Лекция: Закон всемирного тяготения. Сила тяжести. Зависимость силы тяжести от высоты над поверхностью планеты

Закон гравитационного взаимодействия

До некоторого времени Ньютон не задумывался о том, что его предположения справедливы для всех тех, находящихся во Вселенной. Спустя некоторое время им были изучены законы Кеплера, а также законы, которых придерживаются тела, что свободно падают на поверхность Земли. Данные мысли не были зафиксированы на бумаге, а только остались заметки про яблоко, упавшее на Землю, а также о Луне, которая вращается вокруг планеты. Он считал, что

    все тела рано или поздно упадут на Землю;

    они падают с одинаковым ускорением;

    Луна двигается по окружности с постоянным периодом;

    размеры Луны практически в 60 раз меньше, чем у Земли.

В результате всего это был сделан вывод, что все тела притягиваются друг к другу. При этом, чем больше масса тела, тем с большей силой оно притягивает к себе окружающие объекты.

В результате этого был открыт закон всемирного притяжения:

Любые материальные точки притягиваются друг к другу с силой, увеличивающейся в зависимости от роста их масс, но при этом уменьшается в квадратной пропорциональности в зависимости от расстояния между этими телами.

F – сила гравитационного притяжения
m 1 , m 2 ​ – массы взаимодействующих тел, кг
r – расстояние между телами (центрами масс тел), м
G – коэффициент (гравитационная постоянная) ≈ 6,67*10 -11 Нм 2 /кг 2 ​​​

Данный закон справедлив в том случае, когда тела можно принять за материальные точки, а вся их масса сконцентрирована в центре.

Коэффициент пропорциональности из закона всемирного тяготения был определен экспериментальным путем ученым Г.Кавендишем. Гравитационная постоянная равна силе, с которой притягиваются килограммовые тела на расстоянии одного метра:

G = 6,67*10 -11 Нм 2 /кг 2

Взаимное притяжение тел объясняется гравитационным полем, подобным электрическому, которое находится вокруг всех тел.

Сила тяжести

Вокруг Земли также существует такое поле, его еще называют полем земного притяжения. Все тела, что находятся в местах его действия, притягиваются к Земле.

Сила тяжести - это равнодействующая гравитационной силы, а также центростремительной силы, направленной по оси вращения.

Именно с такой силой все планеты притягивают к себе другие тела.

Характеристика силы тяжести :

1. Точка приложения: центр масс тела.

2. Направление: к центру Земли.

3. Модуль силы определяется по формуле:

F тяж = gm
g = 9,8 м/с 2 - ускорение свободного падения
m - масса тела

Так как сила тяжести - это частный случай закона гравитационного взаимодействия, то ускорение свободного падения определяется по формуле:

g - ускорение свободного падения, м/с2
G - гравитационная постоянная, Нм 2 /кг 2 ​​​
M 3 - масса Земли, кг
R 3 - радиус Земли

Согласно законам Ньютона, движение тела с ускорением возможно только под действием силы. Т.к. падающие тела движутся с ускорением, направленным вниз, то на них действует сила притяжения к Земле. Но не только Земля обладает свойством действовать на все тела силой притяжения. Исаак Ньютон предположил, что между всеми телами действуют силы притяжения. Эти силы называются силами всемирного тяготения илигравитационными силами.

Распространив установленные закономерности – зависимость силы притяжения тел к Земле от расстояний между телами и от масс взаимодействующих тел, полученные в результате наблюдений,– Ньютон открыл в 1682 г. закон всемирного тяготения :Все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:

Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей тела. Коэффициент пропорциональности Gназываетсягравитационной постоянной (постоянной всемирного тяготения) и равна

.

Силой тяжести называется сила притяжения, действующая со стороны Земли на все тела:

.

Пусть
– масса Земли, а
– радиус Земли. Рассмотрим зависимость ускорения свободного падения от высоты подъема над поверхностью Земли:

Вес тела. Невесомость

Вес тела – сила, с которой тело давит на опору или подвес вследствие притяжения этого тела к земле. Вес тела приложен к опоре (подвесу). Величина веса тела зависит от того, как движется тело с опорой (подвесом).

Вес тела, т.е. сила, с которой тело действует на опору, и сила упругости, с которой опора действует на тело, в соответствие с третьим законом Ньютона равны по абсолютному значению и противоположны по направлению.

Если тело находится в покое на горизонтальной опоре или равномерно движется, на него действуют только сила тяжести и сила упругости со стороны опоры, следовательно вес тела равен силе тяжести (но эти силы приложены к разным телам):

.

При ускоренном движении вес тела не будет равен силе тяжести. Рассмотрим движение тела массой mпод действием сил тяжести и упругости с ускорением. По 2-му закону Ньютона:

Если ускорение тела направлено вниз, то вес тела меньше силы тяжести; если ускорение тела направлено вверх, то все тела больше силы тяжести.

Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой .

Если тело свободно падает, то из формулы * следует, что вес тела равен нулю. Исчезновение веса при движении опоры с ускорением свободного падения называется невесомостью .

Состояние невесомости наблюдается в самолете или космическом корабле при движении их с ускорением свободного падения независимо от скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением; поэтому в корабле наблюдается явление невесомости.

Движение тела под действием сил тяжести. Движение искусственных спутников. Первая космическая скорость

Если модуль перемещения тела много меньше расстояния до центра Земли, то можно считать силу всемирного тяготения во время движения постоянной, а движение тела равноускоренным. Самый простой случай движения тела под действием силы тяжести – свободное падение с нулевой начальной скоростью. В этом случае тело движется с ускорением свободного падения к центру Земли. Если есть начальная скорость, направленная не по вертикали, то тело движется по криволинейной траектории (параболе, если не учитывать сопротивление воздуха).

При некоторой начальной скорости тело, брошенное по касательной к поверхности Земли, под действием силы тяжести при отсутствии атмосферы может двигаться по окружности вокруг Земли, не падая на нее и не удаляясь от нее. Такая скорость называется первой космической скоростью , а тело, движущееся таким образом –искусственным спутником Земли (ИСЗ) .

Определим первую космическую скорость для Земли. Если тело под действием силы тяжести движется вокруг Земли равномерно по окружности, то ускорение свободного падения является его центростремительным ускорением:

.

Отсюда первая космическая скорость равна

.

Первая космическая скорость для любого небесного тела определяется таким же образом. Ускорение свободного падения на расстоянии R от центра небесного тела можно найти, воспользовавшись вторым законом Ньютона и законом всемирного тяготения:

.

Следовательно, первая космическая скорость на расстоянии R от центра небесного тела массойM равна

.

Для запуска на околоземную орбиту ИСЗ необходимо сначала вывести за пределы атмосферы. Поэтому космические корабли стартуют вертикально. На высоте 200 – 300 км от поверхности Земли, где атмосфера разрежена и почти не влияет на движение ИСЗ, ракета делает поворот и сообщает ИСЗ первую космическую скорость в направлении, перпендикулярном вертикали.

Абсолютно на все тела во Вселенной действует волшебная сила, каким-то образом притягивающая их к Земле (точнее к ее ядру). Никуда не сбежать, нигде не укрыться от всеобъемлющего магического тяготения: планеты нашей Солнечной системы притягиваются не только к огромному Солнцу, но и друг к другу, все предметы, молекулы и мельчайшие атомы также взаимно притягиваются. известный даже маленьким детям, посвятив жизнь изучению этого явления, установил один из величайших законов — закон всемирного тяготения.

Что такое сила тяжести?

Определение и формула давно и многим известны. Напомним, сила тяжести — это определенная величина, одно из естественных проявлений всемирного тяготения, а именно: сила, с которой всякое тело неизменно притягивается к Земле.

Сила тяжести обозначается латинской буквой F тяж.

Сила тяжести: формула

Как вычислить направленную на определенное тело? Какие другие величины необходимо знать для того? Формула расчета силы тяжести довольно проста, ее изучают в 7-м классе общеобразовательной школы, в начале курса физики. Чтобы ее не просто выучить, но и понять, следует исходить из того, что сила тяжести, неизменно действующая на тело, прямо пропорциональна его количественной величине (массе).

Единица силы тяжести названа по имени великого ученого— Ньютон.

Всегда направлена строго вниз, к центру земного ядра, благодаря ее воздействию все тела равноускоренно падают вниз. Явления тяготения в повседневной жизни мы наблюдаем повсеместно и постоянно:

  • предметы, случайно или специально выпущенные из рук, обязательно падают вниз на Землю (или на любую препятствующую свободному падению поверхность);
  • запущенный в космос спутник не улетает от нашей планеты на неопределенное расстояние перпендикулярно вверх, а остается вращаться на орбите;
  • все реки текут с гор и не могут быть обращены вспять;
  • бывает, человек падает и травмируется;
  • на все поверхности садятся мельчайшие пылинки;
  • воздух сосредоточен у поверхности земли;
  • тяжело носить сумки;
  • из облаков и туч капает дождь, падает снег, град.

Наряду с понятием "сила тяжести" используется термин "вес тела". Если тело расположить на ровной горизонтальной поверхности, то его вес и сила тяжести численно равны, таким образом, эти два понятия часто подменяют, что совсем не правильно.

Ускорение свободного падения

Понятие "ускорение свободного падения" (иначе говоря, связано с термином "сила тяжести". Формула показывает: для того чтобы вычислить силу тяжести, нужно массу умножить на g (ускорение св. п.).

"g" = 9,8 Н/кг, это постоянная величина. Однако более точные измерения показывают, что из-за вращения Земли значение ускорения св. п. неодинаково и зависит от широты: на Северном полюсе оно = 9,832 Н/кг, а на знойном экваторе = 9,78 Н/кг. Получается, в разных местах планеты на тела, обладающие равной массой, направлена разная сила тяжести (формула же mg все равно остается неизменной). Для практических расчетов было принято решение на незначительные погрешности этой величины и пользоваться усредненным значением 9,8 Н/кг.

Пропорциональность такой величины, как сила тяжести (формула доказывает это), позволяет измерять вес предмета динамометром (похож на обычный бытовой бизмен). Обратите внимание, что прибор показывает только силу, так как для определения точной массы тела необходимо знать региональное значение "g".

Действует ли сила тяжести на любом (и близком, и далеком) расстоянии от земного центра? Ньютон выдвинул гипотезу, что она действует на тело даже при значительном удалении от Земли, но ее значение снижается обратно пропорционально квадрату расстояния от предмета до ядра Земли.

Гравитация в Солнечной системе

Есть ли Определение и формула относительно других планет сохраняют свою актуальность. С одной лишь разницей в значении "g":

  • на Луне = 1,62 Н/кг (в шесть раз меньше земного);
  • на Нептуне = 13,5 Н/кг (почти в полтора раза выше, чем на Земле);
  • на Марсе = 3,73 Н/кг (более чем в два с половиной раза меньше, чем на нашей планете);
  • на Сатурне = 10,44 Н/кг;
  • на Меркурии = 3,7 Н/кг;
  • на Венере = 8,8 Н/кг;
  • на Уране = 9,8 Н/кг (практически такое же, как у нас);
  • на Юпитере = 24 Н/кг (почти в два с половиной раза выше).

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле. Ньютон обобщил законы движения небесных тел и выяснил, что сила равна:

,

Где и - массы взаимодействующих тел, - расстояние между ними, - коэффициент пропорциональности, который называется гравитационной постоянной. Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами. В результате закон всемирного тяготения звучит так: между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки .

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если , , то , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м. Численное значение: . Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения. В соответствии со вторым законом Ньютона , следовательно, . Сила тяжести всегда направлена к центру Земли. В зависимости от высоты над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно .

В технике и быту широко используется понятие веса тела. Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете (рис. 5). Вес тела обозначается . Единица веса - ньютон (Н). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

Рассмотрим случай, когда тело вместе с опорой не движется. В этом случае сила реакции опоры, а следовательно, и нее тела равен силе тяжести (рис. 6):

В случае движения тела вертикально вверх вместе с опорой с ускорением по второму закону Ньютона можно записать (рис. 7, а).

В проекции на ось : , отсюда .

Следовательно, при движении вертикально вверх с ускорением вес тела увеличивается и находится по формуле .

Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой . Действие перегрузки испытывают на себе космонавты как при взлете космической ракеты, так и при торможении корабля при входе в плотные слои атмосферы. Испытывают перегрузки и летчики при вы-полнении фигур высшего пилотажа, и водители автомобилей при резком торможении.

Если тело движется вниз по вертикали, то с помощью аналогичных рассуждений получаем ; m g - N = m a ; ; , т. е. вес при движении по вертикали с ускорением будет меньше силы тяжести (рис. 7, б).

Если тело свободно падает, то в этом случае .

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

Все тела падают на Землю. Причиной этого является действие силы тяжести. Сила, с которой Земля притягивает к себе тело, называется силой тяжести . Обозначается F тяж. Она всегда направлена вниз.

Сила тяжести прямо пропорциональна массе этого тела:

, F = mg

Движение тела под действием силы тяжести называется свободным падением . Впервые оно было исследовано Г.Галилеем. Он установил, что если на падающие тела действует только сила тяжести и не действует сопротивление воздуха, то все они движутся одинаково, т.е. с одним и тем же ускорением. Его назвали ускорением свободного падения (g). Эту величину можно определить экспериментальным путем, измерив перемещения падающего тела через равные промежутки времени. Вычисления показывают, что g = 9,8 м/с 2 .

Земной шар немного сплюснут у полюсов. Поэтому на полюсе g немного больше, чем на экваторе или других широтах.

Вокруг всякого тела существует особый вид материи, с помощью которого взаимодействуют тела. Его называют гравитационным полем.

Земля притягивает все тела: дома, людей, Луну, Солнце, воду в морях и океанах и т.д. И все тела притягиваются друг к другу. Притяжение всех тел Вселенной друг к другу называется всемирным тяготением. В 1687 г. И.Ньютон первым доказал и установил закон всемирного тяготения .

Два тела притягивают друг к другу силой, прямо пропорциональной произведению масс и обратно пропорциональной квадрату расстояния между ними.

Эту силу называют силой тяготения (или гравитационной силой).

Границы применения закона: для материальных точек.

G – гравитационная постоянная G=6,67∙10 –11 ,

Числовое значение гравитационной постоянной устанавливают экспериментально. Впервые это сделал английский ученый Кавендиш с помощью крутильного динамометра (крутильных весов). Физический смысл: две материальные точки массой 1 кг каждая, находящиеся друг от друга на расстоянии 1 м, взаимно притягиваются гравитационной силой, равной 6,67·10 -11 Н.

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

Сила тяжести проявляет себя двояко: а) если тело не имеет опоры, то сила тяжести сообщает телу ускорение свободного падения; б) если тело имеет опору, то притягиваясь к Земле, оно действует на опору. Сила, с которой тело действует на опору вследствие притяжения к Земле, называет весом . Вес приложен к опоре.

Если опора не имеет ускорения, то модуль веса равен модулю силы тяжести. P=F тяж. Если опора имеет ускорение, направленное вверх, то модуль веса больше модуля силы тяжести. P=F тяж +ma. Если опора имеет ускорение, направленное вниз, то модуль веса меньше модуля силы тяжести. P=F тяж -ma. Если опора вместе с телом будет свободно падать, то вес окажется равным нулю. P=0. Такое состояние называется невесомостью .

Используя закон всемирного тяготения можно рассчитать первую космическую скорость.

mg=ma; g=a; а=v 2 /R; g=v 2 /R; v 2 =gR; v = √gR., где R-радиус планеты.

Билет № 5. Опытное обоснование основных положений молекулярно-кинетической теории строения вещества. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа. Температура и её изменение. Абсолютная температура.

Все тела состоят из мельчайших частиц – атомов и молекул. Иначе говоря, вещество имеет дискретную структуру. На основе теории о дискретном строении вещества можно объяснить и предсказать ряд его свойств.

Основы МКТ (молекулярно-кинетической теории)

1. Все вещества состоят из молекул (атомов).

2. Молекулы (атомы) постоянно и хаотически движутся.

3. Молекулы (атомы) взаимодействуют между собой.

4. Между молекулами (атомами) имеются промежутки.

Эти положения МКТ имеют опытное обоснование. Диффузия и броуновское движение подтверждают эти положения. Диффузия – взаимное проникновение частиц одного вещества между частицами другого вещества при их соприкосновении. Причиной броуновского движения являются тепловое движение молекул жидкости (или газа) и их столкновения с броуновской частицей.

Беспорядочное движение частиц, из которых состоят тела, называют тепловым движением. В тепловом движении участвуют все молекулы тела, поэтому с изменением теплового движения изменяется и состояние тела, его свойства. Вещество может находиться в трех агрегатных состояниях – твердом, жидком и газообразном. Агрегатное состояние определяется температурой и внешним давлением.

Состояние, в котором вещество не имеет собственной формы и не сохраняет объем, называется газообразным, которое в свою очередь делится на газ и пар. Газом называется газообразное состояние при температуре выше критической. Газы, существующие в природе, называются реальными. При изучении свойств газов в физике пользуются моделью газа, не существующего в природе. Эту модель называют идеальный газ . Он удовлетворяет следующим условиям: 1) его молекулы не занимают объема; 2) находясь на расстояниях, молекулы идеального газа не взаимодействуют между собой; 3) взаимодействия молекул происходят только при абсолютно упругих ударах; 4) время свободного пробега много больше времени столкновения.

Всякий газ определяется тремя макропараметрами.

А) давление (р) – есть отношение силы к площади.(p=F/S )

Б) объем (V) –есть мера ограниченной части пространства.

В) температура (Т) – есть мера средней кинетической энергии поступательного движения молекул.

Для тепловых процессов справедливо основное уравнение МКТ , которое читается так:


Похожая информация.