Астрономия - это удивительно увлекательная наука, открывающая пытливым умам все многообразие Вселенной. Вряд ли есть люди, которые в детстве никогда не наблюдали бы за россыпью звезд на ночном небе. Особенно красиво выглядит эта картина в летний период, когда звезды кажутся такими близкими и невероятно яркими. В последние годы астрономов по всему миру особо интересует Андромеда - галактика, расположенная ближе всего к нашему родному Млечному Пути. Мы решили выяснить, что именно так привлекает в ней ученых и можно ли увидеть ее невооруженным глазом.

Андромеда: краткая характеристика

Галактика Туманность Андромеды, или просто Андромеда, является одной из самых крупных. Она больше нашего Млечного Пути, где расположена Солнечная система, приблизительно в три-четыре раза. В ней, по предварительным подсчетам, около одного триллиона звезд.

Андромеда - галактика спиральная, ее можно увидеть на ночном небе даже без специальных оптических приспособлений. Но учтите, что свет от этого звездного скопления идет до нашей Земли более двух с половиной миллионов лет! Астрономы говорят, что сейчас мы видим Туманность Андромеды такой, какой она была два миллиона лет назад. Это ли не диво?

Туманность Андромеды: из истории наблюдений

В первый раз Андромеда была замечена астрономом из Персии. Он внес ее в каталог в девятьсот сорок шестом году и описал как туманное свечение. Спустя семь веков галактика была описана немецким астрономом, который наблюдал за ней в течение долгого времени с помощью телескопа.

В середине девятнадцатого века астрономы определили, что спектр Андромеды существенно отличается от известных до этого галактик, и сделали предположение, что она состоит из многих звезд. Данная теория себя полностью оправдала.

Галактика Андромеда, фото которой было сделано только в конце девятнадцатого века, имеет спиральную структуру. Хотя в те времена она считалась всего лишь крупной частью Млечного Пути.

Строение галактики

С помощью современных телескопов астрономам удалось провести анализ строения Туманности Андромеды. Телескоп "Хаббл" позволил разглядеть около четырехсот молодых звезд, вращающихся вокруг черной дыры. Возраст этого звездного скопления насчитывает приблизительно двести миллионов лет. Такое строение галактики весьма удивило ученых, ведь до сих пор они даже не представляли, что вокруг черной дыры могут формироваться звезды. Согласно всем известным до этого законам, процесс сгущения газа до образования из него звезды просто невозможен в условиях черной дыры.

Туманность Андромеды имеет несколько спутниковых карликовых галактик, они расположены на ее окраине и могли оказаться там в результате поглощения. Это вдвойне интересно в связи с тем, что астрономы прогнозируют столкновение Млечного Пути и Галактики Андромеды. Правда, случится это феноменальное событие еще очень нескоро.

Галактика Андромеды и Млечный Путь: движение навстречу друг другу

Ученые уже достаточно давно делают определенные прогнозы, наблюдая за движением обеих звездных систем. Дело в том, что Андромеда - галактика, постоянно продвигающаяся по направлению к Солнцу. В начале двадцатого века американский астроном сумел вычислить скорость, с какой происходит данное движение. Эту цифру, составляющую триста километров в секунду, до сих пор используют все астрономы мира в своих наблюдениях и расчетах.

Тем не менее их расчеты существенно разнятся. Одни ученые утверждают, что галактики столкнутся только через семь миллиардов лет, а вот другие уверены, что скорость движения Андромеды постоянно растет, и встречу можно ожидать уже через четыре миллиарда лет. Ученые не исключают такого варианта развития событий, при котором через несколько десятков лет эта прогнозируемая цифра еще раз существенно уменьшится. В настоящий момент все же принято считать, что столкновения не стоит ожидать ранее чем через четыре миллиарда лет. Чем же грозит нам Андромеда (галактика)?

Столкновение: что произойдет?

Так как поглощение Млечного Пути Андромедой неизбежно, астрономы пытаются смоделировать ситуацию, чтобы иметь хотя бы какую-нибудь информацию о данном процессе. По компьютерным данным, в результате поглощения Солнечная система окажется на окраине галактики, она перелетит на расстояние сто шестьдесят тысяч световых лет. По сравнению с сегодняшним положением нашей Солнечной системы к центру галактики, она удалится от него на двадцать шесть тысяч световых лет.

Новая будущая галактика уже получила название - Млечномеда, и астрономы утверждают, что за счет слияния она омолодится как минимум на полтора миллиарда лет. При этом в процессе будут образовываться новые звезды, что сделает нашу галактику гораздо более яркой и красивой. А еще она поменяет форму. Сейчас Туманность Андромеды находится к Млечному Пути под некоторым углом, но в процессе слияния получившаяся система приобретет форму эллипса и станет более объемной, если можно так выразиться.

Судьба человечества: выживем ли мы при столкновении?

А что будет с людьми? Как отразится встреча галактик на нашей Земле? Удивительно, но ученые утверждают, что абсолютно никак!!! Все изменения будут выражаться в появлении новых звезд и созвездий. Карта неба полностью поменяется, ведь мы окажемся в абсолютно новом и неизведанном уголке галактики.

Конечно, некоторые астрономы оставляют крайне ничтожный процент негативного развития событий. В этом сценарии Земля может столкнуться с Солнцем или иным звездным телом из галактики Андромеды.

Есть ли в Туманности Андромеды планеты?

Поиском планет в галактиках ученые занимают регулярно. Они не оставляют попыток обнаружить на просторах Млечного Пути планету, приближенную по характеристикам к нашей Земле. В настоящий момент уже более трехсот объектов были открыты и описаны, но все они расположены в нашей звездной системе. В последние годы астрономы стали все более пристально присматриваться к Андромеде. Есть ли там вообще планеты?

Тринадцать лет назад группа астрономов с помощью новейшего метода высказала гипотезу, что у одной из звезд Туманности Андромеды находится планета. Ее предположительная масса составляет шесть процентов от самой крупной планеты нашей Солнечной системы - Юпитера. Его масса в триста раз превышает массу Земли.

В настоящий момент данное предположение находится на стадии проверки, но имеет все шансы стать сенсацией. Ведь до сих пор астрономы не обнаруживали планет в иных галактиках.

Подготовка к поиску галактики на небе

Как мы уже говорили, даже невооруженным глазом можно увидеть соседнюю галактику на ночном небе. Конечно, для этого необходимо иметь некоторые познания в области астрономии (по крайней мере, знать, как выглядят созвездия, и уметь их находить).

К тому же разглядеть определенные скопления звезд в ночном небе города практически невозможно - световое загрязнение помешает наблюдателям увидеть хотя бы что-нибудь. Поэтому если вы все-таки желаете увидеть Туманность Андромеды своими собственными глазами, то отправляйтесь в конце лета в деревню или хотя бы в городской парк, где нет большого количества фонарей. Лучшим временем для наблюдения является октябрь, но и с августа по сентябрь она довольно отчетливо видна над горизонтом.

Туманность Андромеды: схема поиска

Многие молодые астрономы-любители мечтают узнать, как выглядит на самом деле Андромеда. Галактика на небе напоминает небольшое светлое пятнышко, но найти ее можно благодаря ярким звездам, которые расположены поблизости.

Проще всего нужно отыскать на осеннем небе Кассиопею - она похожа на букву W, только более растянутую, чем принято обозначать её на письме. Обычно созвездие хорошо просматривается в Северном полушарии и находится в восточной части неба. Галактика Туманность Андромеды располагается ниже. Чтобы увидеть ее, необходимо отыскать еще несколько ориентиров.

Ими служат три яркие звезды ниже Кассиопеи, они вытянуты в линию и имеют красно-оранжевый оттенок. Средняя из них, Мирак, является самым точным ориентиром для начинающих астрономов. Если от нее вы проведете прямую линию вверх, то заметите небольшое светящееся пятно, напоминающее облако. Именно этот свет и будет галактикой Андромеды. Причем то свечение, которые вы сможете наблюдать, было отправлено к Земле еще тогда, когда на планете не было ни одного человека. Удивительный факт, не так ли?

ГАЛАКТИКИ, «внегалактические туманности» или «островные Вселенные»,― это гигантские звездные системы, содержащие также межзвездный газ и пыль. Солнечная система входит в нашу Галактику – Млечный Путь. Все космическое пространство до пределов, куда могут проникнуть мощнейшие телескопы, заполнено галактиками. Астрономы насчитывают их не менее миллиарда. Ближайшая галактика находится от нас на расстоянии около 1 млн. св. лет (10 19 км), а до самых удаленных галактик, зарегистрированных телескопами, – миллиарды световых лет. Исследование галактик – одна из самых грандиозных задач астрономии.

Историческая справка. Ярчайшие и ближайшие к нам внешние галактики – Магеллановы Облака – видны невооруженным глазом на южном полушарии неба и были известны арабам еще в 11 в., равно как и ярчайшая галактика северного полушария – Большая туманность в Андромеде. С переоткрытия этой туманности в 1612 при помощи телескопа немецким астрономом С.Мариусом (1570–1624) началось научное изучение галактик, туманностей и звездных скоплений. Немало туманностей было обнаружено различными астрономами в 17 и 18 вв.; тогда их считали облаками светящегося газа.

Представление о звездных системах за пределом Галактики впервые обсуждали философы и астрономы 18 в.: Э.Сведенборг (1688–1772) в Швеции, Т.Райт (1711–1786) в Англии, И.Кант (1724–1804) в Пруссии, И.Ламберт (1728–1777) в Эльзасе и В.Гершель (1738–1822) в Англии. Однако лишь в первой четверти 20 в. существование «островных Вселенных» было однозначно доказано в основном благодаря работам американских астрономов Г.Кертиса (1872–1942) и Э.Хаббла (1889–1953). Они доказали, что расстояния до наиболее ярких, а значит, ближайших «белых туманностей» значительно превосходят размер нашей Галактики. За период с 1924 по 1936 Хаббл продвинул границу исследования галактик от ближайших систем до предела возможностей 2,5-метрового телескопа обсерватории Маунт-Вилсон, т.е. до нескольких сотен миллионов световых лет.

В 1929 Хаббл открыл зависимость между расстоянием до галактики и скоростью ее движения. Эта зависимость, закон Хаббла, стала наблюдательной основой современной космологии. После окончания Второй мировой войны началось активное изучение галактик с помощью новых крупных телескопов с электронными усилителями света, автоматических измерительных машин и компьютеров. Обнаружение радиоизлучения нашей и других галактик дало новую возможность для изучения Вселенной и привело к открытию радиогалактик, квазаров и других проявлений активности в ядрах галактик. Внеатмосферные наблюдения с борта геофизических ракет и спутников позволили обнаружить рентгеновское излучение из ядер активных галактик и скоплений галактик.

Рис. 1. Классификация галактик по Хабблу

Первый каталог «туманностей» был опубликован в 1782 французским астрономом Ш.Мессье (1730–1817). В этот список попали как звездные скопления и газовые туманности нашей Галактики, так и внегалактические объекты. Номера объектов по каталогу Мессье используются до сих пор; например, Мессье 31 (М 31) – это знаменитая Туманность Андромеды, ближайшая крупная галактика, наблюдаемая в созвездии Андромеды.

Систематический обзор неба, начатый В.Гершелем в 1783, привел его к открытию нескольких тысяч туманностей на северном небе. Эта работа была продолжена его сыном Дж.Гершелем (1792–1871), который провел наблюдения в Южном полушарии на мысе Доброй Надежды (1834–1838) и опубликовал в 1864 Общий каталог 5 тыс. туманностей и звездных скоплений. Во второй половине 19 в. к этим объектам добавились вновь открытые, и Й.Дрейер (1852–1926) в 1888 опубликовал Новый общий каталог (New General Catalogue – NGC ), включающий 7814 объектов. С публикацией в 1895 и 1908 двух дополнительных Индекс-каталогов (IC) число обнаруженных туманностей и звездных скоплений превысило 13 тыс. Обозначение по каталогам NGC и IC с тех пор стало общепринятым. Так, Туманность Андромеды обозначают либо М 31, либо NGC 224. Отдельный список 1249 галактик ярче 13-й звездной величины, основанный на фотографическом обзоре неба, составили Х.Шепли и А.Эймс из Гарвардской обсерватории в 1932.

Эта работа была существенно расширена первым (1964), вторым (1976) и третьим (1991) изданиями Реферативного каталога ярких галактик Ж. де Вокулера с сотрудниками. Более обширные, но менее детальные каталоги, основанные на просмотре фотографических пластинок обзора неба были опубликованы в 1960-х годах Ф.Цвикки (1898–1974) в США и Б.А.Воронцовым-Вельяминовым (1904–1994) в СССР. Они содержат ок. 30 тыс. галактик до 15-й звездной величины. Недавно был закончен подобный обзор южного неба с помощью 1-метровой камеры Шмидта Европейской южной обсерватории в Чили и британской 1,2-метровой камеры Шмидта в Австралии.

Галактик слабее 15-й звездной величины слишком много, чтобы составлять их список. В 1967 опубликованы результаты подсчета галактик ярче 19-й звездной величины (к северу от склонения 20), проделанного Ч.Шейном и К.Виртаненом по пластинкам 50-см астрографа Ликской обсерватории. Таких галактик оказалось ок. 2 млн., не считая тех, которые скрыты от нас широкой пылевой полосой Млечного Пути. А еще в 1936 Хаббл на обсерватории Маунт-Вилсон подсчитал количество галактик до 21-й звездной величины в нескольких небольших площадках, распределенных равномерно по небесной сфере (севернее склонения 30). По этим данным на всем небе более 20 млн. галактик ярче 21-й звездной величины.

Классификация. Встречаются галактики различных форм, размеров и светимостей; некоторые из них изолированные, но большинство имеет соседей или спутников, оказывающих на них гравитационное влияние. Как правило, галактики спокойны, но нередко встречаются и активные. В 1925 Хаббл предложил классификацию галактик, основанную на их внешнем виде. Позже ее уточняли Хаббл и Шепли, затем Сэндидж и наконец Вокулер. Все галактики в ней делятся на 4 типа: эллиптические, линзовидные, спиральные и неправильные.

Эллиптические (E ) галактики имеют на фотографиях форму эллипсов без резких границ и четких деталей. Их яркость возрастает к центру. Это вращающиеся эллипсоиды, состоящие из старых звезд; их видимая форма зависит от ориентации к лучу зрения наблюдателя. При наблюдении с ребра отношение длин короткой и длинной осей эллипса достигает  5/10 (обозначается E5 ).

Рис. 2. Эллиптическая галактика ESO 325-G004

Линзовидные (L или S 0) галактики похожи на эллиптические, но, кроме сфероидального компонента, имеют тонкий быстро вращающийся экваториальный диск, иногда с кольцеобразными структурами наподобие колец Сатурна. Наблюдаемые с ребра линзовидные галактики выглядят более сжатыми, чем эллиптические: отношение их осей достигает 2/10.

Рис. 2. Галактика Веретено (NGC 5866), линзообразная галактика в созвездии Дракон.

Спиральные (S ) галактики также состоят из двух компонентов – сфероидального и плоского, но с более или менее развитой спиральной структурой в диске. Вдоль последовательности подтипов Sa , Sb , Sc , Sd (от «ранних» спиралей к «поздним») спиральные рукава становятся толще, сложнее и менее закручены, а сфероид (центральная конденсация, или балдж ) уменьшается. У спиральных галактик, наблюдаемых с ребра, спиральные рукава не видны, но тип галактики можно установить по относительной яркости балджа и диска.

Рис. 2. Пример спиральной галактики, Галактика «Вертушка» (Pinwheel) (объект списка Мессье 101 или NGC 5457)

Неправильные (I ) галактики бывают двух основных видов: магелланового типа, т.е. типа Магеллановых Облаков, продолжающие последовательность спиралей от Sm до Im , и немагелланового типа I 0, имеющие хаотические темные пылевые полосы поверх сфероидальной или дисковой структуры типа линзовидной или ранней спиральной.

Рис. 2. NGC 1427A, пример неправильной галактики.

Типы L и S распадаются на два семейства и два вида в зависимости от наличия или отсутствия проходящей через центр и пересекающей диск линейной структуры (бар ), а также центральносимметричного кольца.

Рис. 2. Компьютерная модель галактики Млечный путь.

Рис. 1. NGC 1300, пример спиральной галактики с перемычкой.

Рис. 1. ТРЕХМЕРНАЯ КЛАССИФИКАЦИЯ ГАЛАКТИК . Основные типы: E, L, S, I располагаются последовательно от E до Im ; семейства обычных A и пересеченных B ; вида s и r . Круглые диаграммы внизу – сечение главной конфигурации в области спиральных и линзовидных галактик.

Рис. 2. ОСНОВНЫЕ СЕМЕЙСТВА И ВИДЫ СПИРАЛЕЙ на сечении главной конфигурации в области Sb .

Существуют и другие схемы классификации галактик, основанные на более тонких морфологических деталях, но пока еще не развита объективная классификация, основанная на фотометрических, кинематических и радиоизмерениях.

Состав . Два структурных компонента – сфероид и диск – отражают различие в звездном населении галактик, открытое в 1944 немецким астрономом В.Бааде (1893–1960).

Население I , присутствующее в неправильных галактиках и в рукавах спиралей, содержит голубые гиганты и сверхгиганты спектральных классов O и B, красные сверхгиганты классов K и M, а также межзвездные газ и пыль с яркими областями ионизованного водорода. В нем присутствуют и маломассивные звезды главной последовательности, которые видны вблизи Солнца, но неразличимы в далеких галактиках.

Население II , присутствующее в эллиптических и линзовидных галактиках, а также в центральных областях спиралей и в шаровых скоплениях, содержит красные гиганты от класса G5 до K5, субгиганты и, вероятно, субкарлики; в нем встречаются планетарные туманности и наблюдаются вспышки новых (рис. 3). На рис. 4 показана связь между спектральными классами (или цветом) звезд и их светимостью у различных населений.

Рис. 3. ЗВЕЗДНЫЕ НАСЕЛЕНИЯ . На фотографии спиральной галактики Туманности Андромеды видно, что в ее диске сосредоточены голубые гиганты и сверхгиганты Населения I, а центральная часть состоит из красных звезд Населения II. Видны также спутники Туманности Андромеды: галактика NGC 205 (внизу ) и М 32 (вверху слева ). Самые яркие звезды на этом фото принадлежат нашей Галактике.

Рис. 4. ДИАГРАММА ГЕРЦШПРУНГА – РЕССЕЛА , на которой видна связь между спектральным классом (или цветом) и светимостью у звезд разного типа. I: молодые звезды Населения I, типичные для спиральных рукавов. II: состарившиеся звезды Населения I; III: старые звезды Населения II, типичные для шаровых скоплений и эллиптических галактик.

Первоначально считалось, что эллиптические галактики содержат только Население II, а неправильные – только Население I. Однако выяснилось, что обычно галактики содержат смесь двух звездных населений в разных пропорциях. Детальный анализ населений возможен только для нескольких близких галактик, но измерения цвета и спектра далеких систем показывают, что различие их звездных населений может быть значительнее, чем думал Бааде.

Расстояние . Измерение расстояний до далеких галактик основано на абсолютной шкале расстояний до звезд нашей Галактики. Ее устанавливают несколькими методами. Наиболее фундаментальный – метод тригонометрических параллаксов, действующий до расстояний в 300 св. лет. Остальные методы косвенные и статистические; они основаны на изучении собственных движений, лучевых скоростей, блеска, цвета и спектра звезд. На их основе определяют абсолютные величины Новых и переменных типа RR Лиры и Цефея, которые становятся первичными индикаторами расстояния до ближайших галактик, где они видны. Шаровые скопления, ярчайшие звезды и эмиссионные туманности этих галактик становятся вторичными индикаторами и дают возможность определять расстояния до более далеких галактик. Наконец, в качестве третичных индикаторов используются диаметры и светимости самих галактик. В качестве меры расстояния астрономы обычно используют разность между видимой звездной величиной объекта m и его абсолютной звездной величиной M ; эту величину (m – M ) называют «видимым модулем расстояния». Чтобы узнать истинное расстояние, его необходимо исправить с учетом поглощения света межзвездной пылью. При этом ошибка обычно достигает 10–20%.

Внегалактическая шкала расстояний время от времени пересматривается, а значит, меняются и прочие параметры галактик, зависящие от расстояния. В табл. 1 приведены наиболее точные на сегодня расстояния до ближайших групп галактик. До более далеких галактик, удаленных на миллиарды световых лет, расстояния оцениваются с невысокой точностью по их красному смещению (см. ниже : Природа красного смещения).

Таблица 1. РАССТОЯНИЯ ДО БЛИЖАЙШИХ ГАЛАКТИК,ИХ ГРУПП И СКОПЛЕНИЙ

Галактика или группа

Видимый модуль расстояния (m – M )

Расстояние, млн. св. лет

Большое Магелланово Облако

Малое Магелланово Облако

Группа Андромеды (М 31)

Группа Скульптора

Группа Б. Медведицы (М 81)

Скопление в Деве

Скопление в Печи

Светимость. Измерение поверхностной яркости галактики дает полную светимость ее звезд на единицу площади. Изменение поверхностной светимости с расстоянием от центра характеризует структуру галактики. Эллиптические системы, как наиболее правильные и симметричные, изучены подробнее других; в целом они описываются единым законом светимости (рис. 5,а ):

Рис. 5. РАСПРЕДЕЛЕНИЕ СВЕТИМОСТИ У ГАЛАКТИК . а – эллиптические галактики (изображен логарифм поверхностной яркости в зависимости от корня четвертой степени из приведенного радиуса (r/r e) 1/4 , где r – расстояние от центра, а r e – эффективный радиус, внутри которого заключена половина полной светимости галактики); б – линзовидная галактика NGC 1553; в – три нормальные спиральные галактики (внешняя часть у каждой из линий прямая, что указывает на экспоненциальную зависимость светимости от расстояния).

Данные о линзовидных системах не так полны. Их профили светимости (рис. 5,б ) отличаются от профилей эллиптических галактик и имеют три основных участка: ядро, линзу и оболочку. Эти системы выглядят как промежуточные между эллиптическими и спиральными.

Спирали очень разнообразны, структура их сложна, и нет единого закона для распределения их светимости. Впрочем, похоже, что у простых спиралей вдали от ядра поверхностная светимость диска спадает к периферии экспоненциально. Измерения показывают, что светимость спиральных рукавов не так велика, как это кажется при рассматривании фотографий галактик. Рукава добавляют не более 20% к светимости диска в голубых лучах и значительно меньше в красных. Вклад в светимость от балджа уменьшается от Sa к Sd (рис. 5,в ).

Измерив видимую звездную величину галактики m и определив ее модуль расстояния (m – M ), вычисляют абсолютную величину M . У самых ярких галактик, исключая квазары, M  22, т.е. их светимость почти в 100 млрд. раз больше, чем у Солнца. А у самых маленьких галактик M 10, т.е. светимость ок. 10 6 солнечной. Распределение числа галактик по M , называемое «функцией светимости», – важная характеристика галактического населения Вселенной, но аккуратно определить ее нелегко.

Для галактик, отобранных до некоторой предельной видимой величины, функция светимости каждого типа в отдельности от E до Sc почти гауссова (колоколообразная) со средней абсолютной величиной в голубых лучах M m = 18,5 и дисперсией  0,8 (рис. 6). Но галактики поздних типов от Sd до Im и эллиптические карлики слабее.

У полной выборки галактик в заданном объеме пространства, например в скоплении, функция светимости круто растет с уменьшением светимости, т.е. количество карликовых галактик во много раз превосходит количество гигантских

Рис. 6. ФУНКЦИЯ СВЕТИМОСТИ ГАЛАКТИК . а – выборка ярче некоторой предельной видимой величины; б – полная выборка в определенном большом объеме пространства. Обратите внимание на подавляющее количество карликовых систем с M B < -16.

Размер . Поскольку звездная плотность и светимость у галактик постепенно спадают наружу, вопрос об их размере фактически упирается в возможности телескопа, в его способность выделить слабое свечение внешних областей галактики на фоне свечения ночного неба. Современная техника позволяет регистрировать области галактик с яркостью менее 1% от яркости неба; это примерно в миллион раз ниже яркости ядер галактик. По этой изофоте (линии одинаковой яркости) диаметры галактик составляют от нескольких тысяч световых лет у карликовых систем до сотен тысяч – у гигантских. Как правило, диаметры галактик хорошо коррелируют с их абсолютной светимостью.

Спектральный класс и цвет. Первая спектрограмма галактики – Туманности Андромеды, полученная в Потсдамской обсерватории в 1899 Ю.Шейнером (1858–1913), своими линиями поглощения напоминает спектр Солнца. Массовое исследование спектров галактик началось с создания «быстрых» спектрографов с низкой дисперсией (200–400 /мм); позже применение электронных усилителей яркости изображения позволило повысить дисперсию до 20–100 /мм. Наблюдения Моргана на Йеркской обсерватории показали, что, несмотря на сложный звездный состав галактик, их спектры обычно близки к спектрам звезд определенного класса от A до K , причем есть заметная корреляция между спектром и морфологическим типом галактики. Как правило, спектр класса A имеют неправильные галактики Im и спирали Sm и Sd . Спектры класса A–F у спиралей Sd и Sc . Переход от Sc к Sb сопровождается изменением спектра от F к F–G , а спирали Sb и Sa , линзовидные и эллиптические системы имеют спектры G и K . Правда, позже выяснилось, что излучение галактик спектрального класса A в действительности состоит из смеси света звезд-гигантов спектральных классов B и K .

Кроме линий поглощения, у многих галактик видны линии излучения, как у эмиссионных туманностей Млечного Пути. Обычно это линии водорода бальмеровской серии, например, H на 6563 , дублеты ионизованных азота (N II) на 6548 и 6583 и серы (S II) на 6717 и 6731, ионизованного кислорода (O II) на 3726 и 3729 и дважды ионизованного кислорода (O III) на 4959 и 5007. Интенсивность эмиссионных линий обычно коррелирует с количеством газа и звезд-сверхгигантов в дисках галактик: эти линии отсутствуют или очень слабы у эллиптических и линзовидных галактик, но усиливаются у спиральных и неправильных – от Sa к Im . К тому же интенсивность эмиссионных линий элементов тяжелее водорода (N, O, S) и, вероятно, относительное содержание этих элементов уменьшаются от ядра к периферии дисковых галактик. У некоторых галактик необычайно сильны эмиссионные линии в ядрах. В 1943 К.Сейферт открыл особый тип галактик с очень широкими линиями водорода в ядрах, указывающими на их высокую активность. Светимость этих ядер и их спектры меняются со временем. В целом ядра сейфертовских галактик похожи на квазары, хотя не так мощны.

Вдоль морфологической последовательности галактик изменяется интегральный показатель их цвета (B – V ), т.е. разность между звездной величиной галактики в голубых B и желтых V лучах. Средний показатель цвета основных типов галактик таков:

В этой шкале 0,0 соответствует белому цвету, 0,5 – желтоватому, 1,0 – красноватому.

При детальной фотометрии обычно выясняется, что цвет галактики меняется от ядра к краю, что указывает на изменение звездного состава. Большинство галактик голубее во внешних областях, чем в ядре; у спиралей это проявляется гораздо заметнее, чем у эллиптических, поскольку в их дисках много молодых голубых звезд. Неправильные галактики, обычно лишенные ядра, нередко бывают в центре голубее, чем на краю.

Вращение и масса. Вращение галактики вокруг оси, проходящей через центр, приводит к изменению длины волны линий в ее спектре: линии от приближающихся к нам областей галактики смещаются в фиолетовую часть спектра, а от удаляющихся – в красную (рис. 7). По формуле Доплера, относительное изменение длины волны линии составляет / = V r /c , где c – скорость света, а V r – лучевая скорость, т.е. компонента скорости источника вдоль луча зрения. Периоды обращения звезд вокруг центров галактик составляют сотни миллионов лет, а скорости их орбитального движения достигают 300 км/с. Обычно скорость вращения диска достигает максимального значения (V M ) на некотором расстоянии от центра (r M ), а затем уменьшается (рис. 8). У нашей Галактики V M = 230 км/с на расстоянии r M = 40 тыс. св. лет от центра:

Рис. 7. СПЕКТРАЛЬНЫЕ ЛИНИИ ГАЛАКТИКИ , вращающейся вокруг оси N , при ориентации щели спектрографа вдоль оси ab . Линия от удаляющегося края галактики (b ) отклонена в красную сторону (R), а от приближающегося края (a ) – в ультрафиолетовую (UV).

Рис. 8. КРИВАЯ ВРАЩЕНИЯ ГАЛАКТИКИ . Скорость вращения V r достигает максимального значения V M на расстоянии R M от центра галактики, а затем медленно уменьшается.

Линии поглощения и линии излучения в спектрах галактик имеют одинаковую форму, следовательно, звезды и газ в диске вращаются с одинаковой скоростью в одном направлении. Когда по расположению темных пылевых полос в диске удается понять, какой край галактики расположен к нам ближе, мы можем выяснить направление закрученности спиральных рукавов: во всех изученных галактиках они отстающие, т.е., удаляясь от центра, рукав загибается в сторону, обратную направлению вращения.

Анализ кривой вращения позволяет определить массу галактики. В простейшем случае, приравняв силу гравитации к центробежной силе, получим массу галактики внутри орбиты звезды: M = rV r 2 /G , где G – постоянная тяготения. Анализ движения периферийных звезд позволяет оценить полную массу. У нашей Галактики масса ок. 210 11 солнечных масс, у Туманности Андромеды 410 11 , у Большого Магелланова Облака – 1510 9 . Массы дисковых галактик приблизительно пропорциональны их светимости (L ), поэтому отношение M/L у них почти одинаковое и для светимости в голубых лучах равное M/L  5 в единицах массы и светимости Солнца.

Массу сфероидальной галактики можно оценить таким же образом, взяв вместо скорости вращения диска скорость хаотического движения звезд в галактике ( v ), которую измеряют по ширине спектральных линий и называют дисперсией скоростей: M R v 2 /G , где R – радиус галактики (теорема вириала). Дисперсия скоростей звезд у эллиптических галактик обычно от 50 до 300 км/с, а массы от 10 9 солнечных масс у карликовых систем до 10 12 у гигантских.

Радиоизлучение Млечного Пути было открыто К.Янским в 1931. Первую радиокарту Млечного Пути получил Г.Ребер в 1945. Это излучение приходит в широком диапазоне длин волн или частот  = c /, от нескольких мегагерц (  100 м) до десятков гигагерц (  1 см), и называется «непрерывным». За него ответственны несколько физических процессов, важнейший из которых – синхротронное излучение межзвездных электронов, движущихся почти со скоростью света в слабом межзвездном магнитном поле. В 1950 непрерывное излучение на волне 1,9 м было обнаружено Р.Брауном и К.Хазардом (Джодрелл-Бэнк, Англия) от Туманности Андромеды, а затем и от многих других галактик. Нормальные галактики, как наша или М 31, – слабые источники радиоволн. Они излучают в радиодиапазоне едва ли одну миллионную часть своей оптической мощности. Но у некоторых необычных галактик это излучение гораздо сильнее. У ближайших «радиогалактик» Дева А (M 87), Кентавр А (NGC 5128) и Персей А (NGC 1275) радиосветимость составляет 10 –4 10 –3 от оптической. А у редких объектов, таких, как радиогалактика Лебедь А, это отношение близко к единице. Лишь через несколько лет после открытия этого мощного радиоисточника удалось отыскать слабую галактику, связанную с ним. Множество слабых радиоисточников, вероятно, связанных с далекими галактиками, до сих пор не отождествлено с оптическими объектами.

Андромеда — галактика, также популярная как M31 и NGC224. Это спиральное образование, расположенное на расстоянии примерно 780 kp (2,5 млн световых лет) от Земли.

Андромеда — галактика, находящаяся поближе всего к Млечному Пути. Названа она в честь одноименной мифической принцессы. Наблюдения 2006 года позволили сделать вывод, что тут насчитывается около триллиона звезд — как минимум вдвое больше, чем во Млечном Пути, где их существует порядка 200 — 400 млрд. Ученые считают, что столкновение Млечного Пути и галактики Андромеды случится примерно через 3,75 млрд лет, и в конечном итоге будет образована огромная эллиптическая либо дисковая галактика. Но об этом чуть позже. Сначала узнаем, как смотрится «мифическая принцесса».

На рисунке изображена Андромеда. Галактика имеет бело-голубые полосы. Они образуют вокруг нее кольца и укрывают жаркие раскаленные огромные звезды. Темные сине-серые полосы резко контрастируют на фоне этих ярких колец и показывают области, где в плотных облачных коконах образование звезд только начинается. При наблюдении в видимой части спектра кольца Андромеды больше похоже на спиральные рукава. В ультрафиолетовом спектре эти образования скорее напоминают кольцевые структуры. Они были ранее обнаружены телескопом НАСА. Астрологи считают, что эти кольца свидетельствует об образовании галактики в результате столкновения с соседней более 200 млн лет назад.

Так же как и Млечный Путь, Андромеда имеет ряд миниатюрных спутников, 14 из которых уже обнаружены. Самые известные — М32 и М110. Конечно, маловероятно, что звезды каждой из галактик столкнутся вместе, так как расстояния между ними очень огромные. О том, что же в реальности произойдет, ученые имеют пока достаточно смутные представления. Но уже придумано для будущей новорожденной название. Млекомеда — так называют еще не родившуюся огромную галактику деятели науки.

Столкновения звезд

Андромеда — галактика, насчитывающая 1 трлн звезд (1012), а Млечный Путь — 1 млрд (3*1011). Однако шанс столкновения небесных тел ничтожно мал, так как между ними существует огромное расстояние. Например, наиблежайшая к Солнцу звезда Проксима Центавра находится на удалении в 4,2 световых лет (4*1013км), либо 30 млн (3*107) поперечников Солнца. Представьте, что наше светило — это мячик для игры в настольный теннис. Тогда Проксима Центавра будет смотреться как горошина, находящаяся на расстоянии 1100 км от него, а сам Млечный Путь простираться вширь на 30 млн км. Даже звезды в центре галактики (а конкретно там их наибольшее скопление) расположены с промежутками в 160 млрд (1,6*1011) км. Это как один мячик для настольного тенниса на каждые 3,2 км. Поэтому шанс, что какие-нибудь две звезды столкнутся при слиянии галактик, чрезвычайно мал.

Столкновение черных дыр

Галактика Андромеды и Млечный Путь имеют центральные сверхмассивные черные дыры: Стрелец А (3,6*106 масс Солнца) и объект снутри P2 скопления Галактического ядра. Эти черные дыры сойдутся в одной точке около центра новообразованной галактики, передавая орбитальную энергию звездам, которые со временем сместятся на более высочайшие траектории. Вышеперечисленный процесс может занять миллионы лет. Когда черные дыры приблизятся на расстояние одного светового года друг от друга, они начнут испускать гравитационные волны. Орбитальная энергия станет еще мощнее, до тех пор пока слияние не закончится полностью. Исходя из данных моделирования, проведенного в 2006 году, Земля может быть сначала отброшена почти к самому центру новообразованной галактики, потом пройдет около одной из черных дыр и будет извержена за границы Млекомеды.

Подтверждения теории

Галактика Андромеды приближается к нам со скоростью примерно 110 км за секунду. Прямо до 2012 г. не было никаких способов узнать, произойдет столкновение либо нет. Сделать вывод о том, что оно почти неминуемо, ученым помог Космический Телескоп Хаббла. После отслеживания перемещений Андромеды с 2002 по 2010 г. был сделан вывод, что столкновение случится примерно через 4 млрд лет.

Подобные явления широко распространены в космосе. Например, считается, что Андромеда в прошлом вела взаимодействие как минимум с одной галактикой. А некоторые карликовые галактики, такие как SagDEG, и сейчас продолжают сталкиваться с Млечным Путем, создавая единое образование.

Исследования также показывают, что М33, либо Галактика Треугольника, — третий по размерам и самый яркий представитель Местной группы — тоже будет участвовать в этом событии. Наиболее возможной ее судьбой будет заход на орбиту образовавшегося после слияния объекта, а в дальнем будущем — окончательное объединение. Однако столкновение М33 с Млечным Путем раньше, чем приблизится Андромеда, либо наша Солнечная Система будет отброшена за границы Местной группы, исключается.

Судьба Солнечной Системы

Ученые из Гарварда утверждают, что сроки объединения галактик будут зависеть от тангенциальной скорости Андромеды. Исходя из расчетов, сделали вывод, что есть 50% шанс, что при слиянии Солнечная Система будет отброшена на расстояние, в три раза превышающее текущее до центра Млечного Пути. Точно не понятно, как поведет себя галактика Андромеда. Планета Земля тоже находится под угрозой. Ученые молвят о 12% вероятности, что мы через некоторое время после столкновения будем отброшены за границы нашего бывшего «дома». Но это событие, скорее всего, не произведет сильных неблагоприятных эффектов на Солнечную Систему, и небесные тела не будут разрушены.

Если исключить планетарную инженерию, то ко времени столкновения галактик поверхность Земли сильно раскалится и на ней не останется воды в водянистом состоянии, а означает и жизни.

Возможные побочные явления

Когда объединяются две спиральные галактики, водород, присутствующий на их дисках, сжимается. Начинается усиленное образование новых звезд. Например, это можно наблюдать во взаимодействующей галактике NGC 4039, по другому известной как «Антенны». В случае слияния Андромеды и Млечного Пути считается, что газа на их дисках останется мало. Звездообразование будет не таким насыщенным, хотя полностью возможно зарождение квазара.

Результат слияния

Галактику, образованную при слиянии, ученые предварительно называют Млекомеда. Результат моделирования показывает, что получившийся объект будет носить эллиптическую форму. Его центр будет иметь меньшую плотность звезд, чем современные эллиптические галактики. Но возможна также и дисковая форма. Многое будет зависеть от того, сколько газа останется в пределах Млечного Пути и Андромеды. В недалеком будущем оставшиеся галактики Местной группы сольются в один объект, и это будет означать начало новой эволюционной ступени.

Факты об Андромеде

Андромеда — самая большая Галактика в Местной группе. Но, возможно, не самая массивная. Ученые предполагают что во Млечном Пути сосредоточено больше темной материи, и конкретно это делает нашу галактику более массивной. Деятели науки изучат Андромеду с целью понять происхождение и эволюцию подобных ей образований, ведь это наиблежайшая к нам спиральная галактика. Андромеда с Земли смотрится потрясающе. Многим даже удается ее сфотографировать. Андромеда имеет очень плотное галактическое ядро. Не только огромные звезды расположены в ее центре, но также по меньшей мере одна сверхмассивная черная дыра, спрятанная в сердцевине. Ее спиральные рукава скривились в результате гравитационного взаимодействия с 2-мя соседними галактиками: М32 и М110. Снутри Андромеды обращаются как минимум 450 шаровых звездных скоплений. Среди них — одни из наиболее плотных, которые удалось обнаружить. Галактика Андромеда — самый удаленный объект, который можно увидеть невооружённым глазом. Вам понадобится хорошая точка обзора и минимум яркого света.

В заключение хочется посоветовать читателям почаще поднимать свой взор на звездное небо. Оно хранит много нового и неизведанного. Найдите немного свободного времени, чтобы понаблюдать за космосом в выходные. Галактика Андромеды на небе — зрелище, которое непременно стоит увидеть.

Разделить на социальные группы, наша галактика Млечный Путь будет принадлежать к крепкому «среднему классу». Так, она относится к самому распространенному виду галактик, но в то же время не является средней по размеру или массе. Галактик, которые мельче Млечного Пути, больше чем тех, что крупнее его. Еще наш «звездный остров» обладает как минимум 14-ю спутниками - другими карликовыми галактиками. Они обречены кружить вокруг Млечного Пути, пока не будут им поглощены, или же не улетят прочь от межгалактического столкновения. Ну и пока что это единственное место, где наверняка существует жизнь - то есть мы с вами.

Но еще Млечный путь остается наиболее загадочной галактикой во Вселенной: находясь на самом краю «звездного острова», мы видим лишь часть из миллиардов его звезд. А галактики и вовсе невидимо - оно закрыто плотными рукавами звезд, газа и пыли. О фактах и тайнах Млечного Пути и пойдет сегодня речь.

Ближайшая к нам галактика — величественная галактика Андромеды — состоит из триллиона звезд и расположена всего в 2 млн световых лет от нас. Новое исследование предполагает, что эта галактика ненамного больше Млечного Пути, что противоречит предыдущим оценкам. Это значит, что Млечный Путь не будет полностью поглощен, когда две галактики столкнутся через 5 млрд лет.

В обозреваемой Вселенной насчитываются миллиарды галактик, и все же лишь несколько достаточно близки, чтобы изучить их детально — и Андромеда одна из них. Галактика Андромеды — спиральная, как и Млечный Путь, поэтому, изучая ее, мы можем узнать много нового о нашей собственной галактике.

Так выглядела бы Андромеда, если бы была видна невооруженным глазом. Tom Buckley-Houston & Stephen Rahn

Как показывает новое исследование, Андромеда еще больше похожа на Млечный Путь, чем мы представляли. Она почти того же размера, что и наше галактика, а не в 2-3 раза больше, как традиционно считалось.

Это важно для очень отдаленного будущего. Через 5 млрд лет Млечный Путь и Андромеда должны столкнуться. Пересмотренная оценка веса Андромеды означает, что модель слияния тоже должна быть пересмотрена. Симуляции показывают, что Млечный Путь будет поглощен более крупной галактикой Андромеды, но если новые подсчеты верны, это, скорее, будет слияние равных галактик. Конечным результатом столкновения, вероятно, станет рождение гигантской эллиптической галактики.

Во время столкновения многие звезды будут выброшены в межзвездное пространство и центральные сверхмассивные черные дыры двух галактик не смогут противостоять притяжению друг друга, производя сильные гравитационные волны по мере сближения и слияния в единое целое. Наше Солнце все еще будет на том же месте во время слияния, но неясно, что случится с нашей Солнечной системой. Самый худший сценарий предполагает, что нас унесет в беспокойный галактический центр к сливающимся черным дырам, и это будет очень плохо.

Другое важное значение нового исследования — понимание того, как формировалась галактика Андромеды, как развивалась и какова ее роль в формировании так называемой Локальной группы галактик (конгломерации галактик, которая включает Млечный Путь).

Измерить размер далекой галактики — не простой процесс. Мы находимся глубоко внутри Млечного Пути, что делает наблюдения объектов вне нашей галактики сложными, но возможными. Так как в нашем распоряжении нет небесных весов, астрономы должны полагаться на математические технологии и методы наблюдения, чтобы оценить размеры. Методы, использованные, чтобы измерить размер Андромеды, включают метод кривой вращения (измерение массы звезд относительно галактического центра), измерение дисперсии скорости (отслеживание скорости звезд в галактике) и другие. На сегодняшний день, благодаря этим технологиям, созданы оценки размера Андромеды, которые сильно варьируются. Некоторые предполагают, что она меньше Млечного Пути, другие — что в 2-3 раза крупнее.

Обеспокоенный отсутствием консенсуса астроном из Университета Западной Австралии Праджвал Кафле решил использовать технологию, которая пригодилась, чтобы пересмотреть оценки размера Млечного Пути в 2014 году. Технология основана на наблюдениях за быстро движущимися звездами в галактике Андромеда и оценках скорости, которая требуется этим звездам, чтобы сбежать от гравитационного притяжения галактик. Другими словами, он вычислил вторую космическую скорость Андромеды, которая, в свою очередь, предоставила новую оценку массы галактики.

Вторая космическая скорость, или скорость убегания, — это скорость, которая требуется, чтобы сбежать из гравитационных границ другого объекта. Например, ракете надо лететь со скоростью 11 км/с, чтобы сбежать от гравитации Земли. В новом исследовании Кафле подсчитал, что вес Андромеды будет в 800 млрд раз тяжелее Солнца — и это цифра, которая близка к массе Млечного пути.

Исследование заявляет, что вириальная масса Андромеды — 8×1011 солнечных масс, а вириальный радиус — 782 775 световых лет. Для сравнения, вириальная масса Млечного пути — ~4.8×1011 солнечных масс, а вириальный радиус — 652 313 световых лет. Под вириальным астрономы имеют в виду гало темной материи в галактике, которая распространяется за края видимой галактики и преобладает в общей массе.