Окислительно-восстановительные ферменты, катализирующие перенос электронов, и окислительное фосфорилирование локализованы в липидном слое внутренней мембраны митохондрий клеток.

Транспорт электронов к кислороду в митохондриях (рис. 13.3) происходит в несколько этапов и представляет собой цепь из переносчиков электронов, у которых по мере приближения к кислороду возрастает редокс-потенциал (соответственно снижается восстановительный потенциал). Эти транспортные системы получили название дыхательных цепей.

Рис. 13.3.

Большинство электронных пар поступает в дыхательную цепь благодаря действию ферментов (дегидрогеназ), использующих в качестве акцепторов электронов коферменты NAD+ и NADP + . Всю эту группу ферментов называют ЫАО(Р)-зависимыми дегидрогеназами.

Коферменты NAD + (никотинамид-адениндинуклеотид), FAD и FMN (флавинадениндинуклеотид и флавинмононуклеотид), ко- фермент Q (CoQ), семейство гемсодержащих белков - цитохромов (обозначаемых как цитохромы b, Q, С, А, А 3) и белки, содержащие негеминовое железо, являются промежуточными переносчиками в дыхательной цепи у высших организмов. Процесс начинается с переноса протонов и электронов от окисляемого субстрата на коферменты NAD+ или FAD и образования NADH и FADH2.

Последующее движение электронов от NADH и FADH 2 к кислороду можно уподобить скатыванию с лестницы, ступеньками которой являются переносчики электронов. При каждом шаге со ступеньки на ступеньку высвобождается порция свободной энергии (см. рис. 13.3).

В переносе электронов от органических субстратов к молекулярному кислороду принимают участие три белковых комплекса (I, III, IV) и две подвижные молекулы-переносчики: убихинон (ко- фермент Q) и цитохром С.

Рис. 13.4. Строение молекулы гема, z = 2* или 3 +

Сукцинатдегидрогеназа, принадлежащая собственно к циклу Кребса, также может рассматриваться как комплекс II дыхательной цепи.

Комплексы дыхательной цепи построены из множества полипептидов и содержат ряд различных окислительно-восстановительных кофер- ментов, связанных с белками.

Переносчики электронов цито- хромы (названные так из-за своей окраски) - это белки, содержащие в качестве простетической группы различные группы гемов. Гемы типа Ь соответствуют гемоглобинам. Гем ковалентно связан с белком (рис. 13.4).

Общим для цитохромов является способность иона железа, находящегося в геме, изменять степень окисления при передаче электрона:

Флавинзависимые дегидрогеназы - это белки, у которых сульфгидрильные группы цистеина, входящего в состав белка, связаны с атомами железа, в результате чего образуется железосерные комплексы (центры). Как и в цитохромах, атомы железа в таких центрах способны отдавать и принимать электроны, переходя поочередно в ферри- (Fe +3) и ферро- (Fe +2) состояния.

Железосерные центры функционируют совместно с флавинсодержащими ферментами FAD или FMN.

Фпавинадениндинуклеотид (FAD) является производным витамина В 2 (рибофлавина). Восстанавливаясь, FAD (окисленная форма) присоединяет два атома водорода и превращается в FADH 2 (восстановленная форма):


Еще один переносчик электронов, относящийся к данной группе, - флавинмононуклеотид (FMN) также является производным витамина В 2 (отличается от витамина В 2 только наличием фосфатной группы).

Оба флавиновых кофермента могут существовать и в форме так называемых семихинонов - свободных радикалов, которые образуются в результате переноса только одного электрона на FAD или FMN:

Общее обозначение различных флавопротеидов, различающихся белковой составляющей фермента, - FP„.

Пиридинзависимые дегидрогеназы получили такое название потому, что коферментом для них служат NAD + и NADP + , в молекулах которых имеется производное пиридина - никотинамид:


Катализируемые этими ферментами реакции можно представить следующим образом:

Дегидрогеназы, связанные с NAD + , принимают участие главным образом в процессе дыхания, т.е. в процессе переноса электронов от субстратов к кислороду, тогда как дегидрогеназы, связанные с NADP + , участвуют преимущественно в переносе электронов от субстратов, возникающих в результате катаболиче- ских реакций, к восстановительным реакциям биосинтеза.

Единственный небелковый переносчик электронов - убихинон, названный так потому, что этот хинон встречается везде (от ubiquitous - вездесущий). Сокращенно его обозначают CoQ или просто Q. Убихинон при восстановлении присоединяет не только электроны, но и протоны. При одноэлектронном переносе он превращается в семихинон, двухэлектронном - в гидрохинон.

Последовательность переносчиков электронов в дыхательной цепи митохондрий можно представить следующей схемой:


Эта схема описывается цепью последовательных реакций:

Таким путем через дыхательную цепь электроны от субстратов достигают конечного акцептора - атмосферного кислорода. Образующаяся в результате этого процесса вода называется метаболической.

Разделение водорода на протоны и электроны в мембране митохондрий представляет собой цепь переноса электронов, которая работает как протонный насос, перекачивающий ионы водорода из межклеточного пространства на наружную сторону мембраны.

Биологическая химия Лелевич Владимир Валерьянович

Структурная организация цепи тканевого дыхания

Компоненты дыхательной цепи во внутренней мембране михохондрий формируют комплексы:

1. I комплекс (НАДН-КоQН 2 -редуктаза) – принимает электороны от митохондриального НАДН и транспортирует их на КоQ. Протоны транспортируются в межмембранное пространство. Промежуточным акцептором и переносчиком протонов и электронов являются ФМН и железосерные белки. I комплекс разделяет поток электронов и протонов.

2. II комплекс – сукцинат – КоQ - редуктаза – включает ФАД- зависимые дегидрогеназы и железосерные белки. Он транспортирует электроны и протоны от флавинзависимых субстратов на убихинон, с образованием промежуточного ФАДН 2 .

Убихинон легко перемещается по мембране и передает электроны на III комплекс.

3. III комплекс – КоQН 2 - цитохром с - редуктаза – имеет в своем составе цитохромы b и с 1 , а также железосерные белки. Функционирование КоQ с III комплексом приводит к разделению потока протонов и электронов: протоны из матрикса перекачиваются в межмембранное пространство митохондрий, а электроны транспортируются далее по ЦТД.

4. IV комплекс – цитохром а - цитохромоксидаза – содержит цитохромоксидазу и транспортирует электроны на кислород с промежуточного переносчика цитохрома с, который является подвижным компонентом цепи.

Существует 2 разновидности ЦТД:

1. Полная цепь – в нее вступают пиридинзависимые субстраты и предают атомы водорода на НАД-зависимые дегидрогеназы

2. Неполная (укороченная или редуцированная) ЦТД в которой атомы водорода передаются от ФАД-зависимых субстратов, в обход первого комплекса.

Из книги Пранаяма. Сознательный способ дыхания. автора Гупта Ранджит Сен

Глава 1 Физиология дыхания Многие люди стараются постоянно поддерживать себя в «хорошей форме, занимаясь различными видами спорта, как-то: бег трусцой, плавание, акробатика, некоторые виды игр и так далее. В итоге они, естественно, подвергают себя более высокому ритму

Из книги Сон - тайны и парадоксы автора Вейн Александр Моисеевич

1.3. Шаблоны дыхания Как известно, газообмен между легкими и атмосферным воздухом называется дыханием. А шаблоны дыхания зависят от интенсивности вентиляции (насыщения крови кислородом). Это суммарный объем воздухообмена за единицу времени, и меняется он соответственно

Из книги Здоровье Вашей собаки автора Баранов Анатолий

4.2. Принципы дыхания Для чтения этого параграфа будет очень полезно сначала просмотреть динамику дыхательного механизма. Там объясняются три характерные функции дыхания, движение ребер, грудины и диафрагмы. Одновременное действие этих трех движений является основой

Из книги Служебная собака [Руководство по подготовке специалистов служебного собаководства] автора Крушинский Леонид Викторович

Звенья одной цепи В. П. Данилин решил узнать, как люди оценивают интервалы времени, прошедшие во сне. Он исходил из предположения, что адекватная оценка времени означает во всех случаях, что у человека в памяти фиксируется непрерывная последовательность событий,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Определения частоты дыхания Владелец собаки должен также уметь определить частоту дыхания животного, что немаловажно как для установления заболевания, так и для лечения осложнений органов дыхания.Частоту дыхания можно установить, подсчитывая число вдохов или выдохов

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Нарушение дыхания При нарушении процесса дыхания у собаки резко изменяется состав крови, что неизбежно ведет к изменению функции жизненно важных центров и может закончиться смертью животного.У новорожденных щенят нарушение акта дыхания наблюдается сравнительно часто.

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

Возбуждение дыхания Возбуждение дыхания необходимо применять при его расстройстве или отсутствии.Если нарушение дыхания у собаки произошло по причине расстройства мозгового кровообращения (солнечный или тепловой удары), необходимо сделать следующее: а) опрыскивать

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

4. Система органов дыхания Дыханием называется процесс поглощения организмом кислорода и выделения углекислоты. Этот жизненно важный процесс заключается в обмене газами между организмом и окружающим его атмосферным воздухом. При дыхании организм получает из воздуха

Из книги Гены и семь смертных грехов автора Зорин Константин Вячеславович

Из книги Мир животных. Том 6 [Рассказы о домашних животных] автора Акимушкин Игорь Иванович

Глава 4 Эволюция и структурная организация яиц и зародышей Много еще и теперь из нее (Земли) выходит животных, Влагой дождей воплощенных и жаром горячего солнца. Не мудрено, что крупней были твари тогда, да и больше Их порождалось, землей молодой и эфиром взращенных... Ибо

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Из книги Биология. Общая биология. 11 класс. Базовый уровень автора Сивоглазов Владислав Иванович

9.6. Трофические цепи и экология Одним из следствий развиваемого нами трофологического подхода (см. гл. 1) является признание того, что процветание вида во многом определяется его положением в трофической цепи. Это положение обеспечивается эффективностью взаимодействий

Из книги автора

Из книги автора

Лев на золотой цепи Даже царь зверей жил пленником у царей человеческих. В Египте сохранились древние тексты и барельефы, а на них фараоны с ручными львами. На одной из стен дворца в Карнаке изображен Рамзее II (годы его царствования 1324–1258 до нашей эры). Он во главе войска на

Из книги автора

2. «Метаболическая» и «структурная» гипотезы Группу «метаболических» гипотез составляют все те представления о природе стабильности, в которых фигурирует какое-то активирующее вещество: оно может некоторое время находиться вне ДНК, но оно должно быть способно

Из книги автора

6. Популяция как структурная единица вида Вспомните!Что такое популяция?Почему организмы большинства видов живут в природе группами?Вид представляет собой сложную систему внутривидовых групп, складывающуюся в процессе эволюции в определённых условиях. Наиболее

14.1.1. В пируватдегидрогеназной реакции и в цикле Кребса происходит дегидрирование (окисление) субстратов (пируват, изоцитрат, α-кетоглутарат, сукцинат, малат). В результате этих реакций образуются НАДН и ФАДН2 . Эти восстановленные формы коферментов окисляются в митохондриальной дыхательной цепи. Окисление НАДН и ФАДН2 , протекающее сопряжённо с синтезом АТФ из АДФ и Н3 РО4 называется окислительным фосфорилированием .

Схема строения митохондрии показана на рисунке 14.1. Митохондрии представляют собой внутриклеточные органеллы, имеющие две мембраны: наружную (1) и внутреннюю (2). Внутренняя митохондриальная мембрана образует многочисленные складки - кристы (3). Пространство, ограниченное внутренней митохондриальной мембраной, носит название матрикс (4), пространство, ограниченное наружной и внутренней мембранами, - межмембранное пространство (5).

Рисунок 14.1. Схема строения митохондрии.

14.1.2. Дыхательная цепь - последовательная цепь ферментов, осуществляющая перенос ионов водорода и электронов от окисляемых субстратов к молекулярному кислороду - конечному акцептору водорода. В ходе этих реакций выделение энергии происходит постепенно, небольшими порциями, и она может быть аккумулирована в форме АТФ. Локализация ферментов дыхательной цепи - внутренняя митохондриальная мембрана.

Дыхательная цепь включает четыре мультиферментных комплекса (рисунок 14.2).

Рисунок 14.2. Ферментные комплексы дыхательной цепи (обозначены участки сопряжения окисления и фосфорилирования):

I. НАДН-KoQ-редуктаза (содержит промежуточные акцепторы водорода: флавинмононуклеотид и железосерные белки). II. Сукцинат-KoQ-редуктаза (содержит промежуточные акцепторы водорода: ФАД и железосерные белки). III. KoQН2 -цитохром с-редуктаза (содержит акцепторы электронов: цитохромы b и с1 , железосерные белки).
IV. Цитохром с-оксидаза (содержит акцепторы электронов: цитохромы а и а3 , ионы меди Cu2+ ).

14.1.3. В качестве промежуточных переносчиков электронов выступают убихинон (коэнзим Q) и цитохром с.

Убихинон (KoQ) - жирорастворимое витаминоподобное вещество, способен легко диффундировать в гидрофобной фазе внутренней мембраны митохондрий. Биологическая роль коэнзима Q - перенос электронов в дыхательной цепи от флавопротеинов (комплексы I и II) к цитохромам (комплекс III).

Цитохром с - сложный белок, хромопротеин, простетическая группа которого - гем - содержит железо с переменной валентностью (Fe3+ в окисленной форме и Fe2+ в восстановленной форме). Цитохром с является водорастворимым соединением и располагается на периферии внутренней митохондриальной мембраны в гидрофильной фазе. Биологическая роль цитохрома с - перенос электронов в дыхательной цепи от комплекса III к комплексу IV.

14.1.4. Промежуточные переносчики электронов в дыхательной цепи расположены в соответствии с их окислительно-восстановительными потенциалами. В этой последовательности способность отдавать электроны (окисляться) убывает, а способность присоединять электроны (восстанавливаться) возрастает. Наибольшей способности отдавать электроны обладает НАДН, наибольшей способностью присоединять электроны - молекулярный кислород.

На рисунке 14.3 представлено строение реакционноспособного участка некоторых промежуточных переносчиков протонов и электронов в окисленной и восстановленной форме и их взаимопревращение.



Рисунок 14.3. Взаимопревращения окисленных и восстановленных форм промежуточных переносчиков электронов и протонов.

14.1.5. Механизм синтеза АТФ описывает хемиосмотическая теория (автор - П. Митчелл). Согласно этой теории, компоненты дыхательной цепи, расположенные во внутренней митохондриальной мембране, в ходе переноса электронов могут «захватывать» протоны из матрикса митохондрий и передавать их в межмембранное пространство. При этом наружная поверхность внутренней мембраны приобретает положительный заряд, а внутренняя - отрицательный, т.е. создаётся градиент концентрации протонов с более кислым значением рН снаружи. Так возникает трансмембранный потенциал (ΔµН+ ). Существует три участка дыхательной цепи, на которых он образуется. Эти участки соответствуют I, III и IV комплексам цепи переноса электронов (рисунок 14.4).


Рисунок 14.4. Расположение ферментов дыхательной цепи и АТФ-синтетазы во внутренней мембране митохондрий.

Протоны, выведенные в межмембранное пространство за счёт энергии переноса электронов, снова переходят в митохондриальный матрикс. Этот процесс осуществляется ферментом Н+ -зависимой АТФ-синтетазой (Н+ -АТФ-азой). Фермент состоит из двух частей (см. рисунок 10.4): водорастворимой каталитической части (F1 ) и погружённого в мембрану протонного канала (F0 ). Переход ионов Н+ из области с более высокой в область с более низкой их концентрацией сопровождается выделением свободной энергии, за счёт которой синтезируется АТФ.

14.1.6. Энергия, аккумулированная в форме АТФ, используется в организме для обеспечения разнообразных биохимических и физиологических процессов. Запомните основные примеры использования энергии АТФ:

1) синтез сложных химических веществ из более простых (реакции анаболизма); 2) сокращение мышц (механическая работа); 3) образование трансмембранных биопотенциалов; 4) активный транспорт веществ через биологические мембраны.

В короткой дыхательной цепи окисляется субстрат, для которых первичным акцептором электронов является флапротеид (отсутствует этап окисления субстрата НАД-ДГ). Вещества короткой цепи: янтарная кислота, активные формы жирных кислот, глицерофосфат).

Первая реакция окисления:

В последующем ФАДН 2 при участии (FeS*) + КоQ, окисляется:

Восстановленный КоQ как и в длиной дыхательной цепи системой цитохромов:

Эти дыхательные цепи могут быть разделены на структурно-функциональные форагменты, которые называются окислительные комплексы. В длинной цепи выделяют 3 комплекса, а в короткой 2.

1. Располагается между НАДН 2 и КоQ и включает в себя ФП и FeS комплекс.

2. КоQН 2 -ДГ (цитохром С-редуктазный комплекс) располагается между КоQ и цС и включает в себя цВ, FeS, белки, цС 1

3. Цитохромоксидазный комплекс – окисляет цС и включает в себя цаа 3

4. Сукцинатдегидрогеназный комплекс включает ФП* и FeS, сукцинатДГ

Каждый дыхательный комплекс может быть выключен из работы дыхательной цепи определенными веществами – ингибиторами.

Первый комплекс – амитал, барбитураты, ротенол

Второй комплекс – малонат

Третий комплекс – антимицин А

Четвертый комплекс – Н 2 S, цианиды, СО

Внутримитохондриальное окисление тесно связано с энергетическим обменом. Энергетический обмен – сбалансированность протекания реакций образования и реакций использования энергии.

Реакции идущие с высвобождением энергии называется экзоргиническими реакциями с поглощением эндорганическими. Основным экзорганическим процессом в организме является транспорт электронов по дыхательной цепи. Начальные компоненты НАД окисленный, НАД восстановленный:

Поэтому в ЦПЭ происходит перемещение электронов с большой энергией, в процессе транспорта электронов энергия высвобождается. Та энергия которая может быть использована на выполнение какой-то работы – свободная энергия . В дыхательной цепи энергия рассчитывается.

ΔF = -23*n*Δе ,

где n- количество переносимых электронов на атом О 2 (2е), Δе – перепад ОВП между началом и концом ЦПЭ.

Δе = 0,82 –(-0,32)=1,14В

ΔF = -23*2*1,14 = -52 ккал/моль

Эта энергия может быть использована организмом на выполнение различных процессов:

  • Механических – сокращение мышц
  • Химических – на синтез новых веществ
  • Осмотических – перенос ионов против градиента концентрации
  • Электрических – возникновение потенциалов в нервной системе

Все организмы в зависимости от энергии, которую они используют делят на два вида: фототрофы – могут использовать энергию солнечного света, хемовары – могут использовать энергию только химических связей особых макроэргических веществ.

Макроэргические вещества – вещества при гидролизе связей которых высвобождается энергия более 5 ккал/моль. К ним относят фосфоенолпируват, креатинфосфат, 1,3-дифосфоглицеринфосфат, ацилы жирных кислот, АТФ (ГТФ, ЦТФ, УЦФ). Среди перечисленных макроэргов центральное место занимает АТФ. АТФ является аккумулятором и источником химической энергии. В молекулярном АТФ заключена энергия на 7,3 ккал/моль (в стандартных условиях) и до 12 ккал/моль в физиологических условиях. Состав АТФ: аденил-рибоза-Н 3 РО 4 - Н 3 РО 4 -Н 3 РО 4 . Синтезируется АТФ из АДФ. Распад АТФ является экзоорганическим процессом. Основным источником энергии для синтеза АТФ является перенос электронов по дыхательной цепи. Присоединение Н 3 РО 4 называется – фосфолирироваием.

Окислительное фосфолирирование

Процесс синтеза АТФ из АДФ и Н 3 РО 4 , за счет энергии транспорта по ЦПЭ. Процессы окисления дыхательной цепи и синтеза АТФ тесно сопряжены. При этом ведущим процессом является транспорт электронов, сопутствующим является фосфолирирование. Участки дыхательной цепи на которых происходит синтез АТФ называются участками сопряжения. Их в длинной цепи три (1, 3, 4 – окислительные комплексы), в короткой дыхательной цепи их два (3,4). Если вещество окисляется в дыхательной цепи, то максимум синтезируются три молекулы АТФ. Эффективность сопряжения окислительного фосфолирирования выражается коэффициентом фосфолирирования. Он показывает сколько молекул Н 3 РО 4 присоединяется к АДФ при переносе двух электронов на один атом кислорода то есть сколько синтезируется молекул АТФ на один атом кислорода. Для длинной цепи коэффициент = 3 для короткой 2.

Механизм окислительного фосфолирирования.

Впервые в тридцатые годы акт синтеза АТФ в процессе окисления был выявлен отечественным биохимиком Энгельгардтом. Основной гипотезой объяснения механизма окислительного фосфолирирования стала хемоосмотическая теория Митчелла. Согласно ей при транспорте электронов по дыхательной цепи возникает протонный потенциал, который и аккумулирует освободившийся при переносе электрона энергию. В последствии протонный потенциал используется для синтеза АТФ. Возникновение протонного потенциала связано непроницаемость для протонов внутренней мембраны митохондрий. В результате транспорта электронов по дыхательной цепи одновременно происходит выталкивание Н + из матрикса в межмембранное пространство. Переносится 6 – 10 Н+.

ЛЕКЦИЯ по БХ

для студентов _2 __ курса лечебного факультета

Тема Биологическое окисление 2. Тканевое дыхание. Окислительное фосфорилирование.

Время 90 мин.

Учебные и воспитательные цели:

Дать представление:

    О строении дыхательной цепи (ДЦ), ингибиторах; механизмах работы ДЦ; пунктах сопряжения, величинах ОВП компонентов ДЦ. О коэффициенте Р/О, его значении.

    О свободном и разобщенном дыхании. О теориях сопряжения ОФ.

    О механизме генерации Н + .

    О структуре и функциях протонной АТФ-азы; о механизме разобщения.

    Об окислительдном фосфорилировании (pH и ); о механизмах термогенеза, роли бурой жировой ткани.

    О роли энергетического обмена; Путях утилизации Н + и АТФ. О прикладных аспектах биоэнергетики.

    О путях потребления O 2 в организме (митохондриальный, микросомальный, перекисный). О характеристике микросомальной ДЦ, в сравнении с митохондриальной. О характеристике цитохромаP 450 , функции.

    О перекисном окисление. О механизме образования активных форм кислорода O 2 - , O 2 , O 2 . О роли перекисных процессов в норме и при патологии. О перекисном окислении липидов (ПОЛ): (НЭЖК → R  → диеновые коньюгаты → гидроперекиси → МДА). О способах оценки активности ПОЛ.

    Об антиоксидантной защите: ферментной и неферментной. О характеристиках СОД, каталазы, глютатионпероксидазы, GSH-редуктазы, NADPH-воспроизводящих систем. О неферментных АОС: витаминах Е, А, С, каротиноидах, гистидине, кортикостероидах, билирубине, мочевине и др.

ЛИТЕРАТУРА

    Березов Т. Т., Коровкин Б. Ф. Биологическая химия. М.: Медицина, 1990. С. 213–220; 1998. С. 305–317.

    Николаев А. Я. Биологическая химия. М.: Высшая школа, 1989. С. 199–221.

Дополнительная

    Филиппович Ю. Б. Основы биохимии. М.: Высшая школа, 1993. С. 403–438.

    Марри Р. и др. Биохимия человека. М.: Мир, 1993. Т. 1. С. 111–139.

    Ленинджер А. Основы биохимии. М.: Мир, 1985. Т. 2. С. 403–438, 508–550.

    Албертс Б. и др., Молекулярнаябиология клетки. М.: Мир, 1994.Т. 1. С. 430–459.

    Скулачев В.П. Энергетика биологическихмембран. М.: Наука. 1989.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1. Мультимедийная презентация.

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

Перечень учебных вопросов

Количество выделяемого времени в минутах

Строение дыхательной цепи (ДЦ), ее комплексы, ингибиторы. Механизм работы ДЦ. Пункты сопряжения, величина ОВП компонентов ДЦ. Коэффициент Р/О, его значение.

Свободное и разобщенное дыхание. Теории сопряжения ОФ (химическая, конформационная, хемиосмотическая – П. Митчелла).

Механизм генерации Н + , его компоненты, стехиометрия Н + /е.

Структура и функция протонной АТФ-азы. Механизм разобщения.

ОФ (снятие pH и ). Механизмы термогенеза. Роль бурой жировой ткани.

Основополагающая роль энергетического обмена. Пути утилизации Н + и АТФ. Прикладные аспекты биоэнергетики.

Пути потребления O 2 в организме (митохондриальный, микросомальный, перекисный). Характеристика микросомальной ДЦ, ее сравнение с митохондриальной. Характеристика цитохромов P 450 , их функция.

Перекисное окисление. Механизм образования активных форм кислорода O 2 - , O 2 , O 2 . Роль перекисных процессов в норме и при патологии. Общее представление о ПОЛ (НЭЖК → R  → диеновые коньюгаты → гидроперекиси → МДА). Способы оценки активности ПОЛ.

Антиоксидантная защита: ферментная и неферментная. Характеристика СОД, каталазы, глютатионпероксидазы, GSH-редуктазы, NADPH-воспроизводящих систем. Неферментные АОС: витамины Е, А, С, каротиноиды, гистидин, кортикостероиды, билирубин, мочевина и др.

Всего 90 мин

  1. Строение дыхательной цепи (дц), комплексы, ингибиторы. Механизм работы. Пункты сопряжения, величина овп компонентов дц. Коэффициент р/о, его значение.

Дыхательная цепь.

Поэтапное «контролируемое сгорание» достигается путём промежуточного включения дыхательных ферментов, обладающих различным редокс-потенциалом. Редокс-потенциал (окислительно-восстановительный потенциал) определяет направление переноса протонов и электронов ферментами дыхательной цепи (рис.1).

Редокс-потенциал выражается значением электродвижущей силы (в вольтах ), которая возникает в растворе между окислителем и восстановителем, присутствующих в концентрации 1,0 моль/л при 25˚ С (при рН=7,0 оба находятся в равновесии с электродом, который может обратимо принимать электроны от восстановителя). При рН=7,0 редокс-потенциал системы Н 2 /2Н + +2ē равен 0,42 v. Знак означает, что данная редокс-пара легко отдаёт электроны, т.е. играет роль восстановителя, знак + указывает на способность редокс-пары принимать электроны, т.е. играть роль окислителя. Например, редокс-потенциал пары НАДН∙Н + / НАД + равен – 0,32 v, что говорит о высокой её способности отдавать электроны, а окислительно-восстановительная пара ½О 2 /Н 2 О имеет наибольшую положительную величину +0,81 v, т.е. кислород обладает наивысшей способностью принимать электроны.

В процессе окисления АцКоА в ЦТК, восстановленные формы НАДН2 и ФАДН2 поступают в ДЦ, где энергия электронов и протонов трансформируется в энергию макроэргических связей АТФ.

ДЦ - совокупность дегидрогеназ, которые транспортируют электороны и протоны с субстрата на кислород.

Принципы функционирования ДЦ основаны на 1-ом и 2-ом законах термодинамики.

Движущей силой ДЦ является разность ОВП. Суммарная разность всей ДЦ составляет 1,1 В. Пункты фосфорилирования должны иметь перепад ОВП = 0,25 - 0,3 В.

1. Пара НАД-Н имеет ОВП = 0,32 В.

2. Пара Q-b - / - /- - 0 В.

3. O2 - имеет +0,82 В.

ДЦ локализуется во внутренней мембране митохондрий и имеет 2 пути введения электронов и протонов или 2 входа; ДЦ образует 4 комплекса.

1 вход: НАД-зависимый (поступают электроны и протоны со всех НАД-зависимых реакций).

2 вход: ФАД-зависимый

НАД ---->ФП

Q --->b--->c 1 --->c--->aa 3 ---->1/2O 2

Янтарная кислота ---->ФП

Дыхательная цепь – форма реализации биологического окисления .

Тканевое дыхание – это последовательность окислительно-восстанови-тельных реакций, протекающих во внутренней митохондриальной мембране с участием ферментов дыхательной цепи. Дыхательная цепь имеет чёткую структурную организацию, её компоненты формируют дыхательные комплексы , порядок расположения которых зависит от величины их редокс-потенциала (рис.5.1). Количество дыхательных цепей в отдельно взятой митохондрии из клеток разных тканей неодинаково: в печени – 5000, в сердце – около 20 000, следовательно, миокардиоциты отличаются более интенсивным дыханием, чем гепатоциты.

Рис. 5.1 Порядок расположения комплексов дыхательной цепи во внутренней мембране митохондрий

Прежде чем остановиться на характеристике каждого из компонентов дыхательной цепи, познакомимся с субстратами тканевого дыхания.

Субстраты тканевого дыхания подразделяются на 2 группы:

    НАД-зависимые – субстраты цикла Кребса изоцитрат, α-кетоглутарат и малат. Это также пируват, гидроксибутират и β–гидрокси-ацил~КоА, глутамат и некоторые другие аминокислоты. Водород от НАД-зависимых субстратов c помощью НАД-зависимых дегидрогеназ передаётся на I-й комплекс дыхательной цепи.

    ФАД-зависимые – сукцинат, глицерол-3-фосфат, ацил~КоА и некоторые другие. Водород от ФАД-зависимых субстратов передаётся на II-й комплекс дыхательной цепи.

При дегидрировании субстратов НАД-зависимыми дегидрогеназами образуется восстановленная форма НАД (НАДH∙H +).

Указана окисленная форма кофермента НАД + . Этот кофермент является динуклеотидом (н икотинамид -а денин -д инуклеотид ): в состав одного нуклеотида входит витамин РР (никотинамид), другой представляет собой АМФ. Способность кофермента играть роль промежуточного переносчика водородов связана с наличием в его структуре витамина РР. В электронно-протонной форме процесс обратимого гидрирования-дегидрирования может быть представлен уравнением (R- остальная часть кофермента):

НАДH∙H + может образовываться не только в митохондриях, но и в цитозоле клетки при протекании определённых процессов метаболизма. Однако цитоплазматический кофермент не может проникать в митохондрии. Водород восстановленного кофермента должен быть сначала перенесен на субстраты, которые могут проникать в митохондрии. Такими «Н 2 -переносящими субстратами» являются:

Оксалацетат → малат

Ацетоацетат → β-гидроксибутират

Дигидроксиацетон фосфат → глицерол-3-фосфат

НАДH∙H + затем окисляется 1-м комплексом дыхательной цепи. Рассмотрим работу этого комплекса.

I – НАДH∙H + -убихинон-оксидодуктаза.

Первый комплекс является самым большим в дыхательной цепи (представлен 23-30 субъединицами). Он катализирует перенос водорода от НАДH∙H + на убихинон (рис. 5.1 и рис. 5.3). В его состав входят кофермент ФМН (флавинмононуклеотид) и железосерные белки, содержащие негеминовое железо. Функция этих белков заключается в разделении потока протонов и электронов: электроны переносятся от ФМН∙Н 2 к внутренней поверхности внутренней мембраны митохндрий (обращенной к матриксу), а протоны – к внешней поверхности внутренней мембраны и затем высвобождаются в митохондриальный метрикс.

При транспорте протонов и электронов редокс-потенциал первого комплекса снижается на 0,38 v, что вполне достаточно для синтеза АТФ. Однако в самом комплексе АТФ не образуется, а высвобождающаяся в результате работы комплекса энергия аккумулируется (см. ниже образование электро-химического потенциала) и частично рассеивается в виде тепла.

По своему строению ФМН – мононуклеотид, в котором азотистое основание представлено изоаллоксазиновым ядром рибофлавина, а пентозой является рибитол (иными словами, ФМН – это фосфорилированная форма витамина В 2).

Функция ФМН заключается в акцепции 2 атомов водорода от НАДH∙H + и передачи их железосерным белкам. Водород (2 электрона и 2 протона) присоединяется к атомам азота изоаллоксазинового кольца, при этом происходит внутримолекулярная перегруппировка двойных связей с образованием промежуточного семихинона – соединения свободнорадикальной природы (на схеме представлено суммарное уравнение реакции, где R – остальная часть молекулы)

II комплекс цепи тканевого дыхания – сукцинат-убихинон-оксидоредуктаза.

Этот комплекс имеет меньшую молекулярную массу и также содержит железосерные белки. Сукцинат-убихинон-оксидоредуктаза катализирует перенос водорода от сукцината на убихинон. В состав комплекса входит кофермент ФАД (флавин-аденин-динуклеотид) и фермент сукцинатдегидрогеназа, который является одновременно ферментом цикла Кребса. Ацил~ S КоА, 3-фосфо-глицерат и диоксиацетон фосфат также являются ФАД-зависимыми субстратами тканевого дыхания и с помощью этого кофермента контактируют со вторым комплексом.

Рис. 5.3 Первый комплекс дыхательной цепи

Энергия включения водорода субстратов во II комплекс цепи тканевого дыхания рассеивается в основном в виде тепла, так как на этом участке цепи редокс-потенциал снижается незначительно и этой энергии для синтеза АТФ мало.

Процесс восстановления ФАД протекает аналогично таковому ФМН.

Кофермент Q или убихинон - гидрофобное соединение, является компонентом клеточных мембран, содержится в большой концентрации, относится к группе витаминов. относится к группе витаминов.

Убихинон (коэнзим Q). Убихинон – небольшая липофильная молекула, по химическому строению представляющая собой бензохинон с длинной боковой цепью (число изопреноидных единиц колеблется от 6 у бактерий до 10 у млекопитающих).

В дыхательной цепи коэнзим Q является своеобразным депо (пулом) водорода, который он получает от различных флавопротеинов. Липофильный характер молекулы убихинона обуславливает его способность свободно перемещаться в липидной фазе митохондриальной мембраны, перехватывая протоны и электроны не только от I и II комплексов дыхательной цепи, но и захватывая из митохондриального матрикса протоны. При этом убихинон восстанавливается с образованием промежуточного свободнорадикального продукта – семихинона.

Восстановленная форма убихинона – убихинол – передаёт протоны и электроны на III комплекс дыхательной цепи.

Цитохромоксидаза имеет высокую степень сродства к кислороду и может работать при его низких концентрациях.

аа 3 - состоит из 6 субъединиц каждая из которых содержит гем и атом меди. 2 субъединицы составляют цитохром а, а остальные 4 относятся к цитохрому а 3.

Между НАД и ФП, b-c, a-a3 имеет место max перепад ОВП. Эти пункты являются местом синтеза АТФ (местом фосфорилирования АДФ).

III комплекс цепи тканевого дыхания убихинол-цитохром С-оксидоредуктаза. В состав III комплекса входят цитохромы b и с 1 , относящиеся к группе сложных белков хромопротеинов . Простетическая группа этих белков окрашена (chroma – краска) и близка по химическому строению к гему гемоглобина. Однако в противоположность гемоглобину и оксигемоглобину, в которых железо должно быть только в 2-х валентной форме, железо в цитохромах при работе дыхательной цепи переходит от двух- к трёхвалентному состоянию (и обратно).

Как видно из названия, III комплекс переносит электроны от убихинола на цитохром С. Вначале электроны поступают на окисленную форму цитохрома b (Fe 3+), который при этом восстанавливается (Fe 2+), затем восстановленный цитохром b передаёт электроны окисленной форме цитохрома с, который также восстанавливается и, в свою очередь, передаёт электроны цитохрому С.

митохондриальной мембраны от III комплекса к IV и обратно. При этом 1 молекула цитохрома С, попеременно окисляясь и восстанавливаясь, переносит 1 электрон.

IV комплекс дыхательной цепи цитохром С-оксидаза. Комплекс назван оксидазой из-за способности непосредственно взаимодействовать с кислородом. У млекопитающих этот крупный (~ 200 kD) трансмембранный белок состоит из 6-13 субъединиц, из которых некоторые кодируются митохондриальной ДНК. В состав IV комплекса входят 2 хромопротена – цитохром а и цитохром а 3 . В отличие от других цитохромов, цитохромы а и а 3 каждый содержат не только атом железа, но и атом меди. Медь в составе этих цитохромов при транспорте электронов также попеременно переходит в окисленное (Cu 2+) и восстановленное (Cu +) состояние.

Цитохром с -оксидаза катализирует одноэлектронное окисление 4-х восстановленных молекул цитохрома с и при этом одновременно осуществляет полное (4-х электронное) восстановление молекулы кислорода:

4 цитохрома с (Fe 2+) + 4 H + + O 2 4 цитохрома с (Fe 3+) + H 2 O

Протоны для образования молекул воды поступают из матрикса. Следует заметить, что эта реакция весьма сложна и протекает через промежуточные стадии образования свободных радикалов кислорода.

Окислительно-восстановительный потенциал IV комплекса является самым большим (+0,57 v), его энергии вполне достаточно для синтеза 3-х молекул АТФ, однако большая часть этой энергии используется на «перекачивание» протонов из матрикса митохондрий в межмембранное пространство. В связи с активным транспортом протонов цитохром с -оксидаза получила название «протонного насоса».

Таким образом, тканевое дыхание представляет собой процесс транспорта электронов и протонов от НАД- или ФАД-зависимых субстратов на кислород, а также протонов, поставляемых матриксом митохондрий. При транспорте падает редокс-потенциал, что сопровождается высвобождением заключённой в субстратах тканевого дыхания энергии. Полное восстановление молекулярного кислорода воздуха в дыхательной цепи сопровождается образованием воды.