ученые смогли получить излучение фотонов .
Именно такое количество энергии Солнце излучает за одну секунду. Величина эта представляет собой мощность солнечного излучения.

Солнце , несмотря на то, что числится «желтым карликом» так велико, что нам даже сложно представить. Когда мы говорим, что масса Юпитера — это 318 масс Земли, это кажется невероятным. Но когда мы узнаем, что 99,8% массы всего вещества приходится на Солнце — это просто выходит за рамки понимания.

За прошедшие годы мы немало узнали о том как устроена «наша» звезда. Хотя человечество не изобрело (и вряд ли когда-то изобретет) исследовательский зонд, способный физически приблизиться к Солнцу и взять пробы его вещества, мы итак неплохо осведомлены об его составе.

Знание физики и возможности дают нам возможность точно сказать, из чего состоит Солнце: 70% от его массы составляет водород, 27% — гелий, другие элементы (углерод, кислород, азот, железо, магний и другие) — 2,5% .

Однако, только этой сухой статистикой наши знания, к счастью, не ограничиваются.

Что находится внутри Солнца

Согласно современным расчетам температура в недрах Солнца достигает 15 — 20 миллионам градусов Цельсия, плотность вещества звезды достигает 1,5 грамма на кубический сантиметр.

Источник энергии Солнца — постоянно идущая ядерная реакция, протекающая глубоко под поверхностью, благодаря которой и поддерживается высокая температуру светила. Глубоко под поверхностью Солнца водород превращается в гелий в следствии ядерной реакции с сопутствующим выделением энергии.
«Зона ядерного синтеза» Солнца называется солнечным ядром и имеет радиус примерно 150-175 тыс. км (до 25 % радиуса Солнца). Плотность вещества в солнечном ядре в 150 раз превышает плотность воды и почти в 7 раз — плотность самого плотного вещества на Земле: осмия.

Ученым известны два вида термоядерных реакций протекающих внутри звезд: водородный цикл и углеродный цикл . На Солнце преимущественно протекает водородный цикл , который можно разбить на три этапа:

  • ядра водорода превращаются в ядра дейтерия (изотоп водорода)
  • ядра водорода превращаются в ядра неустойчивого изотопа гелия
  • продукты первой и второй реакции связываются с образованием устойчивого изотопа гелия (Гелий-4).

Каждую секунду в излучение превращаются 4,26 миллиона тонн вещества звезды, однако по сравнению с весом Солнца, даже это невероятное значение так мало, что им можно пренебречь.

Выход тепла из недр Солнца совершается путем поглощения электромагнитного излучения, приходящего снизу и его дальнейшего переизлучения.

Ближе к поверхности солнца излучаемая из недр энергия переносится преимущественно в зоне конвекции Солнца с помощью процесса конвекции — перемешивании вещества (теплые потоки вещества поднимаются ближе к поверхности, холодные же опускаются).
Зона конвекции залегает на глубине около 10% солнечного диаметра и доходит почти до поверхности звезды.

Атмосфера Солнца

Выше зоны конвекции начинается атмосфера Солнца, в ней перенос энергии снова происходит с помощью излучения.

Фотосферой называют нижний слой солнечной атмосферы — видимую поверхность Солнца. Её толщина соответствует оптической толщине приблизительно в 2/3 единицы, а в абсолютных величинах фотосфера достигает толщины 100-400 км. Именно фотосфера является источником видимого излучения Солнца, температура составляет от 6600 К (в начале) до 4400 К (у верхнего края фотосферы).

На самом деле Солнце выглядит как идеальный круг с четкими границами только потому, что на границе фотосферы его яркость падает в 100 раз за менее чем одну секунду дуги. За счет этого края Солнечного диска заметно менее ярки нежели центр, их яркость всего 20% от яркости центра диска.

Хромосфера — второй атмосферный слой Солнца, внешняя оболочка звезды, толщиной около 2000 км, окружающая фотосферу. Температура хромосферы увеличивается с высотой от 4000 до 20 000 К. Наблюдая Солнце с Земли, мы не видим хромосферу из-за малой плотности. Её можно наблюдать только во время солнечных затмений — интенсивное красное свечение вокруг краев солнечного диска, это и есть хромосфера звезды.

Солнечная корона — последняя внешняя оболочка солнечной атмосферы. Корона состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер . Средняя корональная температура составляет до 2 млн К, но может доходить и до 20 млн К. Однако, как и в случае с хромосферой — с земли солнечная корона видна только во время затмений. Слишком малая плотность вещества солнечной короны не позволяет наблюдать её в обычных условиях.

Солнечный ветер

Солнечный ветер – поток заряженных частиц (протонов и электронов), испускаемых нагретыми внешними слоями атмосферы звезды, который простирается до границ нашей планетарной системы. Светило ежесекундно теряет миллионы тонн своей массы, из-за этого явления.

Около орбиты планеты Земля скорость частиц солнечного ветра достигает 400 километров в секунду (они перемещаются по нашей звездной системе со сверхзвуковой скоростью), а плотность солнечного ветра от нескольких до нескольких десятков ионизированных частиц в кубическом сантиметре.

Именно солнечный ветер нещадно «треплет» атмосферу планет, «выдувая» содержащиеся в ней газы в открытый космос, он же во многом ответственен за . Противостоять солнечному ветру Земле позволяет магнитное поле планеты, которое служит невидимой защитой от солнечного ветра и препятствует оттоку атомов атмосферы в открытый космос. При столкновении Солнечного ветра с магнитным полем планеты происходит оптическое явление, которое на Земле мы называем – полярное сияние , сопровождаемое магнитными бурями.

Впрочем, неоспорима и польза солнечного ветра — именно он «сдувает» из Солнечной системы и космическую радиацию галактического происхождения – а следовательно оберегает нашу звездную систему от внешних, галактических излучений.

Глядя на красоту полярных сияний, трудно поверить, что эти всполохи — видимый признак солнечного ветра и магнитосферы Земли

> Из чего состоит Солнце

Узнайте, из чего состоит Солнце : описание структуры и состава звезды, перечисление химических элементов, количество и характеристика слоев с фото, диаграмма.

С Земли, Солнце выглядит как гладкий огненный шар, и до открытия комическим кораблём Galileo пятен на Солнце, многие астрономы считали, что оно идеальной формы без дефектов. Теперь мы знаем, что Солнце состоит из нескольких слоёв, как и Земля, каждый из которых выполняет свою функцию. Эта структура Солнца, похожая на массивную печь, является поставщиком всей энергии на Земле, необходимой для земной жизни.

Из каких элементов состоит Солнце?

Если бы у вас получилось разложить звезду на части, и сравнить составные элементы, вы бы поняли, что состав представляет собою 74% водорода и 24% гелия. Также, Солнце состоит из 1% кислорода, и оставшийся 1% - это такие химические элементы таблицы Менделеева, как хром, кальций, неон, углерод, магний, сера, кремний, никель, железо. Астрономы полагают, что элемент тяжелее гелия – это металл.

Как появились все эти элементы Солнца? В результате Большого Взрыва появились водород и гелий. В начале становления Вселенной, первый элемент, водород, появился из элементарных частиц. Из-за большой температуры и давления условия во Вселенной были как в ядре звезды. Позже, водород синтезировался в гелий, пока во Вселенной была высокая температура, необходимая для протекания реакции синтеза. Существующие пропорции водорода и гелия, которые есть во Вселенной сейчас, сложились после Большого Взрыва и не изменялись.

Остальные элементы Солнца созданы в других звездах. В ядрах звезд постоянно происходит процесс синтеза водорода в гелий. После выработки всего кислорода в ядре, они переходят на ядерный синтез более тяжелых элементов, таких как литий, кислород, гелий. Многие тяжелые металлы, которые есть в Солнце, образовывались и в других звездах в конце их жизни.

Образование самых тяжелых элементов, золота и урана, происходило, когда звезды, во много раз больше нашего Солнца, детонировали. За доли секунды образования черной дыры, элементы сталкивались на большой скорости и образовывались самые тяжелые элементы. Взрыв раскидал эти элементы по всей Вселенной, где они помогли образоваться новым звездам.

Наше Солнце собрало в себя элементы, созданные Большим Взрывом, элементы от умирающих звезд и частицы появившихся в результате новых детонаций звезд.

Из каких слоев состоит Солнце

На первый взгляд, Солнце - просто шар, состоящий из гелия и водорода, но при более глубоком изучении видно, что оно состоит из разных слоев. При движении к ядру, температура и давление увеличиваются, в результате этого были созданы слои, так как при различных условиях водород и гелий имеют разные характеристики.

Солнечное ядро

Начнем наше движение по слоям от ядра к наружному слою состава Солнца. Во внутреннем слое Солнца – ядре, температура и давление очень высокие, способствующие для протекания ядерного синтеза. Солнце создает из водорода атомы гелия, в результате этой реакции образуется свет и тепло, которые доходят до . Принято считать, что температура на Солнце около 13,600,000 градусов по Кельвину, а плотность ядра в 150 раз выше плотности воды.

Ученые и астрономы считают, что ядро Солнца достигает около 20% длины солнечного радиуса. И внутри ядра, высокая температура и давление способствуют разрыву атомов водорода на протоны, нейтроны и электроны. Солнце преобразовывает их в атомы гелия, не смотря на их свободно плавающее состояние.

Такая реакция называется экзотермической. При протекании этой реакции выделяется большое количество тепла, равное 389 х 10 31 дж. в секунду.

Радиационная зона Солнца

Эта зона берет свое начало у границы ядра (20% солнечного радиуса), и достигает длины до 70% радиуса Солнца. Внутри этой зоны находится солнечное вещество, которое по своему составу достаточно плотное и горячее, поэтому тепловое излучение проходит через него, не теряя тепло.

Внутри солнечного ядра протекает реакция ядерного синтеза – создание атомов гелия в результате слияния протонов. В результате этой реакции происходит большое количество гамма-излучения. В данном процессе испускаются фотоны энергии, затем поглощаются в радиационной зоне и испускаются различными частицами вновь.

Траекторию движения фотона принято называть «случайным блужданием». Вместо движения по прямой траектории к поверхности Солнца, фотон движется зигзагообразно. В итоге, каждому фотону необходимо примерно 200.000 лет для преодоления радиационной зоны Солнца. При переходе от одной частицы к другой частице происходит потеря энергии фотоном. Для Земли это хорошо, ведь мы бы могли получать лишь гамма-излучение, идущее от Солнца. Фотону, попавшему в космос необходимо 8 минут для путешествия к Земле.

Большое количество звезд имеют радиационные зоны, и их размеры напрямую зависит от масштаба звезды. Чем меньше звезда, тем меньше будут зоны, большую часть которой будет занимать конвективная зона. У самых маленьких звезд могут отсутствовать радиационные зоны, а конвективная зона будет достигать расстояние до ядра. У самых больших звезд ситуация противоположная, радиационная зона простирается до поверхности.

Конвективная зона

Конвективная зона находится снаружи радиационной зоны, где внутреннее тепло Солнца перетекает по столбам горячего газа.

Почти все звезды имеют такую зону. У нашего Солнца она простирается от 70% радиуса Солнца до поверхности (фотосферы). Газ в глубине звезды, у самого ядра, нагреваясь, поднимается на поверхность, как пузырьки воска в лампадке. При достижении поверхности звезды, происходит потеря тепла, при охлаждении газ обратно погружается к центру, за возобновлением тепловой энергии. Как пример, можно привезти, кастрюля с кипящей водой на огне.

Поверхность Солнца похожа на рыхлую почву. Эти неровности и есть столбы горячего газа, несущие тепло к поверхности Солнца. Их ширина достигает 1000 км, а время рассеивания достигает 8-20 минут.

Астрономы считают, что звезды маленькой массы, такие как красные карлики, имеющие только конвективную зону, которая простирается до ядра. У них отсутствует радиационная зона, что нельзя сказать о Солнце.

Фотосфера

Единственный видимый с Земли слой Солнца – . Ниже этого слоя, Солнце становится непрозрачным, и астрономы используют другие методы для изучения внутренней части нашей звезды. Температуры поверхности достигает 6000 Кельвин, светится желто-белым цветом, видимым с Земли.

Атмосфера Солнца находится за фотосферой. Та часть Солнца, которая видна во время солнечного затмения, называется .

Строение Солнца в диаграмме

NASA специально разработало для образовательных потребностей схематическое изображение строения и состава Солнца с указанием температуры для каждого слоя:

  • (Visible, IR and UV radiation) – это видимое излучение, инфракрасное излучение и ультрафиолетовое излучение. Видимое излучение – это свет, которые мы видим приходящим от Солнца. Инфракрасное излучение – это тепло, которое мы ощущаем. Ультрафиолетовое излучение – это излучение, дающее нам загар. Солнце производит эти излучения одновременно.
  • (Photosphere 6000 K) – Фотосфера – это верхний слой Солнца, поверхность его. Температура 6000 Кельвин равна 5700 градусов Цельсия.
  • Radio emissions (пер. Радио эмиссия) – Помимо видимого излучения, инфракрасного излучения и ультрафиолетового излучения, Солнце отправляет радио эмиссию, которую астрономы обнаружили с помощью радиотелескопа. В зависимости от количества пятен на Солнце, эта эмиссия возрастает и снижается.
  • Coronal Hole (пер. Корональная дыра) – Это места на Солнце, где корона имеет небольшую плотность плазмы, в результате она темнее и холоднее.
  • 2100000 К (2100000 Кельвин) – Радиационная зона Солнца имеет такую температуру.
  • Convective zone/Turbulent convection (пер. Конвективная зона/Турбулентная конвекция) – Это места на Солнце, где тепловая энергия ядра передается с помощью конвекции. Столбы плазмы доходят до поверхности, отдают своё тепло, и вновь устремляются вниз, чтоб вновь нагреться.
  • Coronal loops (пер. Корональные петли) – петли, состоящие из плазмы, в атмосфере Солнца, движущиеся по магнитным линиям. Они похожи на огромные арки, простирающиеся от поверхности на десятки тысяч километров.
  • Core (пер. Ядро) – это солнечное сердце, в котором происходит ядерный синтез, при помощи высокой температуры и давления. Вся солнечная энергия происходит из ядра.
  • 14,500,000 К (пер. 14,500,000 Кельвин) – Температура солнечного ядра.
  • Radiative Zone (пер. Радиационная зона) – Слой Солнца, где энергия передается при помощи радиации. Фотон преодолевает радиационную зону за 200.000 и выходит в открытый космос.
  • Neutrinos (пер. Нейтрино) – это ничтожно маленькие по массе частицы, исходящие из Солнца в результате реакции ядерного синтеза. Сотни тысяч нейтрино проходят через тело человека ежесекундно, но никакого вреда нам не приносят, мы их не чувствуем.
  • Chromospheric Flare (пер. Хромосферная вспышка) – Магнитное поле нашей звезды может закручиваться, а потом резко разрывается в различных формах. В результате разрывов магнитных полей появляются мощные рентгеновские вспышки, исходящие из поверхности Солнца.
  • Magnetic Field Loop (пер. Петля магнитного поля) – Магнитное поле Солнца находится над фотосферой, и видно, так как раскаленная плазма движется по магнитным линиям в атмосфере Солнца.
  • Spot– A sunspot (пер. Солнечные пятна) – Это места на поверхности Солнца, где магнитные поля проходят через поверхность Солнца, и на них температура ниже, часто в виде петли.
  • Energetic particles (пер. Энергичные частицы) – Они исходят из поверхности Солнца, в результате создается солнечный ветер. В солнечных бурях их скорость достигает скорости света.
  • X-rays (пер. Рентгеновские лучи) – невидимые для глаза человека лучи, образующиеся во вспышек на Солнце.
  • Bright spots and short-lived magnetic regions (пер. Яркие пятна и недолгие магнитные регионы) – Из-за перепада температур на поверхности Солнца появляются яркие и тусклые пятна.