Поляризационная микроскопия является одним из мощных методов морфологических исследования структуры и свойств препаратов. Поляризационная микроскопия позволяет изучать свойства гистологических структур, обладающих способностью двойного лучепреломления.

Для реализации метода поляризационной микроскопии можно дооснастить любой микроскоп. Микроскоп дооснащяется двумя поляризационными фильтрами: первый помещают непосредственно под конденсором, второй помещают между объективом и глазом исследователя. Поворотом поляризатора добиваются затемнения поля зрения. Помещают препарат. Вращают препарат на предметном столике до появления ярко светящихся структур. Свечение появляется в тот момент, когда ось двулучепреломляющего объекта будет находиться под углом 45° к плоскости поляризации.

Ранее для поляризационной микроскопии использовались поляризационные фильтры с линейной поляризацией. В новой методике изучалась возможности диагностики препаратов с использованием поляризационных фильтров с циркулярной поляризацией. Оказалось, что изображения, полученные с помощью циркулярных фильтров, несут гораздо больше информации и позволяют выявлять более тонкую структуру тканей и клеток.

Исследования в поляризованном свете можно проводить на замороженных или парафиновых срезах после депарафинизации, неокрашенных и окрашенных, заключенных в различные среды. Блоки ткани следует вырезать и ориентировать таким образом, чтобы мышечные волокна интересующего слоя миокарда были срезаны продольно.

Миофибриллы в поляризованном свете обнаруживают характерную поперечную исчерченность, связанную с чередованием, анизотропных (А) и изотропных I - дисков. Диски А обладают ярко выраженным положительным двулучепреломлением и кажутся светлыми в поляризованном свете (в обычном свете они темные), тогда как I - диски почти полностью лишены способности к двулучепреломлению и в поляризованном свете выглядят темными (в обычном свете - светлые).

С помощью поляризационной микроскопии удобно выявлять наиболее универсальные повреждения мышечных волокон миокарда и скелетных мышц - контрактурные повреждения (нарушение поперечной исчерченности кардиомиоцитов - одно из ранних признаков повреждения миофибрилл).

Принято выделять 3 стадии этих повреждений:

I стадия - усиливается анизотропия на отдельных участках мышечных волокон. II

стадия - А-диски с повышенной анизотропией сближаются, вследствие чего толщина 1-дисков уменьшается. III

стадия - А-диски сливаются в сплошной анизотропный конгломерат.

Наряду с контрактурными повреждениями поляризационная микроскопия

позволяет идентифицировать еще один тип поражения поперечнополосатых мышечных волокон - гиперрелаксацию саркомеров, свойственную в большой мере ишемии миокарда .

Простота поляризационного метода позволяет с минимальными затратами резко повысить достоверность диагностики наличия инфаркта миокарда.

По поводу поляризационного микроскопа. Ситуация состоит в том, что практически из любого микроскопа можно сделать поляризационный. Используются два поляризационных фильтра (покупаемых в фотомагазине) - один помещается над осветителем, а второй помещается между препаратом и объективом.

Создан справочный CD-ROM - «Поляризационная микроскопия». На диске собрано большое количество работ и материалов по применению поляризационной микроскопии.

Кроме того, создан специализированный комплекс - автоматизированное рабочее место судмедэксперта. В состав комплекса входят - микроскоп поляризационный Nikon E200, цифровая камера с 8 млн элементов, адаптеры и программное обеспечение.

Список литературы: 1.

Кактурский Л.В. Поляризационная микроскопия. В кн. Микроскопическая техника. - М.: Медицина, 1996. 2.

Целлариус Ю.Г., Семенова Л.А. Применение поляризационной микроскопии для гистологической диагностики ранних стадий ишемических и метаболических повреждений миокарда // Cor et vasa. - 1977 - Vol. 19. - № 1. - P. 28-33 3.

Непомнящих Л.М. Морфогенез важнейших общепатологических процессов в сердце. - Новосибирск: Наука, 1991. - 352 с. 4.

Целлариус Ю.Г., Семенова Л.А., Непомнящих Л.М. Очаговые повреждения и инфаркт миокарда. Световая, поляризационная и электронная микроскопия. - Новосибирск, 1980.

Еще по теме Колтовой Н.А. НОВЫЙ МЕТОД ПОЛЯРИЗАЦИОННОЙ МИКРОСКОПИИ ДЛЯ ДИАГНОСТИКИ ИНФАРКТА МИОКАРДА:

  1. ВОПРОС 252: Какие недостатки в профессиональной деятельности медицинских работников могут стать поводом для возбуждения уголовного или гражданского дела?
  2. Кирилов В.А., Бахметьев В.И. ИСПОЛЬЗОВАНИЕ МОРФОМЕТРИЧЕСКОГО МЕТОДА ДЛЯ ДИАГНОСТИКИ ВИДА ВНЕШНЕГО ВОЗДЕЙСТВИЯ ПО МОРФОЛОГИЧЕСКИМ ПРИЗНАКАМ РАЗРУШЕНИЯ ДЛИННЫХ ТРУБЧАТЫХ КОСТЕЙ
  3. Мишин Е.С., Подпоринова Е.Э., Праводелова А.О. ОЦЕНКА МЕТОДОВ ДИАГНОСТИКИ ПОВРЕЖДЕНИЙ ПОДЪЯЗЫЧНОЙ КОСТИ, ГОРТАНИ И ТРАХЕИ ПРИ ТУПОЙ ТРАВМЕ ШЕИ

Е. Темнопольная микроскопия.

18. Микроскоп состоит из оптических и механических частей. Что относят к оптическим частям?

А. Тубус, окуляр, конденсор

В. Револьвер, макро- и микровинт, зеркало

С. Револьвер, окуляр

Д. Окуляр, конденсор, объектив

Е. Тубус, окуляр, револьвер

19. При использовании ультрафиолетовых лучей, как источник света, разрешающая способность микроскопа увеличивается. В каких микроскопических приборах используется данный источник света?

А. Темнопольный и люминесцентный

В.Люминесцентный, ультрафиолетовый

С. Световой и электронный

Д.Фазово-контрастный, ультрафиолетовый

Е.Поляризационный, ультрафиолетовый

20. Микроскоп состоит из механических и оптических частей. В каких деталях микроскопа есть диафрагма?

А. Окуляр и объектив

В. Окуляр и конденсор

С. Тубус и окуляр

Д. Объектив и конденсор

Е. Тубус, объектив, окуляр

21. В эксперименте использовались живые объекты, в которых необходимо определить ряд химических компонентов, используя витальное наблюдение. Какой микроскопический метод исследования будет использован?

А. Фазово-контрастная микроскопия

В. Электронная микроскопия

С. Флюоресцентная микроскопия

Е Темнопольная микроскопия.

22. При гистологическом исследовании клетки использовали люминофоры. Какой вид микроскопии использован в данном случае?

А. Световая микроскопия

В. Электронная микроскопия

С. Флюоресцентная микроскопия

Д. Поляризационная микроскопия

Е. Темнопольная микроскопия.

23. Перед исследователем поставлена задача получить пространственное представление о структурах изучаемого объекта. С каким микроскопическим прибором будет работать специалист?

А. Ультрафиолетовая микроскопия,

В. Фазово-контрастная микроскопия,

С. Просвечивающая электронная микроскопия,

Д. Сканирующая электронная микроскопия,

Е. Поляризационная микроскопия

24. В качестве источника света используются ртутно-кварцевые лампы. Какова разрешающая способность микроскопа при таком источнике света?

25. Разрешающая способность микроскопа зависит от длины волны источника света. Какова разрешающая способность светового микроскопа?

26. Перед началом исследования гистологического препарата необходимо равномерно осветить поле зрения. Какие части микроскопа для этого используют?

А. Микро- и макровит

В. Конденсор и зеркало

С. Тубус и тубусодержатель

Д. Тубус и окуляр

27. Перед исследователем поставлена задача изучить ультра-микроскопическое строение плазмолеммы эритроцита. Какой микроскопический прибор будет использован?

А. Световой

В. Фазово-контрастный

С. Электронный

Д. Поляризационный

Е. Ультрафиолетовый

28. При изучении скелетной мышечной ткани необходимо определить изо- и анизотропные структуры ткани. Какой вид микроскопии будет использован?

А. Световой

В. Фазово-контрастный

С. Электронный

Д. Поляризационный

Е. Ультрамикроскопический

29. Разрешающая способность люминесцентного микроскопа зависит от длины волны источника света. Чему она равна?

А. 0,1 мкм С. 0,4 мкм

В. 0,2 мкм Д. 0,1 нм

30. В клинической лаборатории для изучения общего анализа крови используются микроскопические исследования. Какой микроскоп необходим для этого?

А. Световой,

В. Фазово-контрастный,

С. Электронный,

Д. Поляризационный,

Е. Ультрафиолетовый.

31. Для исследования представлен живой объект, обладающий природной люминесценцией. Какой вид микроскопии необходимо использовать при данном исследовании?

А. Световой

В. Фазово-контрастный

С. Электронный

Д. Поляризационный

Е. Ультрафиолетовый

32. В результате биопсии получен материал опухолевых клеток. Необходимо изучить их ультрамикроскопическое строение. Какой вид микроскопии используют при данном исследовании?

А. Световой

В. Фазово-контрастный

С. Электронный

Д. Поляризационный

Е. Ультрафиолетовый

ТЕМА 2: ГИСТОЛОГИЧЕСКАЯ ТЕХНИКА

Основные принципы приготовления препаратов для световой и электронной микроскопии, взятие материала (биопсия, игловая пункционная биопсия, аутопсия). Фиксация, обезвоживание, уплотнение объектов, приготовление срезов на микротомах и ультрамикротомах. Виды мипрепаратов - срез, мазок, отпечаток, пленки, шлиф. Окрашивание и контрастирование препаратов. Понятие о гистологических красителях.

Микроскопическая техника.

Главные этапы цитологического и гистологического анализа:

Выбор объекта исследования

Подготовка его для изучения в микроскопе

Применение методов микроскопирования

Качественный и количественный анализ полученных изображений

Методы, применяемые в гистологической технике:

1. Прижизненные.

2. Посмертные.

I ПРИЖИЗНЕННЫЕ МЕТОДЫ

Целью прижизненных исследований является получение информации о жизнедеятельности клетки: движение, деление, рост, дифференцировка, взаимодействие клеток, продолжительность жизни, разрушение, реактивные изменения под действием различных факторов.

Исследование живых клеток и тканей возможно вне организма (in vitro) или внутри организма (in vivo).

А. Исследование живых клеток и тканей в культуре (in vitro)

Метод культивирования

Различают: а)суспензионные культуры (клетки, взвешенные в питательной среде), б)тканевые, в)органные, г)монослойные.

Метод культивирования ткани вне организма является самым распространенным. Культивировать ткань можно в специальных прозрачных герметически закрытых камерах. В стерильных условиях в камеру помещают каплю питательной среды. Наилучшей питательной средой является плазма крови, к которой добавляют эмбриональный экстракт (вытяжка из тканей зародыша, содержащая большое количество веществ, стимулирующих рост). Туда же помещают кусочек органа или ткани (не более 1 мм3), которые необходимо культивировать.

Выдерживать культивируемую ткань следует при температуре тела организма, ткань которого взята для исследования. Так как питательная среда быстро приходит в негодность (в ней накапливаются продукты распада, выделяемые культивируемой тканью), то каждые 3-5 дней ее нужно менять.

Использование метода культивирования позволило выявить ряд закономерностей дифференцировки, злокачественного перерождения клеток, взаимодействий клеток между собой, а также с вирусами и микробами. Культивирование эмбриональных тканей позволило изучить развитие кости, хряща, кожи и др.

Особую значимость метод культивирования имеет для проведения экспериментальных наблюдений на клетках и тканях человека, в частности для определения пола, злокачественного перерождения, наследственных заболеваний и др.

Недостатки метода:

1. Главным недостатком этого метода является то, что ткань либо орган исследуется в отрыве от организма. Не испытывая нейрогуморального влияния организма, она теряет присущую ей дифференцировку.

2. Необходимость частых пересадок (при длительном культивировании).

3. Одинаковый коэффициент лучепреломления тканей.


Похожая информация.


Оглавление темы "Методы выделения бактерий. Микроскопия. Питательные среды для культивирования бактерий.":









Поляризационная микроскопия позволяет получать изображения неокрашенных анизотропных структур (например, коллагеновых волокон, миофибрилл или клеток микроорганизмов). Принцип метода основан на изучении объекта в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях.

Рис. 11-4. Схема люминесцентного микроскопа .

Интерференционная микроскопия

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии. Метод применяют для получения контрастного трёхмерного изображения неокрашенных объектов. Принцип метода основан на раздвоении светового потока в микроскопе; один луч проходит через объект, другой - мимо него. Оба луча соединяются в окуляре и интерферируют между собой.


Рис. 11-5. Прямая иммунофлюоресценция . Прямой метод предполагает использование помеченных флюоресцирующим красителем AT к интересующему Аг; AT взаимодействуют с Аг в местах их локализации, что и позволяет визуализировать метка.

Люминесцентная микроскопия

Метод люминесцентной микроскопии основан на способности некоторых веществ светиться при воздействии коротковолнового излучения. При этом испускаемые световые волны длиннее волны, вызывающей свечение. Иными словами, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра (рис. 11-4). Например, если индуцирующее излучение синее, то образующееся свечение может быть красным или жёлтым. Эти вещества (флюоресцеин изоцианат, акридиновый оранжевый, родамин и др.) используют как флюоресцирующие красители для наблюдения флюоресцирующих (люминес-цирующих) объектов. В люминесцентном микроскопе свет от источника (ртутная лампа сверхвысокого давления) проходит через два фильтра.


Рис. 11-6. Непрямая иммунофлюоресценция . Непрямой метод предполагает использование двух различных AT. Первые AT реагируют с Аг микроорганизма, вторые AT (связанные с меткой) специфически взаимодействуют с первыми AT, являющимися Аг ко вторым AT. Метод значительно чувствительнее, чем прямая иммунофлюоресценция, так как с каждой молекулой первых AT связывается несколько молекул вторых AT.

Первый (синий) фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Второй (жёлтый) задерживает синий свет, но пропускает жёлтый, красный, зелёный свет, излучаемый флюоресцирующим объектом и воспринимаемый глазом. Обычно исследуемые микроорганизмы окрашивают непосредственно либо с помощью AT или лектинов, помеченных флюоро-хромами. Препараты взаимодействуют с Аг или другими связывающими лиганд структурами объекта. Люминесцентная микроскопия нашла широкое применение для визуализации результатов иммунохимических реакций, основанных на специфическом взаимодействии меченных флюоресцирующими красителями AT с Аг изучаемого объекта. Варианты иммунофлюоресцентных реакций представлены на рис. 11-5 и 11-6.

Поляризационная микроскопия

Поляризационная микроскопия позволяет изучать объекты исследования в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях, т. е. в поляризованном свете. Для этого используют пленчатые поляроиды или призмы Николя, которые помещают в микроскопе между источником света и препаратом. Поляризация меняется при прохождении лучей света через различные структурные компоненты клеток и тканей, свойства которых неоднородны, или при отражении от них.

В оптически изотропных структурах скорость распространения поляризованного света не зависит от плоскости поляризации, в анизотропных структурах она меняется в зависимости от направления света по продольной или поперечной оси объекта. Если показатель преломления света вдоль структуры больше, чем в поперечном направлении, возникает положительное двойное лучепреломление, при обратных взаимоотношениях -- отрицательное двойное лучепреломление. Многие биологические объекты имеют строгую молекулярную ориентацию, являются анизотропными и вызывают положительное двойное преломление света .

Темнопольная микроскопия

При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив. В объектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).

Для микроскопии в темном поле используют специальный конденсор (параболоид-конденсор или кардиоид-конденсор) и обычные объективы. Так как апертура иммерсионного объектива больше, чем апертура конденсора темного поля, внутрь иммерсионного объектива вставляется специальная трубчатая диафрагма, снижающая его апертуру.

ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ

ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ

- см. в ст. Микроскопия.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ" в других словарях:

    ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ - микроскопия, основанная на способности разных компонентов клеток и тканей преломлять поляризованные лучи. В поляризационном микроскопе можно исследовать объекты, которым свойственно двойное лучепреломление … Словарь ботанических терминов

    Совокупность методов (и обеспечивающих эти методы устройств), предназначенных для наблюдения и изучения под микроскопом объектов, изменяющих в каком либо отношении поляризацию света (См. Поляризация света), который проходит через объекты… …

    ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ - см. Микроскоп, Микроскопическая техника … Ветеринарный энциклопедический словарь

    Общее название методов наблюдения в микроскоп неразличимых человеческим глазом объектов. Подробнее см. в ст. (см. МИКРОСКОП). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    М. при освещении объекта поляризованным светом; применяется для обнаружения и изучения объектов или их структур, обладающих свойствами двойного лучепреломления … Большой медицинский словарь

    Термин сканирующая зондовая микроскопия Термин на английском scanning probe microscopy Синонимы Аббревиатуры СЗМ, SPM Связанные термины "умные" материалы, атомно силовая микроскопия, манипуляция атомами, кантилевер, микроскоп,… … Энциклопедический словарь нанотехнологий

    Способы изучения различных объектов с помощью микроскопа. В биологии и медицине эти методы позволяют изучать строение микроскопических объектов, размеры которых лежат за пределами разрешающей способности глаза человека. Основу М.м.и. составляет… … Медицинская энциклопедия

    - (от греч. ἱστός ткань и греч. λόγος знание, слово, наука) раздел биологии, изучающий строение тканей живых организмов. Обычно это делается рассечением тканей на тонкие слои и с помощью микротома. В отличие от анатомии,… … Википедия

    Микроскоп (от микро... и греч. skopéo смотрю), оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз представляет собой естественную оптическую… … Большая советская энциклопедия

    I Микроскоп (от Микро... и греч. skopéo смотрю) оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз представляет собой естественную… … Большая советская энциклопедия

Книги

  • Введение в количественную цитохимию , . Сводка по количественным методам исследования клетки и применяемой для этого оптической аппаратуре. Основное внимание в книге уделено наиболее надежным методам количественного определения…