Гомеозисные гены - (регуляторные эмбриональные гены) определяют процессы роста и дифференцировки организма у растений и животных; мутации в них приводят к превращению одних органов в другие.(значение?)

Гомеозисные гены животных содержат участок (гомеобокс) почти одинаковый у всех видов (180 п.н. = 60 АК). Их называют Hox («хокс»)-гены (гомеобокс-содержащие гены).

Гомеозисные гены располагаются на одной или нескольких хромосомах, тесными группами (от 4-х (гребневики) до 48 (млекопитающие)), внутри которых сохраняется строгий порядок: «головные» гены впереди, «хвостовые» -сзади. Их функция состоит во «включении» или «выключении» других генов. (значение – и далее подчеркнуто) Линейный порядок генов внутри кластера соответствует времени или месту работы гена в ходе эмбрионального развития.

Хокс-гены найдены у всех исследованных организмов (в геномах гидр, пиявок, нематод, рыб, млекопитающих, амфибий, губок). Это древние гены, появившиеся >1000 млн лет назад. Усложнение строения организмов сопровождалось дупликацией и дивергенцией их функции.

Несмотря на разнообразие структуры цветка, его развитие контролируется консервативными гомеозисными генами.

Фолиарная (классическая) теория морфогенеза цветка И.В.Гете:

Презентации: Цветок – видоизмененный побег с укороченными междоузлиями. Органы цветка – преобразованные листья. Развил в трудах: (1790г.) «Опыт о метаморфозе растений»; (1810г.) «Учение о цветке».

Согласно классической, или фолиарной (от лат. folium – лист) концепции, высказанной еще И.В. Гёте (1790), поддержанной А.П. Декандоллем (1813) и другими исследователями, все элементы цветка представляют собой метаморфизированные листья. Поэтому цветок определяли как видоизмененный побег с ограниченным ростом, приспособленный для осуществления всех процессов, обеспечивающих семенное размножение растений.

Фенотип тройного мутанта – убедительное свидетельство в пользу фолиарной теории морфогенеза цветка Гете.

АВС-модель развития цветка:

АВС –модель – современная парадигма генетики развития. Согласно этой модели дифференциация органов цветка определяется работой 3 классов регулирующих генов: гены класса А отвечают за развитие чашелистиков, в сумме с генами класса В они определяют формирование лепестков, совместная работа генов класса В и С ведет к развитию тычинок, а гены С сами по себе контролируют появление пестика в центре цветка. Эти гены кодируют факторы транскрипции, которые вызывают специализацию тканей растения в процессе развития.

Впоследствии были добавлены еще два класса генов: гены класса D, которые отвечают за развитие завязи в цветке, мутации по этому гену приводят к развитию плодолистиков вместо завязи, а сверхэкспрессия этих генов - к формированию завязей вместо чашелистиков и лепестков; и гены класса E, которые контролируют идентичность трех внутренних кругов.

При нарушении работы этих генов одни части цветка превращаются в другие (тычинки в лепестки или лепестки в чашелистики). Модельным видом в этих исследованиях был арабидопсис, у которого был обнаружен ряд гомеозисных мутаций, при совместном действии некоторых из которых все части цветка превращались в листья.

С начала 1900-х c общество биологов использовало маленькую дрозофилу (Drosophila ) для проведения тысячи экспериментов. Студенты на уроках биологии работают с дрозофилами, скрещивая различные разновидности, чтобы выработать модели наследственности. На сегодняшний день существует тысячи публикаций, посвященныe дрозофилам, и для светских биологов это то существо, которое отлично подходит для исследования эволюционной генетики. Это насекомое используют потому, что оно генетически относительно простое. Дрозофилы имеют 4 пары легко наблюдаемых хромосом, содержащих всего лишь 13 000 генов (ДНК). В марте 2000 года был определен весь геном дрозофилы (совокупность генов ).

Излучения как, например, рентгеновские лучи, а различные частоты и длина рентгеновских лучей облучали насекомых в лаборатории, в результате чего производились, например, аномалии крыльев, известные как «бескрылые», «рудиментарные», «опущенные», т.д. С 1910 генетики зафиксировали более 3000 в этих существах, но пока научные журналы не зафиксировали ни одного случая, чтобы дрозофила эволюционировала в что-либо еще, в независимости от того, как сильно они мутировали.

Действительно, покойный эволюционист Пьер Грассе утверждал: «Дрозофила (Drosophila melanogaster ), любимое насекомое генетиков, чьи географические, биотипные, городские и сельские генотипы изучены сейчас вдоль и поперек, не изменилась с давних времен».

Гены-хокс (специфическая последовательность ДНК): никакой помощи макроэволюции

Когда эмбрион начинает развиваться, план его тела раскрывается под руководством контрольных генов, включающих в сябя группу генов, которая называется гомеобоксом или хокс генами. Ген bithorax является частью хокс-генов, который после мутации может образовать дрозофилу с четырьмя крыльями (обычно у них два крыла). Говорят, что «в большинстве случаев экспериментально спровоцированные мутации в гомеотических генах производят коренные изменения в [основном дизайне тела]», и один некреационист заявил:

«Контролирующие гены, такие как гомеотические гены, могут служить мишенью для мутаций, которые возможно изменили бы фенотипы, но нужно помнить, что чем более центральнее производятся изменения в сложной системе, тем тяжелее периферийные последствия. Гомеотические изменения, вызванные в генах дрозофил, приводят только к уродству, а большинство экспериментов не ожидают увидеть возникновение пчелы от их (дрозофил) конструктивных элементов».

Десятки лет тому назад пример «хорошей мутации» был приведен биологом Денверского университета во время дискуссии с автором. Мутация вовлекала ген bithorax , который порождает атипичную дрозофилу с четырьмя крыльями. К сожалению, эволюционисты не сообщили слушателям, что умение дрозофилы летать было сильно повреждено. Что бы сделал естественный отбор с такими мутировавшими существами?

Ссылки и примечания

- … Википедия

- … Википедия

Гомеозисные гены детерминируют процессы роста и дифференцировки. Гомеозисные гены кодируют транскрипционные факторы, контролирующие программы формирования органов и тканей. Мутации в гомеозисных генах могут вызвать превращение одной части… … Википедия

- (англ. homeobox) последовательность ДНК, обнаруженная в генах, вовлеченных в регуляцию развития у животных, грибов и растений. Гены, которые содержат гомеобокс, образуют отдельное семейство. Наиболее изученными и наиболее… … Википедия

Кембрийским взрывом называют внезапное (в геологическом смысле) появление в раннекембрийских (ок. 540 млн лет) отложениях окаменелостей представителей многих подразделений животного царства, на фоне отсутствия их окаменелостей или окаменелостей… … Википедия

Млн. лет Период Эра … Википедия

- (англ. evolutionary developmental biology, evo devo) область биологии, которая, сравнивая онтогенез различных организмов, устанавливает родственные связи между ними и вскрывает развитие онтогенетических процессов в ходе эволюции. Она… … Википедия

Факторы транскрипции (транскрипционные факторы) белки, контролирующие перенос информации с молекулы ДНК в структуру мРНК (транскрипцию) путем связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию… … Википедия

Комплекс белка HOXB7 с ДНК. Обозначения … Википедия

- (транскрипционные факторы) белки, контролирующие процесс синтеза мРНК на матрице ДНК (транскрипцию) путём связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию либо самостоятельно, либо в комплексе… … Википедия

Книги

  • Эволюция онтогенеза , Н. Д. Озернюк , Эволюция онтогенеза рассматривается как основная проблема эволюционной биологии развития, поскольку эволюционные преобразования организмов обусловлены изменениями их онтогенеза. Интеграция… Категория:

Hox-гены определяют схему тела животных. Очень важно, чтобы они экспрессировались в правильном количестве, в правильном месте и в правильный момент эмбрионального развития — иначе вся схема тела нарушится. Оказывается, для этих генов существует особый вид регуляции трансляции, позволяющий отделить один вид белков от всех прочих. На их мРНК есть IRES-подобные участки, которые могут запускать трансляцию. При этом кэп-зависимая трансляция для этих белков выключается.

Нох-гены - важный объект для изучения

Инициация трансляции бывает разная

Итак, генетический материал клетки закодирован в ДНК. С ДНК считывается определенный вид РНК, а с РНК - белок. Такой вид РНК называется матричной РНК, у он имеет определенное строение . Это линейная молекула, соответственно, у нее есть 2 конца, которые называются 5′- и 3′-концы. На 5′-конце есть особая структура - . Она необходима для начала синтеза белка на матрице РНК, так как привлекает фабрику белка - .

Так происходит у нас, но не у вирусов. Точнее, не у всех вирусов. У некоторых есть другие структуры в РНК, которые инициируют синтез белка - . Так вот оказывается, что в РНК млекопитающих иногда обнаруживают структуры, похожие на IRES вирусов. При этом кэп тоже присутствует. Получается РНК с двумя сигналами привлечения рибосомы. Это интересное явление часто имеет важный биологический смысл. Например, при стрессе кэп-зависимая инициация трансляции подавлена . Но некоторые белки должны синтезироваться и при стрессе. Вот тогда клетка и использует IRES. А как работает такая смешанная система в нормальных, не шоковых условиях - большая загадка. Клеточные IRES не похожи друг на друга , их роль в развитии организма не ясна. Найти ответ на этот вопрос попытались ученые, изучающие регуляцию Нох-генов .

У мРНК Hox-генов есть IRES вирусов?

Интересно, что в мРНК некоторых Нох-генов предполагают наличие IRES. Причем именно IRES привлекает рибосому и запускает синтез белков. Уже приведены первые экспериментальные доказательства в пользу этой гипотезы . Также ученые открыли еще один специальный регуляторный элемент - translation inhibitory element (TIE), который блокирует кэп-зависимый синтез белка . Появление блокирующего элемента объясняет, почему при наличии и кэп-структуры, и IRES работает только IRES.

Почему IRES лучше, чем кэп?

Важность того участка РНК, где находится предполагаемый IRES, в данном случае подтвердили экспериментально. Показали, что если подвергнуть мутации один из Нох-генов мышей, удалив IRES, то мышь будет развиваться ненормально (см. рисунок 1).

Рисунок 1. Патологии в развитии скелета мышей с делециями в 5′-нетранслируемой области в одном из Hox-генов - Ноха9. Ученые вывели линию мышей, у которых поврежден IRES в одном из Нох-генов. Такие мыши развиваются ненормально. У них нарушается строение скелета: например, не хватает ребер (на недостающие ребра указывают черные стрелочки). Также наблюдаются и другие патологии. Картинка из .

Предполагают, что для очень важных белков, которые закодированы в Нох-генах, IRES лучше, чем кэп. Это может быть связано с тем, что кэп-структура у всех мРНК одинаковая. А IRES разные. То есть к белкам, которые определяют строение тела, нужен индивидуальный подход. Даже начало синтеза является важным этапом регуляции и должно быть уникальным для каждого такого белка.

Словарь терминов:

  • IRES (Internal Ribosome Entry Site) - участок внутренней посадки рибосомы.
  • Hox-гены - семейство генов, которые кодируют транскрипционные факторы, регулирующие формирование органов и тканей в ходе развития организма.
  • Делеция - удаление фрагмента молекулы ДНК.
  • Кэп - 7-метилгуанозин - структура на 5′-конце матричных РНК.
  • Рибосома - комплекс, состоящий из РНК и белков и служащий для синтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).
  • Трансляция - синтез белка на матрице РНК.
  • Хромосома - структура, состоящая из ДНК и белков, находящаяся в ядре эукариотической клетки. Предназначена для хранения, реализации и передачи генетической информации.
  • Эукариоты - живые организмы, клетки которых содержат ядра.

Литература

  1. Alexander, T., Nolte, C. & Krumlauf, R. (2009). Hox genes and segmentation of the hindbrain and axial skeleton . Annu. Rev. Cell Dev. Biol. 25 , 431–456 ;
  2. Гены, от которых вырастают крылья. И ноги. И всё остальное ;
  3. Википедия : «