Приводится 8 примеров разложения многочленов на множители. Они включают в себя примеры с решением квадратных и биквадратных уравнений, примеры с возвратными многочленами и примеры с нахождением целых корней у многочленов третьей и четвертой степени.

Содержание


См. также: Методы разложения многочленов на множители
Корни квадратного уравнения
Решение кубических уравнений

1. Примеры с решением квадратного уравнения

Пример 1.1


x 4 + x 3 - 6 x 2 .

Выносим x 2 за скобки:
.
2 + x - 6 = 0 :
.
Корни уравнения:
, .


.

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 - 2 x 4 + 10 x 3 .

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 - 20 .

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) .

;
.

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) :

;

;
.

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;


;
.

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Предположим, что уравнение

6
-6, -3, -2, -1, 1, 2, 3, 6 .
(-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
(-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
(-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
(-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
1 3 - 6·1 2 + 11·1 - 6 = 0 ;
2 3 - 6·2 2 + 11·2 - 6 = 0 ;
3 3 - 6·3 2 + 11·3 - 6 = 0 ;
6 3 - 6·6 2 + 11·6 - 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Пример 3.2

Разложить многочлен на множители:
.

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
-2, -1, 1, 2 .
Подставляем поочередно эти значения:
(-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
(-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .

Итак, мы нашли один корень:
x 1 = -1 .
Делим многочлен на x - x 1 = x - (-1) = x + 1 :


Тогда,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

У него – квадрат, а состоит он из трех слагаемых (). Вот и получается – квадратный трехчлен.

Примеры не квадратных трехчленов:

\(x^3-3x^2-5x+6\) - кубический четырёхчлен
\(2x+1\) - линейный двучлен

Корень квадратного трехчлена:

Пример:
У трехчлена \(x^2-2x+1\) корень \(1\), потому что \(1^2-2·1+1=0\)
У трехчлена \(x^2+2x-3\) корни \(1\) и \(-3\), потому что \(1^2+2-3=0\) и \((-3)^2-6-3=9-9=0\)

Например: если нужно найти корни для квадратного трехчлена \(x^2-2x+1\), приравняем его к нулю и решим уравнение \(x^2-2x+1=0\).

\(D=4-4\cdot1=0\)
\(x=\frac{2-0}{2}=\frac{2}{2}=1\)

Готово. Корень равен \(1\).

Разложение квадратного трёхчлена на :

Квадратный трехчлен \(ax^2+bx+c\) можно разложить как \(a(x-x_1)(x-x_2)\), если уравнения \(ax^2+bx+c=0\) больше нуля \(x_1\) и \(x_2\) - корни того же уравнения).


Например , рассмотрим трехчлен \(3x^2+13x-10\).
У квадратного уравнения \(3x^2+13x-10=0\) дискриминант равен 289 (больше нуля), а корни равны \(-5\) и \(\frac{2}{3}\). Поэтому \(3x^2+13x-10=3(x+5)(x-\frac{2}{3})\). В верности этого утверждения легко убедится – если мы , то получим исходный трехчлен.


Квадратный трехчлен \(ax^2+bx+c\) можно представить как \(a(x-x_1)^2\), если дискриминант уравнения \(ax^2+bx+c=0\) равен нулю.

Например , рассмотрим трехчлен \(x^2+6x+9\).
У квадратного уравнения \(x^2+6x+9=0\) дискриминант равен \(0\), а единственный корень равен \(-3\). Значит, \(x^2+6x+9=(x+3)^2\) (здесь коэффициент \(a=1\), поэтому перед скобкой не пишется – незачем). Обратите внимание, что тоже самое преобразование можно сделать и по .

Квадратный трехчлен \(ax^2+bx+c\) не раскладывается на множители, если дискриминант уравнения \(ax^2+bx+c=0\) меньше нуля.

Например , у трехчленов \(x^2+x+4\) и \(-5x^2+2x-1\) – дискриминант меньше нуля. Поэтому разложить их на множители невозможно.

Пример . Разложите на множители \(2x^2-11x+12\).
Решение :
Найдем корни квадратного уравнения \(2x^2-11x+12=0\)

\(D=11^2-4 \cdot 2 \cdot 12=121-96=25>0\)
\(x_1=\frac{11-5}{4}=1,5;\) \(x_2=\frac{11+5}{4}=4.\)

Значит, \(2x^2-11x+12=2(x-1,5)(x-4)\)
Ответ : \(2(x-1,5)(x-4)\)

Полученный ответ, может быть, записать по-другому: \((2x-3)(x-4)\).


Пример . (Задание из ОГЭ) Квадратный трехчлен разложен на множители \(5x^2+33x+40=5(x++ 5)(x-a)\). Найдите \(a\).
Решение:
\(5x^2+33x+40=0\)
\(D=33^2-4 \cdot 5 \cdot 40=1089-800=289=17^2\)
\(x_1=\frac{-33-17}{10}=-5\)
\(x_2=\frac{-33+17}{10}=-1,6\)
\(5x^2+33x+40=5(x+5)(x+1,6)\)
Ответ : \(-1,6\)

КВАДРАТНЫЙ ТРЕХЧЛЕН III

§ 54. Разложение квадратного трехчлена на линейные множители

В этом параграфе мы рассмотрим следующий вопрос: в каком случае квадратный трехчлен ax 2 + bx + c можно представить в виде произведения

(a 1 x + b 1) (a 2 x + b 2)

двух линейных относительно х множителей с действительными коэффициентами a 1 , b 1 , a 2 , b 2 (a 1 =/=0, a 2 =/=0) ?

1. Предположим, что данный квадратный трехчлен ax 2 + bx + c представим в виде

ax 2 + bx + c = (a 1 x + b 1) (a 2 x + b 2). (1)

Правая часть формулы (1) обращается в нуль при х = - b 1 / a 1 и х = - b 2 / a 2 (a 1 и a 2 по условию не равны нулю). Но в таком случае числа - b 1 / a 1 и - b 2 / a 2 являются корнями уравнения

ax 2 + bx + c = 0.

Следовательно, дискриминант квадратного трехчлена ax 2 + bx + c должен быть неотрицательным.

2. Обратно, предположим, что дискриминант D = b 2 - 4ас квадратного трехчлена ax 2 + bx + c неотрицателен. Тогда этот трехчлен имеет действительные корни x 1 и x 2 . Используя теорему Виета, получаем:

ax 2 + bx + c = а (x 2 + b / a х + c / a ) = а [x 2 - (x 1 + x 2) х + x 1 x 2 ] =

= а [(x 2 - x 1 x ) - (x 2 x - x 1 x 2)] = а [х (х - x 1) - x 2 (х - x 1) =

= a (х - x 1)(х - x 2).

ax 2 + bx + c = a (х - x 1)(х - x 2), (2)

где x 1 и x 2 - корни трехчлена ax 2 + bx + c . Коэффициент а можно отнести к любому из двух линейных множителей, например,

a (х - x 1)(х - x 2) = ( - ax 1)(х - x 2).

Но это означает, что в рассматриваемом случае квадратный трехчлен ax 2 + bx + c представим в виде произведения двух линейных множителей с действительными коэффициентами.

Объединяя результаты, полученные в пунктах 1 и 2, мы приходим к следующей теореме.

Теорема. Квадратный трехчлен ax 2 + bx + c тогда и тoлько тогда можно представить в виде произведения двух линейных множителей с действительными коэффициентами,

ax 2 + bx + c = ( - ax 1)(х - x 2),

когда дискриминант этого квадратного трехчлена неотрицателен (то есть когда этот трехчлен имеет действительные корни) .

Пример 1 . Разложить на линейные множители 6x 2 - х -1.

Корни этого квадратного трехчлена равны x 1 = 1 / 2 и x 2 = - 1 / 3 .

Поэтому по формуле (2)

6x 2 - х -1 = 6 (х - 1 / 2)(х + 1 / 3) = (2х - 1) (3x + 1).

Пример 2 . Разложить на линейные множители x 2 + х + 1. Дискриминант этого квадратного трехчлена отрицателен:

D = 1 2 - 4 1 1 = - 3 < 0.

Поэтому данный квадратный трехчлен на линейные множители с действительными коэффициентами не раскладывается.

Упражнения

Разложить на линейные множители следующие выражения (№ 403 - 406):

403. 6x 2 - 7х + 2. 405. x 2 - х + 1.

404. 2x 2 - 7ах + 6а 2 . 406. x 2 - 3ах + 2а 2 - аb - b 2 .

Сократить дроби (№ 407, 408):

Решить уравнения:

Квадратный трехчлен можно разложить на множители следующим образом:

A x 2 + b x + c = a ⋅ (x − x 1) ⋅ (x − x 2)

где a – число, коэффициент перед старшим коэффициентом,

x – переменная (то есть буква),

x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

Если квадратное уравнение имеет только один корень, то разложение выглядит так:

a x 2 + b x + c = a ⋅ (x − x 0) 2

Примеры разложения квадратного трехчлена на множители:

  1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1,   x 2 = 7

− x 2 + 6 x + 7 = (− 1) ⋅ (x − (− 1)) (x − 7) = − (x + 1) (x − 7) = (x + 1) (7 − x)

  1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

− x 2 + 4 x − 4 = (− 1) ⋅ (x − 2) 2 = − (x − 2) 2

Если квадратный трехчлен является неполным (b = 0 или c = 0) , то его можно разложить на множители следующими способами:

  • c = 0 ⇒ a x 2 + b x = x (a x + b)
  • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

Задания для самостоятельного решения

№1. Квадратный трёхчлен разложен на множители: x 2 + 6 x − 27 = (x + 9) (x − a) . Найдите a .

Решение:

Для начала необходимо приравнять квадратных трехчлен к нулю, чтобы найти x 1 и x 2 .

x 2 + 6 x − 27 = 0

a = 1, b = 6, c = − 27

D = b 2 − 4 a c = 6 2 − 4 ⋅ 1 ⋅ (− 27) = 36 + 108 = 144

D > 0 – значит будет два различных корня.

x 1,2 = − b ± D 2 a = − 6 ± 144 2 ⋅ 1 = [ − 6 + 12 2 = 6 2 = 3 − 6 − 12 2 = − 18 2 = − 9

Зная корни разложим квадратный трехчлен на множители:

x 2 + 6 x − 27 = (x − (− 9)) (x − 3) = (x + 9) (x − 3)

№2. Уравнение x 2 + p x + q = 0 имеет корни − 5 ; 7. Найдите q .

Решение:

1 способ: (надо знать, как раскладывается квадратный трехчлен на множители)

Если x 1 и x 2 – корни квадратного трехчлена a x 2 + b x + c , то его можно разложить на множители следующим образом: a x 2 + b x + c = a ⋅ (x − x 1) ⋅ (x − x 2) .

Поскольку в заданном квадратном трехчлене старший коэффициент (множитель перед x 2) равен единице, то разложение будет следующим:

x 2 + p x + q = (x − x 1) (x − x 2) = (x − (− 5)) (x − 7) = (x + 5) (x − 7) = x 2 − 7 x + 5 x − 35 = x 2 − 2 x − 35

x 2 + p x + q = x 2 − 2 x − 35 ⇒ p = − 2, q = − 35

2 способ: (надо знать теорему Виета)

Теорема Виета:

Сумма корней приведенного квадратного трехчлена x 2 + p x + q равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q .

{ x 1 + x 2 = − p x 1 ⋅ x 2 = q

q = x 1 ⋅ x 2 = (− 5) ⋅ 7 = − 35.


Раскладывать многочлены на множители приходится при упрощении выражений (чтобы можно было провести сокращение), при решении уравнений или при разложении дробно рациональной функции на простейшие дроби .

Имеет смысл говорить о разложении многочлена на множители, если его степень не ниже второй.

Многочлен первой степени называют линейным .

Рассмотрим сначала теоретические основы, затем перейдем непосредственно к способам разложения многочлена на множители.

Навигация по странице.

Необходимая теория.

Теорема.

Любой многочлен степени n вида представляется произведением постоянного множителя при старшей степени и n линейных множителей , i=1, 2, …, n , то есть , причем , i=1, 2, …, n являются корнями многочлена.

Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n . Она является основой для разложения любого многочлена на множители.

Если коэффициенты , k=0, 1, 2, …, n действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.

К примеру, если корни и многочлена являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где

Замечание.

Среди корней многочлена могут быть повторяющиеся.

Доказательство теоремы проводится с использованием основной теоремы алгебры и следствия из теоремы Безу .

Основная теорема алгебры.

Всякий многочлен степени n имеет по крайней мере один корень (комплексный или действительный).

Теорема Безу.

При делении многочлена на (x-s) получается остаток, равный значению многочлена в точке s , то есть , где есть многочлен степени n-1 .

Следствие из теоремы Безу.

Если s – корень многочлена , то .

Это следствие будем достаточно часто употреблять при описании решения примеров.

Разложение на множители квадратного трехчлена.

Квадратный трехчлен раскладывается на два линейных множителя: , где и являются корнями (комплексными или действительными).

Таким образом, разложение на множители квадратного трехчлена сводится к решению квадратного уравнения.

Пример.

Разложить квадратный трехчлен на множители.

Решение.

Найдем корни квадратного уравнения .

Дискриминант уравнения равен , следовательно,

Таким образом, .

Для проверки можно раскрыть скобки: . При проверке пришли к исходному трехчлену, поэтому разложение выполнено верно.

Пример.

Решение.

Соответствующее квадратное уравнение имеет вид .

Найдем его корни.

Поэтому, .

Пример.

Разложить многочлен на множители .

Решение.

Найдем корни квадратного уравнения .

Получили пару комплексно сопряженных корней.

Разложение многочлена будет именть вид .

Пример.

Разложить на множители квадратный трехчлен .

Решение.

Решим квадратное уравнение .

Поэтому,

Замечание:

В дальнейшем, при отрицательном дискриминанте, мы будем оставлять многочлены второго порядка в исходном виде, то есть не будем раскладывать их на линейные множители с комплексными свободными членами.

Способы разложения на множители многочлена степени выше второй.

В общем случае эта задача предполагает творческий подход, так как не существует универсального метода ее решения. Но все же попробуем дать несколько наводок.

В подавляющем числе случаев, разложение многочлена на множители основано на следствии из теоремы Безу, то есть находится или подбирается корень и понижается степень многочлена на единицу делением на . У полученного многочлена ищется корень и процесс повторяется до полного разложения.

Если же корень найти не удается, то используются специфические способы разложения: от группировки, до ввода дополнительных взаимоисключающих слагаемых.

Дальнейшее изложение базируется на навыках с целыми коэффициентами.

Вынесение за скобки общего множителя.

Начнем с простейшего случая, когда свободный член равен нулю, то есть многочлен имеет вид .

Очевидно, что корнем такого многочлена является , то есть многочлен представим в виде .

Этот способ есть ни что иное как вынесение общего множителя за скобки .

Пример.

Разложить многочлен третьей степени на множители.

Решение.

Очевидно, что является корнем многочлена, то есть х можно вынести за скобки:

Найдем корни квадратного трехчлена

Таким образом,

Разложение на множители многочлена с рациональными корнями.

Сначала рассмотрим способ разложения многочлена с целыми коэффициентами вида , коэффициент при старшей степени равен единице.

В этом случае, если многочлен имеет целые корни, то они являются делителями свободного члена.

Пример.

Решение.

Проверим, имеются ли целые корни. Для этого выписываем делители числа -18 : . То есть, если многочлен имеет целые корни, то они находятся среди выписанных чисел. Последовательно проверим эти числа по схеме Горнера . Ее удобство еще и в том, что в итоге получим и коэффициенты разложения многочлена:

То есть, х=2 и х=-3 являются корнями исходного многочлена и он представим в виде произведения:

Осталось разложить квадратный трехчлен .

Дискриминант этого трехчлена отрицательный, следовательно, он не имеет действительных корней.

Ответ:

Замечание:

вместо схемы Горнера можно было воспользоваться подбором корня и последующим делением многочлена на многочлен .

Теперь рассмотрим разложение многочлена с целыми коэффициентами вида , причем коэффициент при старшей степени не равен единице.

В этом случае многочлен может иметь дробно рациональные корни.

Пример.

Разложить на множители выражение .

Решение.

Выполнив замену переменной y=2x , перейдем к многочлену с коэффициентом равным единице при старшей степени. Для этого сначала домножим выражение на 4 .

Если полученная функция имеет целые корни, то они находятся среди делителей свободного члена. Запишем их:

Вычислим последовательно значения функции g(y) в этих точках до получения нуля.

То есть, y=-5 является корнем , следовательно, является корнем исходной функции. Проведем деление столбиком (уголком) многочлена на двучлен .

Таким образом,

Проверку оставшихся делителей продолжать нецелесообразно, так как проще разложить на множители полученный квадратный трехчлен

Следовательно,

Искусственные приемы при разложении многочлена на множители.

Далеко не всегда многочлены имеют рациональные корни. В этом случае при разложении на множители приходится искать специальные способы. Но, как бы нам не хотелось, некоторые многочлены (а точнее подавляющее большинство) так и не получится представить в виде произведения.

Способ группировки.

Иногда получается сгруппировать слагаемые многочлена, что позволяет найти общий множитель и вынести его за скобки.

Пример.

Разложить многочлен на множители.

Решение.

Так как коэффициенты являются целыми числами, то могут быть целые корни среди делителей свободного члена. Проверим значения 1 , -1 , 2 и -2 , вычислив значение многочлена в этих точках.

То есть, целых корней нет. Будем искать другой способ разложения.

Проведем группировку:

После группировки исходный многочлен представился в виде произведения двух квадратных трехчленов. Разложим их на множители.