1) Делю сразу на, так как оба числа 100% делятся на:

2) Разделю на оставшиеся большие числа (и), так как и без остатка делятся на (при этом, раскладывать не буду - он и так общий делитель):

6 2 4 0 = 1 0 ⋅ 4 ⋅ 1 5 6

6 8 0 0 = 1 0 ⋅ 4 ⋅ 1 7 0

3) Оставлю и в покое и начну рассматривать числа и. Оба числа точно делятся на (заканчиваются на четные цифры (в таком случае представляем как, а можно разделить на)):

4) Работаем с числами и. Есть ли у них общие делители? Так легко, как в предыдущих действиях, и не скажешь, поэтому дальше просто разложим их на простые множители:

5) Как мы видим, мы были правы: у и общих делителей нет, и теперь нам нужно перемножить.
НОД

Задача №2. Найти НОД чисел 345 и 324

Здесь не могу быстро найти хоть один общий делитель, так что просто раскладываю на простые множители (как можно меньше):

Точно, НОД, а я изначально не проверила признак делимости на, и, возможно, не пришлось бы делать столько действий.

Но ты-то проверил, верно?

Как видишь, это совсем несложно.

Наименьшее общее кратное (НОК) - экономит время, помогает решить задачи нестандартно

Допустим, у тебя есть два числа - и. Какое существует самое маленькое число, которое делится и без остатка (то есть нацело)? Сложно представить? Вот тебе визуальная подсказка:

Ты же помнишь, что обозначается буквой? Правильно, как раз целые числа. Так какое наименьшее число подходит на место х? :

В данном случае.

Из этого простого примера вытекает несколько правил.

Правила быстрого нахождения НОК

Правило 1. Если одно из двух натуральных чисел делится на другое число, то большее из этих двух чисел является их наименьшим общим кратным.

Найди у следующих чисел:

  • НОК (7;21)
  • НОК (6;12)
  • НОК (5;15)
  • НОК (3;33)

Конечно, ты без труда справился с этой задачей и у тебя получились ответы - , и.

Заметь, в правиле мы говорим о ДВУХ числах, если чисел будет больше, то правило не работает.

Например, НОК (7;14;21) не равно 21, так как не делится без остатка на.

Правило 2. Если два (или более двух) числа являются взаимно простыми, то наименьшее общее кратное равно их произведению.

Найди НОК у следующих чисел:

  • НОК (1;3;7)
  • НОК (3;7;11)
  • НОК (2;3;7)
  • НОК (3;5;2)

Посчитал? Вот ответы - , ; .

Как ты понимаешь, не всегда можно так легко взять и подобрать этот самый х, поэтому для чуть более сложных чисел существует следующий алгоритм:

Потренируемся?

Найдем наименьшее общее кратное - НОК (345; 234)

Раскладываем каждое число:

Почему я сразу написал?

Вспомни признаки делимости на: делится на (последняя цифра - четная) и сумма цифр делится на.

Соответственно, можем сразу разделить на, записав ее как.

Теперь выписываем в строчку наиболее длинное разложение - второе:

Добавим к нему числа из первого разложения, которых нет в том, что мы выписали:

Заметь: мы выписали все кроме, так как она у нас уже есть.

Теперь нам необходимо все эти числа перемножить!

Найди наименьшее общее кратное (НОК) самостоятельно

Какие ответы у тебя получились?

Вот, что вышло у меня:

Сколько времени ты потратил на нахождение НОК ? Мое время - 2 минуты, правда я знаю одну хитрость , которую предлагаю тебе открыть прямо сейчас!

Если ты очень внимателен, то ты наверное заметил, что по заданным числам мы уже искали НОД и разложение на множители этих чисел ты мог взять из того примера, тем самым упростив себе задачу, но это далеко не все.

Посмотри на картинку, возможно к тебе придут еще какие-нибудь мысли:

Ну что? Сделаю подсказку: попробуй перемножить НОК и НОД между собой и запиши все множители, которые будут при перемножении. Справился? У тебя должна получиться вот такая цепочка:

Присмотрись к ней повнимательней: сравни множители с тем, как раскладываются и.

Какой вывод ты можешь сделать из этого? Правильно! Если мы перемножим значения НОК и НОД между собой, то мы получим произведение этих чисел.

Соответственно, имея числа и значение НОД (или НОК ), мы можем найти НОК (или НОД ) по такой схеме:

1. Находим произведение чисел:

2. Делим получившееся произведение на наш НОД (6240; 6800) = 80:

Вот и все.

Запишем правило в общем виде:

Попробуй найти НОД , если известно, что:

Справился? .

Отрицательные числа - «лжечисла» и их признание человечеством.

Как ты уже понял, это числа, противоположные натуральным, то есть:

Казалось бы, что в них такого особенного?

А дело в том, что отрицательные числа «отвоевывали» себе законное место в математике аж до XIX века (до этого момента было огромное количество споров, существуют они или нет).

Само отрицательное число возникло из-за такой операции с натуральными числами, как «вычитание».

Действительно, из вычесть - вот и получается отрицательное число. Именно поэтому, множество отрицательных чисел часто называют «расширением множества натуральных чисел».

Отрицательные числа долго не признавались людьми.

Так, Древний Египет, Вавилон и Древняя Греция - светочи своего времени, не признавали отрицательных чисел, а в случае получения отрицательных корней в уравнении (например, как у нас), корни отвергались как невозможные.

Впервые отрицательные числа получили свое право на существование в Китае, а затем в VII веке в Индии.

Как ты думаешь, с чем связано это признание?

Правильно, отрицательными числами стали обозначать долги (иначе - недостачу).

Считалось, что отрицательные числа - это временное значение, которое в результате изменится на положительное (то есть, деньги кредитору все же вернут). Однако, индийский математик Брахмагупта уже тогда рассматривал отрицательные числа наравне с положительными.

В Европе к полезности отрицательных чисел, а также к тому, что они могут обозначать долги, пришли значительно позже, эдак, на тысячелетие.

Первое упоминание замечено в 1202 году в «Книге абака» Леонарда Пизанского (сразу говорю - к Пизанской башне автор книги отношения никакого не имеет, а вот числа Фибоначчи - это его рук дело (прозвище Леонардо Пизанского - Фибоначчи)).

Так, в XVII веке Паскаль считал что.

Как думаешь, чем он это обосновывал?

Верно, «ничто не может быть меньше НИЧЕГО».

Отголоском тех времен остается тот факт, что отрицательное число и операция вычитания обозначается одним и тем же символом - минусом «-». И правда: . Число « » положительное, которое вычитается из, или отрицательное, которое суммируется к?... Что-то из серии «что первое: курица или яйцо?» Вот такая вот, своеобразная эта математическая философия.

Отрицательные числа закрепили свое право на существование с появлением аналитической геометрии, иначе говоря, когда математики ввели такое понятие как числовая ось.

Именно с этого момента наступило равноправие. Однако все равно вопросов было больше чем ответов, например:

пропорция

Данная пропорция носит название «парадокс Арно». Подумай, что в ней сомнительного?

Давай рассуждать вместе « » больше, чем « » верно? Таким образом, согласно логике, левая часть пропорции должна быть больше, чем правая, но они равны… Вот он и парадокс.

В итоге, математики договорились до того, что Карл Гаусс (да, да, это тот самый, который считал сумму (или) чисел) в 1831 году поставил точку.

Он сказал, что отрицательные числа имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, так как дроби так же не применимы ко многим вещам (не бывает так, что яму роют землекопа, нельзя купить билета в кино и т.д.).

Успокоились математики только в XIX веке, когда Уильямом Гамильтоном и Германом Грассманом была создана теория отрицательных чисел.

Вот такие они спорные, эти отрицательные числа.

Возникновение «пустоты», или биография нуля.

В математике - особенное число.

С первого взгляда, это ничто: прибавить, отнять - ничего не изменится, но стоит только приписать его справа к « », и полученное число будет в раз больше изначального.

Умножением на ноль мы все превращаем в ничто, а разделить на «ничто», то есть, мы не можем. Одним словом, волшебное число)

История нуля длинная и запутанная.

След нуля найден в сочинениях китайцев во 2 тыс. н.э. и ещё раньше у майя. Первое использование символа нуля, каковым он является в наши дни, было замечено у греческих астрономов.

Существует множество версий, почему было выбрано именно такое обозначение «ничего».

Некоторые историки склоняются к тому, что это омикрон, т.е. первая буква греческого слова ничто - ouden. Согласно другой версии, жизнь символу ноля дало слово «обол» (монета, почти не имеющая ценности).

Ноль (или нуль) как математический символ впервые появляется у индийцев (заметь, там же стали «развиваться» отрицательные числа).

Первые достоверные свидетельства о записи нуля относятся к 876 г., и в них « » - составляющая числа.

В Европу ноль также пришел с запозданием - лишь в 1600г., и также как и отрицательные числа, сталкивался с сопротивлением (что поделаешь, такие они, европейцы).

«Нуль часто ненавидели, издавна боялись, а то и запрещали» — пишет американский математик Чарльз Сейф.

Так, турецкий султан Абдул-Хамид II в конце XIXв. приказал своим цензорам вычеркнуть из всех учебников химии формулу воды H2O, принимая букву «О» за нуль и не желая, чтобы его инициалы порочились соседством с презренным нулём».

На просторах интернета можно встретить фразу: «Ноль - самая могущественная сила во Вселенной, он может всё! Ноль создаёт порядок в математике, и он же вносит в неё хаос». Абсолютно верно подмечено:)

Краткое изложение раздела и основные формулы

Множество целых чисел состоит из 3 частей:

  • натуральные числа (рассмотрим их подробнее чуть ниже);
  • числа, противоположные натуральным;
  • ноль - " "

Множество целых чисел обозначается буквой Z.

1. Натуральные числа

Натуральные числа - это числа, которые мы употребляем для счета предметов.

Множество натуральных чисел обозначается буквой N.

В операциях с целыми числами понадобится умение находить НОД и НОК.

Наибольший общий делитель (НОД)

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, и т.д.).
  2. Выписать множители, которые входят в состав обоих чисел.
  3. Перемножить их.

Наименьшее общее кратное (НОК)

Чтобы найти НОК необходимо:

  1. Разложить числа на простые множители (это ты уже отлично умеешь делать).
  2. Выписать множители входящие в разложение одного из чисел (лучше брать самую длинную цепочку).
  3. Добавить к ним недостающие множители из разложений остальных чисел.
  4. Найти произведение получившихся множителей.

2. Отрицательные числа

это числа, противоположные натуральным, то есть:

Теперь я хочу слышать тебя...

Надюсь ты оценил супер-полезные "трюки" этого раздела и понял как они помогут тебе на экзамене.

И что более важно - в жизни. Я об этом не говорю, но, поверь, этот так. Умение быстро и без ошибок считать спасает во многих жизненных ситуациях.

Теперь твой ход!

Напиши, будешь ли ты применять методы группировки, признаки делимости, НОД и НОК в расчетах?

Может быть ты применял их ранее? Где и как?

Возможно у тебя есть вопросы. Или предложения.

Напиши в комментариях как тебе статья.

И удачи на экзаменах!

Впервые отрицательные числа стали использовать в древнем Китае и в Индии, в Европе их ввели в математический обиход Николя Шюке (1484 год) и Михаэль Штифель (1544).

Алгебраические свойства

\mathbb{Z} не замкнуто относительно деления двух целых чисел (например, 1/2). Следующая таблица иллюстрирует несколько основных свойств сложения и умножения для любых целых a , b и c .

сложение умножение
замкнутость : a + b - целое a × b - целое
ассоциативность : a + (b + c ) = (a + b ) + c a × (b × c ) = (a × b ) × c
коммутативность : a + b = b + a a × b = b × a
существование нейтрального элемента : a + 0 = a a × 1 = a
существование противоположного элемента : a + (−a ) = 0 a ≠ ±1 ⇒ 1/a не является целым
дистрибутивность умножения относительно сложения: a × (b + c ) = (a × b ) + (a × c )
|заголовок3= Инструменты расширения
числовых систем |заголовок4= Иерархия чисел |список4=
-1,\;0,\;1,\;\ldots Целые числа
-1,\;1,\;\frac{1}{2},\;\;0{,}12,\frac{2}{3},\;\ldots Рациональные числа
-1,\;1,\;\;0{,}12,\frac{1}{2},\;\pi,\;\sqrt{2},\;\ldots Вещественные числа
-1,\;\frac{1}{2},\;0{,}12,\;\pi,\;3i+2,\;e^{i\pi/3},\;\ldots Комплексные числа
1,\;i,\;j,\;k,\;2i + \pi j-\frac{1}{2}k,\;\dots Кватернионы 1,\;i,\;j,\;k,\;l,\;m,\;n,\;o,\;2 - 5l + \frac{\pi}{3}m,\;\dots Октонионы 1,\;e_1,\;e_2,\;\dots,\;e_{15},\;7e_2 + \frac{2}{5}e_7 - \frac{1}{3}e_{15},\;\dots Седенионы
|заголовок5= Другие
числовые системы

|список5=Кардинальные числа – Непременно надо перенести на кровать, здесь никак нельзя будет…
Больного так обступили доктора, княжны и слуги, что Пьер уже не видал той красно желтой головы с седою гривой, которая, несмотря на то, что он видел и другие лица, ни на мгновение не выходила у него из вида во всё время службы. Пьер догадался по осторожному движению людей, обступивших кресло, что умирающего поднимали и переносили.
– За мою руку держись, уронишь так, – послышался ему испуганный шопот одного из слуг, – снизу… еще один, – говорили голоса, и тяжелые дыхания и переступанья ногами людей стали торопливее, как будто тяжесть, которую они несли, была сверх сил их.
Несущие, в числе которых была и Анна Михайловна, поровнялись с молодым человеком, и ему на мгновение из за спин и затылков людей показалась высокая, жирная, открытая грудь, тучные плечи больного, приподнятые кверху людьми, державшими его под мышки, и седая курчавая, львиная голова. Голова эта, с необычайно широким лбом и скулами, красивым чувственным ртом и величественным холодным взглядом, была не обезображена близостью смерти. Она была такая же, какою знал ее Пьер назад тому три месяца, когда граф отпускал его в Петербург. Но голова эта беспомощно покачивалась от неровных шагов несущих, и холодный, безучастный взгляд не знал, на чем остановиться.
Прошло несколько минут суетни около высокой кровати; люди, несшие больного, разошлись. Анна Михайловна дотронулась до руки Пьера и сказала ему: «Venez». [Идите.] Пьер вместе с нею подошел к кровати, на которой, в праздничной позе, видимо, имевшей отношение к только что совершенному таинству, был положен больной. Он лежал, высоко опираясь головой на подушки. Руки его были симметрично выложены на зеленом шелковом одеяле ладонями вниз. Когда Пьер подошел, граф глядел прямо на него, но глядел тем взглядом, которого смысл и значение нельзя понять человеку. Или этот взгляд ровно ничего не говорил, как только то, что, покуда есть глаза, надо же глядеть куда нибудь, или он говорил слишком многое. Пьер остановился, не зная, что ему делать, и вопросительно оглянулся на свою руководительницу Анну Михайловну. Анна Михайловна сделала ему торопливый жест глазами, указывая на руку больного и губами посылая ей воздушный поцелуй. Пьер, старательно вытягивая шею, чтоб не зацепить за одеяло, исполнил ее совет и приложился к ширококостной и мясистой руке. Ни рука, ни один мускул лица графа не дрогнули. Пьер опять вопросительно посмотрел на Анну Михайловну, спрашивая теперь, что ему делать. Анна Михайловна глазами указала ему на кресло, стоявшее подле кровати. Пьер покорно стал садиться на кресло, глазами продолжая спрашивать, то ли он сделал, что нужно. Анна Михайловна одобрительно кивнула головой. Пьер принял опять симметрично наивное положение египетской статуи, видимо, соболезнуя о том, что неуклюжее и толстое тело его занимало такое большое пространство, и употребляя все душевные силы, чтобы казаться как можно меньше. Он смотрел на графа. Граф смотрел на то место, где находилось лицо Пьера, в то время как он стоял. Анна Михайловна являла в своем положении сознание трогательной важности этой последней минуты свидания отца с сыном. Это продолжалось две минуты, которые показались Пьеру часом. Вдруг в крупных мускулах и морщинах лица графа появилось содрогание. Содрогание усиливалось, красивый рот покривился (тут только Пьер понял, до какой степени отец его был близок к смерти), из перекривленного рта послышался неясный хриплый звук. Анна Михайловна старательно смотрела в глаза больному и, стараясь угадать, чего было нужно ему, указывала то на Пьера, то на питье, то шопотом вопросительно называла князя Василия, то указывала на одеяло. Глаза и лицо больного выказывали нетерпение. Он сделал усилие, чтобы взглянуть на слугу, который безотходно стоял у изголовья постели.
– На другой бочок перевернуться хотят, – прошептал слуга и поднялся, чтобы переворотить лицом к стене тяжелое тело графа.
Пьер встал, чтобы помочь слуге.
В то время как графа переворачивали, одна рука его беспомощно завалилась назад, и он сделал напрасное усилие, чтобы перетащить ее. Заметил ли граф тот взгляд ужаса, с которым Пьер смотрел на эту безжизненную руку, или какая другая мысль промелькнула в его умирающей голове в эту минуту, но он посмотрел на непослушную руку, на выражение ужаса в лице Пьера, опять на руку, и на лице его явилась так не шедшая к его чертам слабая, страдальческая улыбка, выражавшая как бы насмешку над своим собственным бессилием. Неожиданно, при виде этой улыбки, Пьер почувствовал содрогание в груди, щипанье в носу, и слезы затуманили его зрение. Больного перевернули на бок к стене. Он вздохнул.
– Il est assoupi, [Он задремал,] – сказала Анна Михайловна, заметив приходившую на смену княжну. – Аllons. [Пойдем.]
Пьер вышел.

Существуют множество разновидностей чисел, одни из них – это целые числа. Целые числа появились для того, чтобы облегчить счет не только в положительную сторону, но и в отрицательную.

Рассмотрим пример:
Днем на улице была температура 3 градуса. К вечеру температура снизилась на 3 градуса.
3-3=0
На улице стало 0 градусов. А ночью температура снизилась на 4 градуса и стало показывать на термометре -4 градуса.
0-4=-4

Ряд целых чисел.

Натуральными числами мы такую задачу описать мы не сможем, рассмотрим эту задачу на координатной прямой.

У нас получился ряд чисел:
…, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, …

Этот ряд чисел называется рядом целых чисел .

Целые положительные числа. Целые отрицательные числа.

Ряд целых чисел состоит из положительных и отрицательных чисел. Справа от нуля идут натуральные числа или их еще называют целыми положительными числами . А слева от нуля идут целые отрицательные числа.

Нуль не является ни положительным ни отрицательным числом. Он является границей между положительными и отрицательными числами.

– это множество чисел, состоящие из натуральных чисел, целых отрицательных чисел и нуля.

Ряд целых чисел в положительную и в отрицательную сторону является бесконечным множеством.

Если мы возьмём два любых целых числа, то числа, стоящие между этими целыми числами, будут называться конечным множеством.

Например:
Возьмем целые числа от -2 до 4. Все числа, стоящие между этими числами, входят в конечное множество. Наше конечное множество чисел выглядит так:
-2, -1, 0, 1, 2, 3, 4.

Натуральные числа обозначаются латинской буквой N.
Целые числа обозначаются латинской буквой Z. Все множество натуральных чисел и целых чисел можно изобразить на рисунке.


Неположительные целые числа другими словами – это отрицательные целые числа.
Неотрицательные целые числа – это положительные целые числа.


Информация этой статьи формирует общее представление о целых числах . Сначала дано определение целых чисел и приведены примеры. Далее рассмотрены целые числа на числовой прямой, откуда становится видно, какие числа называются целыми положительными числами, а какие – целыми отрицательными. После этого показано, как при помощи целых чисел описываются изменения величин, и рассмотрены целые отрицательные числа в смысле задолженности.

Навигация по странице.

Целые числа – определение и примеры

Определение.

Целые числа – это натуральные числа, число нуль, а также числа, противоположные натуральным.

Определение целых чисел утверждает, что любое из чисел 1 , 2 , 3 , …, число 0 , а также любое из чисел −1 , −2 , −3 , … является целым. Теперь мы легко можем привести примеры целых чисел . Например, число 38 – целое, число 70 040 – тоже целое, нуль – целое число (напомним, что нуль НЕ является натуральным числом, нуль – целое число), числа −999 , −1 , −8 934 832 – также являются примерами целых чисел.

Все целые числа удобно представлять как последовательность целых чисел, которая имеет следующий вид: 0, ±1, ±2, ±3, … Последовательность целых чисел можно записать и так: …, −3, −2, −1, 0, 1, 2, 3, …

Из определения целых чисел следует, что множество натуральных чисел является подмножеством множества целых чисел. Поэтому, любое натуральное число является целым, но не любое целое число является натуральным.

Целые числа на координатной прямой

Определение.

Целые положительные числа – это целые числа, которые больше нуля.

Определение.

Целые отрицательные числа – это целые числа, которые меньше нуля.

Целые положительные и отрицательные числа можно также определить по их положению на координатной прямой. На горизонтальной координатной прямой точки, координатами которых являются целые положительные числа, лежат правее начала отсчета. В свою очередь точки с целыми отрицательными координатами располагаются левее точки O .

Понятно, что множество всех целых положительных чисел представляет собой множество натуральных чисел. В свою очередь множество всех целых отрицательных чисел – это множество всех чисел, противоположных натуральным числам.

Отдельно обратим Ваше внимание на то, что любое натуральное число мы можем смело назвать целым, а любое целое число мы НЕ можем назвать натуральным. Натуральным мы можем назвать лишь любое целое положительное число, так как целые отрицательные числа и нуль не являются натуральными.

Целые неположительные и целые неотрицательные числа

Дадим определения целых неположительных чисел и целых неотрицательных чисел.

Определение.

Все целые положительные числа вместе с числом нуль называют целыми неотрицательными числами .

Определение.

Целые неположительные числа – это все целые отрицательные числа вместе с числом 0 .

Другими словами, целое неотрицательное число – это целое число, которое больше нуля, либо равно нулю, а целое неположительное число – это целое число, которое меньше нуля, либо равно нулю.

Примерами целых неположительных чисел являются числа −511 , −10 030 , 0 , −2 , а в качестве примеров целых неотрицательных чисел приведем числа 45 , 506 , 0 , 900 321 .

Наиболее часто термины «целые неположительные числа» и «целые неотрицательные числа» используют для краткости изложения. Например, вместо фразы «число a целое, причем a больше нуля или равно нулю» можно сказать «a – целое неотрицательное число».

Описание изменения величин при помощи целых чисел

Пришло время поговорить о том, для чего вообще нужны целые числа.

Основное предназначение целых чисел заключается в том, что с их помощью удобно описывать изменение количества каких-либо предметов. Разберемся с этим на примерах.

Пусть на складе находится некоторое количество деталей. Если на склад привезут еще, к примеру, 400 деталей, то количество деталей на складе увеличится, а число 400 выражает это изменение количества в положительную сторону (в сторону увеличения). Если же со склада заберут, например, 100 деталей, то количество деталей на складе уменьшится, а число 100 будет выражать изменение количества в отрицательную сторону (в сторону уменьшения). На склад не будут привозить детали, и не будут увозить детали со склада, то можно говорить о неизменности количестве деталей (то есть можно будет говорить о нулевом изменении количества).

В приведенных примерах изменение количества деталей можно описать при помощи целых чисел 400 , −100 и 0 соответственно. Положительное целое число 400 показывает изменение количества в положительную сторону (увеличение). Отрицательное целое число −100 выражает изменение количества в отрицательную сторону (уменьшение). Целое число 0 показывает, что количество осталось без изменения.

Удобство использования целых чисел по сравнению с использованием натуральных чисел заключается в том, что не нужно явно указывать увеличивается количество или уменьшается, - целое число определяет изменение количественно, а знак целого числа указывает направление изменения.

Целые числа также могут выражать не только изменение количества, но и изменение какой-либо величины. Разберемся с этим на примере изменения температуры.

Повышение температуры, скажем, на 4 градуса выражается положительным целым числом 4 . Понижение температуры, например, на 12 градусов можно описать отрицательным целым числом −12 . А неизменность температуры – это ее изменение, определяемое целым числом 0 .

Отдельно нужно сказать о трактовке отрицательных целых чисел как величины долга. Например, если у нас есть 3 яблока, то целое положительное число 3 показывает количество яблок, которыми мы владеем. С другой стороны, если мы должны кому-либо отдать 5 яблок, а у нас их нет в наличии, то эту ситуацию можно описать при помощи отрицательного целого числа −5 . В этом случае мы «обладаем» −5 яблоками, знак минус указывает на долг, а число 5 определяет долг количественно.

Понимание отрицательного целого числа в качестве долга позволяет, например, обосновать правило сложения отрицательных целых чисел . Приведем пример. Если кто-то должен 2 яблока одному человеку и одно яблоко – другому, то общий долг составляет 2+1=3 яблока, поэтому −2+(−1)=−3 .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.

К целым числам относятся натуральные числа, ноль, а также числа, противоположные натуральным.

Натуральные числа — это положительные целые числа.

К примеру: 1, 3, 7, 19, 23 и т.д. Такие числа мы используем для подсчета (на столе лежит 5 яблок, у машины 4 колеса и др.)

Латинской буквой \mathbb{N} — обозначается множество натуральных чисел .

К натуральным числам нельзя отнести отрицательные (у стула не может быть отрицательное количество ножек) и дробные числа (Иван не мог продать 3,5 велосипеда).

Числами, противоположными натуральным, являются отрицательные целые числа: −8, −148, −981, … .

Арифметические действия с целыми числами

Что можно делать с целыми числами? Их можно перемножать, складывать и вычитать друг из друга. Разберем каждую операцию на конкретном примере.

Сложение целых чисел

Два целых числа с одинаковыми знаками складываются следующим образом: производится сложение модулей этих чисел и перед полученной суммой ставится итоговый знак:

(+11) + (+9) = +20

Вычитание целых чисел

Два целых числа с разными знаками складываются следующим образом: из модуля большего числа вычитается модуль меньшего и перед полученным ответом ставят знак большего по модулю числа:

(-7) + (+8) = +1

Умножение целых чисел

Чтобы умножить одно целое число на другое нужно выполнить перемножение модулей этих чисел и поставить перед полученным ответом знак «+ », если исходные числа были с одинаковыми знаками, и знак «− », если исходные числа были с разными знаками:

(-5) \cdot (+3) = -15

(-3) \cdot (-4) = +12

Следует запомнить следующее правило перемножения целых чисел :

+ \cdot + = +

+ \cdot - = -

- \cdot + = -

- \cdot - = +

Существует правило перемножения нескольких целых чисел. Запомним его:

Знак произведения будет «+ », если количество множителей с отрицательным знаком четное и «− », если количество множителей с отрицательным знаком нечетное.

(-5) \cdot (-4) \cdot (+1) \cdot (+6) \cdot (+1) = +120

Деление целых чисел

Деление двух целых чисел производится следующим образом: модуль одного числа делят на модуль другого и если знаки чисел одинаковые, то перед полученным частным ставят знак «+ », а если знаки исходных чисел разные, то ставится знак «− ».

(-25) : (+5) = -5

Свойства сложения и умножения целых чисел

Разберем основные свойства сложения и умножения для любых целых чисел a , b и c :

  1. a + b = b + a - переместительное свойство сложения;
  2. (a + b) + c = a + (b + c) - сочетательное свойство сложения;
  3. a \cdot b = b \cdot a - переместительное свойство умножения;
  4. (a \cdot c) \cdot b = a \cdot (b \cdot c) - сочетательное свойства умножения;
  5. a \cdot (b \cdot c) = a \cdot b + a \cdot c - распределительное свойство умножения.