Использование: микробиологическая и пищевая промышленность. Сущность изобретения: Способ задержки роста бактерий в средах спиртовой ферментации осуществляют добавлением полиэфирного ионофорного антибиотика в ферментационную среду в концентрации 0,3-3,0 частей на миллион. 2 з.п.ф-лы, 2 табл., 2 ил.

Изобретение относится к способу задержки роста бактерий в спиртовых ферментационных средах. Известно, что установки спиртовой ферментации не работают в стерильных условиях и поэтому могут содержать популяции бактерий, которые достигают концентрации от 10 4 до 10 6 микроорганизмов/мл, а в экстремальных случаях и больше. Эти микроорганизмы могут принадлежать к семейству молочных бактерий, но также могут включать и другие виды микроорганизмов, такие как streptococcus, bacillus, pediococcus, clostridium или leuconostoc (см. табл. 1). Все эти бактерии обладают способностью образовывать органические кислоты. Если концентрация бактерий в популяции превышает 10 6 микроорганизмов/мл, образование органических кислот может достичь значительного уровня. При концентрациях выше 1 г/л такие органические кислоты могут препятствовать росту и ферментации дрожжей и приводить к снижению производительности установки на 10-20% или более. В некотором сырье, таком как, вино, сидр, или продукты их производства, такие бактерии могут также превращать глицерин в акролеин, который является канцерогенным соединением попадающим в конечный спиртовый продукт, предназначенный для потребления людьми. Таким образом, для предупреждения отрицательных эффектов, обусловленных избыточным ростом бактерий в ферментационной среде необходимы бактериостатические и/или бактерицидные способы, которые не оказывают отрицательного влияния на процесс ферментации. Известно использование с этой целью антибиотиков, таких как пенициллин, лактоцид, низин, которые вводят в ферментационные среды, в частности, из меласс, крахмала и зерна при производстве спирта (1). Недостаток таких способов заключается либо в невысокой активности антибиотика, либо в том, что некоторые антибиотики (пенициллин) приводят к образованию мутантных штаммов, резистентных к действию антибиотика. Задача изобретения - устранение указанных недостатков. Эта задача решается с помощью предлагаемого способа, согласно которому вводят в ферментационную среду полиэфирный ионофорный антибиотик бактериостатического или бактерицидного агента. Способ настоящего изобретения может быть использован с широким спектром ферментационных сред, в том числе таких, как сок сахарной свеклы, сок сахарного тростника, разбавленная меласса сахарной свеклы, разбавленная меласса сахарного тростника, гидролизат зерновых (например, кукурузы или пшеницы), гидролизат крахмальных клубней (например, картофеля или топинамбура), вино, побочные винные продукты, сидр, а также его побочные продукты. Следовательно, в соответствии с настоящим изобретением могут быть использованы любые крахмал- или сахар- содержащие материалы, которые могут быть подвергнуты ферментации с помощью дрожжей с выходом спирта (этанола). Достигаемый в результате контроль за содержанием бактерий или в значительной степени уменьшает проблемы, вызываемые присутствием бактерий и продуцируемых ими органических кислот. Полиэфирные ионофоры, которые могут быть использованы в настоящем изобретении, не оказывают отрицательного воздействия на дрожжи (saccharomices sp.) и на процесс ферментации. Полиэфирные ионофорные антибиотики, которые могут быть использованы в настоящем изобретении, представляют собой любые антибиотики, которые не оказывают значительного влияния на дрожжи и которые обладают бактериостатическим и/или бактерицидным действием на бактерии ферментационной среды, продуцирующие органические кислоты. Наиболее полезными в настоящем изобретении являются антибиотики, которые эффективны в отношении бактерий, перечисленных в табл. 1 (см. выше). Предпочтительными полиэфирными ионофорными антибиотиками являются монензин, лазалозид, салиномицин, наразин, мадурамицин и семдурамицин. Более предпочтительными являются монензин, лазалозид и салиномицин, однако, наиболее предпочтительным антибиотиком является монензин. Ферментационные среды, которые могут быть эффективно обработаны по способу настоящего изобретения включают такое сырье, как, например, сок сахарной свеклы, сок сахарного тростника, разбавленная меласса сахарной свеклы, разбавленная меласса сахарного тростника, гидролизат зерновых (например, кукурузы или пшеницы), гидролизат крахмальных клубней (например, картофеля или топинамбура), вино, побочные продукты виноделия, сидр и побочные продукты при его получении. Следовательно, в соответствии с настоящим изобретением могут быть использованы любые крахмал- или сахар-содержащие материалы, которые могут быть подвергнуты ферментации с помощью дрожжей с выходом спирта (этанола). Полиэфирные ионофорные антибиотики являются высокостабильными соединениями. Они не способны легко разлагаться с течением времени или при высокой температуре. Это имеет значение для установок по ферментации, так как: 1. они сохраняют активность в течение многих дней в обычных условиях работы установки ферментации; 2. они сохраняют активность при высоких температурах, имеющих место в процессе ферментативного гидролиза, предшествующего ферментации зерновых или клубней (например, 2 ч при 90 o C или 1,5 ч при 100 o C). Эти соединения коммерчески доступны и поставляются фармацевтическими фирмами. Были проведены опыты с различными полиэфирными ионофорными антибиотиками, такими как монензин, лазалозид и салиномицин, с использованием сырья для ферментации на основе мелассы сахарной свеклы. Проведенные эксперименты подтвердили существование бактериостатических или бактерицидных концентраций, которые лежат в интервале от приблизительно 0,5 до 1,5 частей на миллион. При бактериостатических условиях рост популяции бактерий прекращается и может быть обнаружено, что содержание органических кислот в популяции не увеличивается. При бактерицидных концентрациях популяция бактерий уменьшается и, следовательно, концентрация органических кислот не увеличивается. Согласно способу настоящего изобретения в ферментационную среду вводят бактериостатический или бактерицидноэффективное количество, по меньшей мере, одного полиэфирного ионофорного антибиотика. Предпочтительно, в ферментационную среду вводят, по меньшей мере, один полиэфирный ионофорный антибиотик в концентрации приблизительно от 0,3 до 3 частей на миллион. В наиболее предпочтительном варианте концентрация полиэфирного ионофорного антибиотика составляет приблизительно от 0,5 до 1,5 частей на миллион. Полиэфирный ионофор согласно изобретению предотвращает или ингибирует рост бактерий в ферментационной среде, не влияя при этом на дрожжи, при концентрации до 100 частей на миллион. Бактериальная флора может поддерживаться при концентрации 10 4 микроорганизмов/мл и ниже, что приводит к практически полному прекращению образования органических кислот. Следовательно, бактерии не могут в значительной степени уменьшить спиртовую ферментацию. При этих условиях бактерии обычно не способствуют образованию акролеина. При концентрациях около 0,5 частей на миллион антибиотик обладает бактерицидным действием и, следовательно, делает возможным достижение пониженного содержания бактерий. На фиг. 1 показано уменьшение популяции бактерий в разбавленной мелассе после добавления монензина; на фиг. 2 - влияние монензина на популяцию бактерий в непрерывном процессе ферментации на промышленной установке. Пример 1. Влияние монензина на концентрацию Lachobacillus buchneri. К разбавленной мелассе сахарной свеклы добавляют в различных концентрациях монензин и измеряют кислотность и концентрацию микроорганизмов. Полученные результаты представлены в табл. 2. Пример 2. Стабильность и бактерицидное действие монензина в соке мелассы. В разбавленный сок мелассы, содержащий 10 6 микроорганизмов/мл вводят монензин в концентрации 1 часть на миллион. На фиг.1 показано уменьшение популяции бактерий через 20 дней при температуре 33 o C. Возобновление роста бактерий не наблюдалось. Эти данные показывают, что монензин сохраняет активность в течение 20 дней при температуре 33 o C в нормальных условиях работы установки ферментации. Пример 3. Промышленное использование монензина. Еще один пример настоящего изобретения представлен на фиг.2. Он относится к установке спиртовой ферментации, которая работает в непрерывном режиме. Ферментационной средой является меласса, содержащая 14% сахара (около 300 г/л). Скорость потока составляет 40-50 м 3 /ч, температура - 33 o C. На 7 день загрязненность микроорганизмами превышает 10 6 микроорганизмов/мл. На 8 день начинают обработку введением в бродильный аппарат активного количества монензина (растворенного в этаноле). Эту концентрацию монензина поддерживают в течение 24 ч введением обогащающего сырья, содержащего монензин в той же концентрации. На 9 день добавление монензина в сырье прекращают. Сразу же после начала обработки популяция бактерий начинает быстро уменьшаться. Это снижение продолжается до 10-го дня, то есть в течение 24 ч после окончания обработки. На этой стадии монензин вымывается из ферментационной среды и рост бактерий медленно возобновляется. Он поддается контролю в течение последующих 15 дней, однако, это обусловлено уменьшенным уровнем загрязнения после обработки.

Формула изобретения

1. Способ задержки роста бактерий в средах спиртовой ферментации путем добавления антибиотика в ферментационную среду, отличающийся тем, что в качестве антибиотика используют полиэфирный ионофорный антибиотик. 2. Способ по п.1, отличающийся тем, что полиэфирный ионофорный антибиотик добавляют в ферментационную среду в концентрации 0,3 3,0 млн -1 . 3. Способ по п.1, отличающийся тем, что антибиотик добавляют в ферментационную среду на основе сока или мелассы сахарной свеклы или сахарного тростника, либо крахмального гидролизата из хлебных злаков или клубневых культур, либо сред виноделия или изготовления сидра.

Ферментация - химические реакции с участием белковых катализаторов - ферментов . Обычно происходят в живой клетке. Часто путают с брожением , но ферментация лишь более простая часть из многих сложных процессов брожения. Например, в результате брожения размножаются дрожжи, а под действием ферментов, вырабатываемых дрожжами, сахар превращается в спирт.

Использование

Исторически наиболее древняя методика использования ферментации - пивоварение. Зерна злаков содержат нерастворимый трудно усваиваемый крахмал. Это делает зерна защищёнными против многих бактерий в течение очень большого срока, но и в то же время крахмал недоступен и самому ростку. Но растущий росток вырабатывает ферменты, превращающие крахмал в легко растворимую и усваиваемую глюкозу. В пивоварении специально проращивают зерна и в оптимальный момент приготовления солода , когда концентрация фермента высокая, росток убивают нагревом. Фермент продолжает превращать крахмал в сахар, который используется для дальнейшего брожения. Таким ферментом является амилаза , превращающая крахмал в мальтозу . Амилаза содержится также в слюне, благодаря чему долго пережёвываемый рис или картофель получает сладковатый привкус.

Другой старинный способ ферментации - сыроделие. Для свёртывания молока используют различные

Ферментация — это процесс биохимического, очень часто бескислородного разложения органических соединений, проходящий при участии энзимов (ферментов). Конечные продукты этого процесса — более простые органические и неорганические соединения, а также энергия. Ферментация — процесс, напоминающий дыхание; на ней, например, основан метаболизм бактерий, она является основным средством получения необходимой для жизни энергии у приспособленных к обитанию при отсутствии кислорода бактерий и различных грибков. Брожение — это разновидность ферментации, при которой ферменты вырабатываются исключительно микроорганизмами.

Разновидности брожения.
Микроорганизмы могут вызывать брожение многих различных соединений, в том числе сахаров, жирных кислот и аминокислот, причем в каждом случае процесс идёт немного по-другому. Чаще всего встречается ферментация сахаров. В результате брожения образуются различные продукты — например, спирты или молочная кислота — поэтому выделяют, в частности, брожение спиртовое, уксуснокислое, маслянокислое и молочнокислое.

Как это происходит?
В результате брожения сахаров простые (глюкоза, фруктоза) или сложные (мальтоза, сахароза, лактоза) сахара разлагаются до этилового спирта и окиси углерода. Процесс проходит при участии дрожжей, точнее зимазы (группы ферментов, выделяемых дрожжами). Кроме спиртового брожения, очень распространено брожение молочнокислое, в результате которого образуется молочная кислота. При уксуснокислом брожении, в свою очередь, спирты окисляются до уксусной кислоты, однако в нём участвуют не дрожжевые грибки, а особенные бактерии (семейства Acetobacter). В процессе брожения образуются и другие продукты, однако во всех случаях выделяется энергия.

Использование ферментации и брожения.
Явление ферментации широко используют в пищевой, винной, пивоваренной и спиртовой промышленности. Винное брожение — то есть ферментация сахаров, содержащихся в винограде и других фруктах — применяется для производства вина. Ферментационные свойства дрожжей нашли применение в пекарском деле, так как вырабатываемая ими двуокись углерода (углекислый газ) заставляет тесто «подходить». Уксусное брожение используется в производстве уксуса. В природе широко распространено сбраживание белков, способствующее разложению органических остатков; маслянокислое брожение в промышленности используют для производства масляной кислоты. Молочнокислое брожение применяется, например, для производства молочнокислых продуктов и квашения овощей. Кроме того, молочную кислоту используют в кожевенном и красильном производстве.

Знаете ли вы, что:

  1. Благодаря молочнокислому брожению у нас есть кефир.
  2. Биологи считают брожение самым древним видом метаболизма (обмена веществ). Вероятно, первые организмы получали энергию с помощью именно этого процесса — ведь в то время в земной атмосфере не было кислорода.
  3. Солёные огурцы — также продукт ферментационных процессов.
  4. При работе мышц в них также проходит процесс ферментации — разложения глюкозы с выделением энергии, на промежуточном этапе которого образуется молочная кислота. В случае нехватки кислорода молочная кислота не разлагается, а накапливается в мышцах, раздражая нервные окончания и вызывая у человека чувство усталости.
  5. Явление спиртового брожения используют в пищевой промышленности. Из забродившего винограда (или других ягод и фруктов) производят вина.
  • 7. Характеристика эукариотических микроскопических организмов. Морфология дрожжей.
  • 9. Характеристика эукариотических микроскопических организмов. Отличительные черты простейших, вызывающих инфекционные заболевания.
  • 10. Морфология бактерий. Разнообразие форм. Размеры микроорганизмов. Методы изучения морфологии бактерий. Виды микроскопов.
  • 11. Морфология бактерий. Химический состав бактериальной клетки.
  • 12. Морфология бактерий. Строение и химический состав внешних слоев. Капсула, слизистые слои, чехлы.
  • 13. Морфология бактерий. Клеточная стенка грамположительных и грамотрицательных бактерий. Окраска по Граму.
  • 14. Морфология бактерий. Явление l-трансформации. Биологическая роль.
  • 15. Морфология бактерий. Бактериальная мембрана. Строение мезосом, рибосом. Химический состав цитоплазмы.
  • 16. Морфология бактерий. Запасные включения бактериальной клетки.
  • 17. Движение бактерий. Строение жгутика, толщина, длина, химический состав. Приготовление фиксированных препара-тов и препаратов живых клеток микроорганизмов.
  • 18. Движение бактерий. Виды расположения жгутиков. Функции фимбрий и пилей.
  • 19. Движение бактерий. Характер движения бактериальной клетки. Виды таксисов.
  • 20. Бактериальное ядро. Строение, состав. Характеристика днк.
  • 21. Бактериальное ядро. Особенности генетической системы бактерии. Типы репликации днк бактерии.
  • 22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.
  • 23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.
  • 24. Бактериальное ядро. Плазмиды. Биологическая роль, отличия от вирусов, виды плазмид.
  • 25. Морфологическая дифференцировка прокариот. Формы клеток. Покоящиеся формы. Процесс поддержания состояния покоя.
  • 26. Морфологическая дифференцировка прокариот. Строение эндоспоры. Химический состав, слои.
  • 27. Морфологическая дифференцировка прокариот. Биохимические и физиологические изменения в процессе прорастания эндоспроры. Факторы устойчивости эндоспор в окружающей среде.
  • 28. Морфологическая дифференцировка прокариот. Формирование споры, слои эндоспоры.
  • 29. Классификация и систематика бактерий. Классификация бактерий по Берджи. Признаки, используемые при описании бактерий. Характеристика основных групп бактерий по классификатору Берджи.
  • 30. Классификация и систематика бактерий. Категории бактерий. Особенности эубактерий и архебактерий.
  • 31. Влияние физических факторов на микроорганизмы. Отношение микроорганизмов к молекулярному кислороду. Аэробы, анаэробы, микроаэрофилы.
  • 32. Влияние физических факторов на микроорганизмы. Температура. Способность к росту при различных температурных условиях.
  • 33. Влияние физических факторов на микроорганизмы. Температура. Способность к выживанию в экстремальных температурных условиях.
  • 34. Влияние физических факторов на микроорганизмы. Влажность.
  • 35. Влияние физических факторов на микроорганизмы. Давление. Осмотическое давление. Атмосферное. Гидростатическое давление и вакуум.
  • 36. Влияние физических факторов на микроорганизмы. Лучистая энергия, уфл, ультразвук.
  • 37. Влияние химических факторов на микроорганизмы. Кислотность и щелочность. Поваренная соль.
  • 38. Влияние химических факторов на микроорганизмы. Антисептики, виды и воздействие на микроорганизмы.
  • 39. Влияние биологических факторов на микроорганизмы. Антибиоз. Виды взаимоотношений – антагонизм, паразитизм, бактериофаги.
  • 40. Влияние биологических факторов на микроорганизмы. Взаимоотношения бактерий с другими организмами. Симбиоз. Виды и примеры симбиоза.
  • 41. Принципы консервирования пищевых продуктов, основанные на методах воздействия на бактерии различных факторов внешней среды. Влияние антибиотиков.
  • 42. Питание микроорганизмов. Ферменты микроорганизмов. Классы и виды ферментов. Пути катаболизма.
  • 43. Питание микроорганизмов. Механизмы транспорта питательных веществ в клетку. Пермеазы, ионофиоры. Характеристика процессов симпорта и антипорта. Транспорт железа.
  • 45. Питание микроорганизмов. Гетеротрофные микроорганизмы. Различная степень гетеротрофности.
  • 50. Метаболизм бактерий. Брожение. Виды брожения. Микроорганизмы, вызывающие эти процессы
  • 51. Метаболизм бактерий. Фотосинтез. Виды фотосинтезирующих бактерий. Фотосинтетический аппарат.
  • 53. Метаболизм бактерий. Хемосинтез. Происхождение кислородного дыхания. Токсический эффект воздействия кислорода.
  • 54. Метаболизм бактерий. Хемосинтез. Дыхательный аппарат клетки. Метаболизм бактерий. Хемосинтез. Энергетический обмен микроорганизмов.
  • 56. Биосинтетические процессы. Ассимиляция различных веществ.
  • 57. Биосинтетические процессы. Образование вторичных метаболитов. Виды антибиотиков. Механизм действия.
  • 58. Биосинтетические процессы. Образование вторичных метаболитов. Токсинообразование. Виды токсинов.
  • 59. Биосинтетические процессы. Образование вторичных метаболитов. Витамины, сахара, ферменты.
  • 60. Регуляция метаболизма. Уровни регуляции метаболизма. Индукция. Репрессия.
  • 62. Основы экологии микроорганизмов. Экология микробных сообществ.
  • 63. Основы экологии микроорганизмов. Микроорганизмы воздуха.
  • 64. Основы экологии микроорганизмов. Микроорганизмы морских водных экосистем.
  • 65. Основы экологии микроорганизмов. Микроорганизмы солоноватых водных экосистем.
  • 66. Основы экологии микроорганизмов. Микроорганизмы пресноводных экосистем.
  • 67. Основы экологии микроорганизмов. Микроорганизмы почвенных экосистем.
  • 68. Основы экологии микроорганизмов. Микроорганизмы почв. Микориза.
  • 69. Основы экологии микроорганизмов. Круговорот углерода, водорода и кислорода.
  • 70. Основы экологии микроорганизмов. Круговорот азота, фосфора и серы.
  • 71. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Ротовая полость. Бактериальные заболевания.
  • 72. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Проблема дисбактериоза.
  • 73. Основы экологии микроорганизмов. Симбионты организма человека. Дыхательные пути, выделительная, половая система.
  • 74. Основы экологии микроорганизмов. Симбионты организма человека. Кожа, конъюктива глаза, ухо.
  • 75. Инфекция. Патогенные микроорганизмы. Их свойства. Вирулентность микроорганизмов.
  • 76. Инфекция. Инфекционный процесс. Виды инфекций. Формы инфекций. Локализация возбудителя. Входные ворота.
  • 79. Инфекция. Роль макроорганизма в развитии инфекционного процесса.
  • 81. Классификация инфекций. Особо опасные инфекции. Кишечные инфекции, аэрогенные инфекции, детские инфекции.
  • 82. Пищевые отравления и токсикоинфекции. Причины возникновения. Основные клинические симптомы.
  • 83. Пищевые токсикоинфекции. Возбудитель – бактерии рода Salmonella.
  • 84. Пищевые токсикоинфекции. Возбудитель – бактерии рода Escherichium и Shigella.
  • 85. Пищевые токсикоинфекции. Возбудитель – бактерии рода Proteus.
  • 86. Пищевые токсикоинфекции. Возбудитель – бактерии рода Vibrio.
  • 87. Пищевые токсикоинфекции. Возбудитель – бактерии рода Bacillus и Clostridium.
  • 88. Пищевые токсикоинфекции. Возбудитель – бактерии рода Enterococcus и Streptococcus.
  • 89. Пищевые токсикозы. Возбудитель – бактерии рода Clostridium.
  • 90. Пищевые токсикозы. Возбудитель – бактерии рода Staphylococcus.
  • 50. Метаболизм бактерий. Брожение. Виды брожения. Микроорганизмы, вызывающие эти процессы

    Метаболизм – совокупность разнообразных ферментативных реакций, происходящих в микробной клетке и направленных на получение энергии и превращение простых химических соединений в более сложные. Метаболизм обеспечивает воспроизводство всего клеточного материала, включая два единых и одновременно противоположных процесса – конструктивный и энергетический обмен.

    Метаболизм протекает в три этапа:

    1.катаболизм – распад органических веществ на более простые фрагменты;

    2.амфиболизм – реакции промежуточного обмена, в результате которых простые вещества превращаются в ряд органических кислот, фосфорных эфиров и пр.;

    3.анаболизм – этап синтеза мономеров и полимеров в клетке.

    Метаболические пути формировались в процессе эволюции.

    Основным свойством бактериального метаболизма является пластичность и высокая интенсивность, обусловленная малыми размерами организмов.

    К метаболическим путям у прокариот относятся брожение, фотосинтез и хемосинтез. Наиболее примитивным способом получения энергии, присущим определенным группам прокариот, являются процессы брожения.

    Брожение – метаболический процесс, присущий бактериям, характеризующий энергетическую сторону способа существования нескольких групп прокариот, при котором они осуществляют в анаэробных условиях окислительно-восстановительные превращения органических соединений, сопровождающиеся выходом энергии, которую эти организмы используют.

    брожение протекает без участия молекулярного кислорода, все окислительно-восстановительные превращения субстрата происходят за счет его «внутренних» возможностей. В результате на окислительных этапах процесса высвобождается часть свободной энергии, заключенной в молекуле субстрата, и происходит ее запасание в молекулах АТФ. Происходит расщепление углеродного скелета молекулы субстрата.

    Круг органических соединений, которые могут сбраживаться, довольно широк:

    Углеводы, спирты, органические кислоты, аминокислоты, пурины, пиримидины.

    Может быть подвергнуто сбраживанию, если оно содержит неполностью окисленные (или восстановленные) углеродные атомы

    продуктами брожений являются различные органические кислоты (молочная, масляная, уксусная, муравьиная), спирты (этиловый, бутиловый, пропиловый), ацетон, а также СО2 и Н2

    образуется несколько продуктов. В зависимости от того, какой основной продукт накапливается в среде, различают молочно-кислое, спиртовое, маслянокислое, пропионовокислое и другие виды брожений.

    В каждом виде брожения можно выделить две стороны: окислительную и восстановительную. Процессы окисления сводятся к отрыву электронов от определенных метаболитов с помощью специфических ферментов (дегидрогеназ) и акцептированию их другими молекулами, образующимися из сбраживаемого субстрата, т. е. в процессе брожения происходит окисление анаэробного типа

    Энергетической стороной процессов брожения является их окислительная часть, реакции являются окислительными

    Существует несколько исключений из этого правила: некоторые анаэробы часть энергии при сбраживании субстрата получают также в результате его расщепления, катализируемого лиазами.

    Примитивность процессов брожения заключается в том, что из субстрата в результате его анаэробного преобразования извлекается лишь незначительная доля той химической энергии, которая в нем содержится. Продукты, образующиеся в процессе брожения, все еще содержат в себе значительное количество энергии, заключавшейся в исходном субстрате.

    При дыхательном метаболизме при расщеплении глюкозы выделяется 2870,22 кДж/моль энергии, при брожении на том же субстрате извлекается 196,65 кДж/моль энергии. В процессе гомоферментативного молочнокислого брожения синтезируются 2 молекулы АТФ на 1 молекулу сброженной глюкозы; в процессе дыхания при полном окислении молекулы глюкозы образуется 38 молекул АТФ. В обоих случаях эффективность запасания выделяющейся энергии в макроэргических связях АТФ приблизительно одинакова.

    При брожении некоторые реакции на пути анаэробного преобразования субстрата связаны с наиболее примитивным типом фосфорилирования – субстратным фосфорилированием, реакции которого локализованы в цитозоле клетки, что указывает на простоту химических механизмов, лежащих в основе этого типа получения энергии.

    *Спиртовое брожение. При спиртовом брожении из пировиноградной кислоты в результате ее окислительного декарбоксилирования образуется ацетальдегид, который становится конечным акцептором водорода. В итоге из 1 молекулы гексозы образуются 2 молекулы этилового спирта и 2 молекулы углекислоты. Спиртовое брожение распространено среди прокариотных (различные облигатно- и факультативно-анаэробные бактерии) и эукариотных (дрожжи) форм.

    Способность осуществлять в анаэробных условиях спиртовое брожение: Sarcina ventriculi, Erwinia amylouora, Zymomonas mobilis, Основными продуцентами этилового спирта среди эукариот являются дрожжи –аэробы со сформированным аппаратом дыхания, но в анаэробных условиях осуществляют спиртовое брожение по пути субстратного фосфорилирования.

    *Молочно-кислое брожение бывает гомоферментативным, при котором в числе продуктов образуется до 90 % молочной кислоты, и гетероферментативным, при котором помимо молочной кислоты значительную долю в продуктах составляют СО2, этанол и/или уксусная кислота.

    а)Молочнокислое брожение (гомоферментативное) – это процесс получения энергии молочнокислыми бактериями Lactococcus lactis, Lactobacterium bulgaricum, Lactobacterium planterum и т.д., заключающийся в превращении молекулы сахара в две молекулы молочной кислоты с выделением энергии:C6H12О6 = 2СН3СНОНСООН + 0,075х106 Дж

    б)Молочнокислое брожение (гетероферментативное). В этом процессе кроме молочной кислоты в числе продуктов образуются уксусная, янтарная кислоты, этиловый спирт, углекислота и водород. Возбудителем этого процесса является E. coli.

    Процесс, подобный нетипичному гетероферментативному молочно-кислому брожению, идет при созревании рыбы пряного посола, пресервов. В этих случаях он возбуждается ароматообразующими молочнокислымим бактериями типа Streptococcus citrovorus.

    Кроме того, при порче консервов, возбуждаемой бактериями Вас. stearothermophilus и Cl. thermosaccharolyticum, в продукте накапливаются кислоты – молочная, уксусная, масляная, образование которых, вероятно, связано с процессом, подобному нетипичному молочно-кислому брожению.

    *Маслянокислое брожение вызывается облигатно анаэробными маслянокислыми бактериями Cl. pasteurianum. Глюкоза в этом энергодающем процессе превращается в масляную кислоту, водород и углекислый газ:C6H12О6 = С3Н7СООН + 2СО2 + 2Н2 + 0,063х106 Дж

    Некоторые клостридии, например, Cl. sporogenes или токсичные виды Cl. botulinum, Cl. perfringens имеют протеолитические способности и не только сбраживают углеводы, но и гидролизуют белки. Возбудители маслянокислого брожения образуют термостойкие споры, поэтому они могут сохраняться в стерилизованных консервах и вызывать их бомбажную порчу.

    Известно много других брожений, отдельные типы которых различаются составом конечных продуктов, что зависит от комплекса ферментов возбудителя брожения.

    "

    Приходя в магазин или заходя на ряд тематических сайтов, Вам наверняка приходилось сталкиваться с понятиями сильноферментированный, полуферментированный и другими производными слова «ферментированный». Условное деление всех чаёв по «степени ферментации» является признанным и казалось бы не обсуждаемым. Что тут непонятного. Зелёный – неферментированный, красный сильно, пуэр постферментированный. Но вы же хотите копнуть поглубже? Спросите в следующий раз у консультанта, как он понимает «постферментированный» чай. И наблюдайте.

    Вы уже понимаете подвох. Объяснить это слово нельзя. Постферментированный – искусственное словечко, единственной целью которого является совершить манёвр и поставить пуэр в условную систему деления чаёв «по степени ферментации».

    Ферментативное окисление

    Проблема подобной путаницы связана с тем, что происходит замещение понятия «процессы окисления » на «ферментация ». Нет, ферментация тоже имеет место быть, но вот когда – в этом предстоит разобраться. А пока об окислении.

    Что мы знаем о кислороде?

    Справа свежий срез яблока. Слева – после окисления на воздухе.

    В контексте материала следует отметить высокую химическую активность элемента, а именно окислительную способность. Каждый представляет себе, как с течением времени срез яблока или банана чернеет. Что происходит? Вы разрезаете яблоко, нарушаете там самым целостность клеточных оболочек. Выделяется сок. Вещества в соке взаимодействуют с кислородом и провоцируют протекание окислительно-восстановительной реакции. Появляются продукты реакции, которых до этого не было. Например, для яблока это оксид железа Fe 2 O 3 , имеющий бурый цвет. и именно он отвечает за потемнение.

    Что мы знаем о чае?

    Для большинства чаёв в технологическом процессе присутствует этап сминания, цель которого разрушить клеточную оболочку (см. статью о). Если провести параллели с яблоком, вещества в соке взаимодействуют с кислородом из воздуха. Но важно отметить, что окислительно-восстановительная реакция не единственная. Чай – органический продукт. В любой живой системе имеются особые соединения энзимы, они же ферменты, ускоряющие химические реакции. Как Вы догадываетесь, они не «стоят в сторонке», а принимают активное участие. Получается целая цепочка химических превращений, когда продукты одной реакции претерпевают дальнейшие химические преобразования. И так несколько раз. Такой процесс называется ферментативным окислением.

    Важность кислорода в таком процессе можно понять на примере производства красного чая (полностью окисленного, или, как его ещё называют, «полностью ферментированного чая»). Для поддержания постоянного уровня кислорода в помещении, где производится красный чай, нужно обеспечить смену воздуха до 20 раз в час , при этом делать это стерильно. Кислород – это основа в данном случае.

    Пуэр и ферментация в чистом виде

    Снова зададимся вопросом: «А что мы знаем о пуэре?» Как он производится? Взгляните на снимки ниже. Да, это будущий шу пуэр, и именно так он делается.

    «Водуй» – процесс искусственного состаривания пуэра. Фабрика Джингу.

    Что мы видим? Закрытое помещение, огромную кучу чая на несколько тонн, накрытую плотной мешковиной, термометр с отметкой в 38 градусов по Цельсию. Что не видим? Отметку влажности в этом помещении. Поверьте – она там зашкаливает. Как Вы думаете, проникает ли кислород под мешковину в недра скирдяной кучи? Можно ли говорить об окислении? Ответ напрашивается сам собой. Конечно нет! Тогда что происходит с чаем в таких условиях?

    Пуэр как продукт жизнедеятельности микроорганизмов

    Вы когда-нибудь бывали в подвалах многоквартирных домов старого фонда? Скорее всего нет, но представляете, что можно ожидать. Духота и сырость. По стенам распространяется грибок, а в воздухе летают колонии бактерий и микроорганизмов. Для них высокая температура и влажность – идеальная среда обитания и размножения. Вернемся к скирдяным кучам пуэрного сырья – всё те же идеальные условия. Наличие бактерий – обязательное условие при производстве как шу, так и шен пуэра. Ферменты микроорганизмов влияют на превращения в чае. Таким образом, химические реакции при приготовлении пуэра протекают под воздействием внешних, так и внутренних (от самого чая) ферментов. А вот реакции окисления практически исключены. Это и есть в чистом виде процесс ферментации.

    Основные выводы:

    • Ферментация в чистом виде протекает только в пуэре . В остальных чаях ферментативное окисление. В красных и улунских этот процесс желателен. В остальных нежелателен и максимально быстро останавливается путем термической обработки.
    • Условное деление чаёв «по степени ферментации» не совсем верно.
    • При производстве улунского и красного чая наибольшее значение имеет наличие кислорода в воздухе для поддержания реакции окисления, стерильность среды.
    • При производстве пуэра наибольшее значение имеют содержание микроорганизмов в чайном сырье, влажность и температура для повышенной их жизнедеятельности.
    • Пост-ферментированный чай – искусственное понятие, призванное вписать пуэр в систему деления чаёв по степени ферментации, но не имеющее адекватного физического смысла.