В коре головного мозга различают зоны - поля Бродмана

1-я зона - двигательная - представлена центральной извилиной и лобной зоной впереди нее - 4, 6, 8, 9 поля Бродмана. При ее раздражении - различные двигательные реакции; при ее разрушении - нарушения двигательных функций: адинамия, парез, паралич (соответственно - ослабление, резкое снижение, исчезновение).

В 50-е годы ХХ в.установили, что в двигательной зоне различные группы мышц представлены неодинаково. Мышцы нижней конечности - в верхнем отделе 1-ой зоны. Мышцы верхней конечности и головы - в нижнем отделе 1-й зоны. Наибольшую площадь занимают проекция мимической мускулатуры, мышц языка и мелких мышц кисти руки.

2-я зона - чувствительная - участки коры головного мозга кзади от центральной борозды (1, 2, 3, 4, 5, 7 поля Бродмана). При раздражении этой зоны - возникают ощущения, при ее разрушении - выпадение кожной, проприо-, интерочувствительности. Гипостезия - снижение чувствительности, анестезия - выпадение чувствительности, парестезия - необычные ощущения (мурашки). Верхние отделы зоны - представлена кожа нижних конечностей, половых органов. В нижних отделах - кожа верхних конечностей, головы, рта.

1-я и 2-я зоны тесно связаны друг с другом в функциональном отношении. В двигательной зоне много афферентных нейронов, получающих импульсы от проприорецепторов - это мотосенсорные зоны. В чувствительной зоне много двигательных элементов - это сенсомоторные зоны - отвечают за возникновение болевых ощущений.

3-я зона - зрительная зона - затылочная область коры головного мозга (17, 18, 19 поля Бродмана). При разрушении 17 поля - выпадение зрительных ощущений (корковая слепота).

Различные участки сетчатки неодинаково проецируются в 17 поле Бродмана и имеют различное расположение при точечном разрушении 17 поля выпадает видение окружающей среды, которое проецируется на соответствующие участки сетчатки глаза. При поражении 18 поля Бродмана страдают функции, связанные с распознаванием зрительного образа и нарушается восприятие письма. При поражении 19 поля Бродмана - возникают различные зрительные галлюцинации, страдает зрительная память и другие зрительные функции.

4-я - зона слуховая - височная область коры головного мозга (22, 41, 42 поля Бродмана). При поражении 42 поля - нарушается функция распознавания звуков. При разрушении 22 поля - возникают слуховые галлюцинации, нарушение слуховых ориентировочных реакций, музыкальная глухота. При разрушении 41 поля - корковая глухота.

5-я зона - обонятельная - располагается в грушевидной извилине (11 поле Бродмана).

6-я зона - вкусовая - 43 поле Бродмана.



7-я зона - речедвигательная зона (по Джексону - центр речи) - у большинства людей (праворуких) располагается в левом полушарии.

Эта зона состоит из 3-х отделов.

Речедвигательный центр Брока - расположен в нижней части лобных извилин - это двигательный центр мышц языка. При поражении этой области - моторная афазия.

Сенсорный центр Вернике - расположен в височной зоне - связан с восприятием устной речи. При поражении возникает сенсорная афазия - человек не воспринимает устную речь, страдает произношение, та как нарушается восприятие собственной речи.

Центр восприятия письменной речи - располагается в зрительной зоне коры головного мозга - 18 поле Бродмана аналогичные центры, но менее развитые, есть и в правом полушарии, степень их развития зависит от кровоснабжения. Если у левши повреждено правое полушарие, функция речи страдает в меньшей степени. Если у детей повреждается левой полушарие, то его функцию на себя берет правое. У взрослых способность правого полушария воспроизводить речевые функции - утрачивается.

  • Глава 2. Анализаторы
  • 2.1. Зрительный анализатор
  • 2.1.1. Структурно-функциональная характеристика
  • 2.1.2. Механизмы, обеспечивающие ясное видение в различных условиях
  • 2.1.3. Цветовое зрение, зрительные контрасты и последовательные образы
  • 2.2. Слуховой анализатор
  • 2.2.1. Структурно-функциональная характеристика
  • 2.3. Вестибулярный и двигательный (кинестетический) анализаторы
  • 2.3.1. Вестибулярный анализатор
  • 2.3.2. Двигательный (кинестетический) анализатор
  • 2.4. Внутренние (висцеральные) анализаторы
  • 2.5. Кожные анализаторы
  • 2.5.1. Температурный анализатор
  • 2.5.2. Тактильный анализатор
  • 2.6. Вкусовой и обонятельный анализаторы
  • 2.6.1. Вкусовой анализатор
  • 2.6.2. Обонятельный анализатор
  • 2.7. Болевой анализатор
  • 2.7.1. Структурно-функциональная характеристика
  • 2.7.2. Виды боли и методы ее исследования
  • 1 _ Легкие; 2 – сердце; 3 – тонкая кишка; 4 – мочевой пузырь;
  • 2.7.3. Обезболивающая (антиноцицептивная) система
  • Глава 3. Системный механизм восприятия
  • ЧастьIii. Высшая нервная деятельность Глава 4. История. Методы исследования
  • 4.1. Развитие концепции рефлекса. Нервизм и нервный центр
  • 4.2. Развитие представлений о внд
  • 4.3. Методы исследования внд
  • Глава 5. Формы поведения организма и память
  • 5.1. Врожденные формы деятельности организма
  • 5.2. Приобретенные формы поведения (научение)
  • 5.2.1. Характеристика условных рефлексов
  • Отличия условных рефлексов от безусловных рефлексов
  • 5.2.2. Классификация условных рефлексов
  • 5.2.3. Пластичность нервной ткани
  • 5.2.4. Стадии и механизм образования условных рефлексов
  • 5.2.5. Торможение условных рефлексов
  • 5.2.6. Формы научения
  • 5.3. Память*
  • 5.3.1. Общая характеристика
  • 5.3.2. Кратковременная и промежуточная память
  • 5.3.3. Долговременная память
  • 5.3.4. Роль отдельных структур мозга в формировании памяти
  • Глава 6. Типы внд и темперамент в структуре индивидуальности
  • 6.1. Основные типы внд животных и человека
  • 6.2. Типологические варианты личности детей
  • 6.3. Основные положения по формированию типа вид и темперамента индивидуальности
  • 6.4. Влияние генотипа и среды на развитие нейрофизиологических процессов в онтогенезе
  • 6.5. Роль генома в пластических изменениях нервной ткани
  • 6.6. Роль генотипа и среды в формировании личности
  • Глава 7. Потребности, мотивации, эмоции
  • 7.1. Потребности
  • 7.2. Мотивации
  • 7.3. Эмоции (чувства)
  • Глава 8. Психическая деятельность
  • 8.1. Виды психической деятельности
  • 8.2. Электрофизиологические корреляты психической деятельности
  • 8.2.1. Психическая деятельность и электроэнцефалограмма
  • 8.2.2. Психическая деятельность и вызванные потенциалы
  • 8.3. Особенности психической деятельности человека
  • 8.3.1. Деятельность и мышление человека
  • 8.3.2. Вторая сигнальная система
  • 8.3.3. Развитие речи в онтогенезе
  • 8.3.4. Латерализация функций
  • 8.3.5. Социально-детерминированное сознание*
  • 8.3.6. Осознаваемая и подсознательная деятельность мозга
  • Глава 9. Функциональное состояние организма
  • 9.1. Понятия и нейроанатомия функционального состояния организма
  • 9.2. Бодрствование и сон. Сновидения
  • 9.2.1. Сон и сновидения, оценка глубины сна, значение сна
  • 9.2.2. Механизмы бодрствования и сна
  • 9.3. Гипноз
  • Глава 10. Организация поведенческих реакций
  • 10.1. Уровни интегративной деятельности мозга
  • 10.2. Концептуальная рефлекторная дуга
  • 10.3. Функциональная система поведенческого акта
  • 10.4. Основные структуры мозга, обеспечивающие формирование поведенческого акта
  • 10.5. Активность нейронов и поведение
  • 10.6. Механизмы управления движением
  • Приложение. Практикум по физиологии сенсорных систем и высшей нервной деятельности
  • 1. Физиология сенсорных систем*
  • Работа 1.1. Определение поля зрения
  • Границы полей зрения
  • Работа 1.2. Определение остроты зрения
  • Работа 1.3. Аккомодация глаза
  • Работа 1.4. Слепое пятно (опыт Мариотта)
  • Работа 1.5. Исследование цветового зрения
  • Работа 1.6. Определение критической частоты слияния мельканий (кчсм)
  • Работа 1.7. Стереоскопическое зрение. Диспарантность
  • Работа 1.8. Исследование слуховой чувствительности к чистым тонам у человека (тональная аудиометрия)
  • Работа 1.9. Исследование костной и воздушной проводимости звука
  • Работа 1.10. Бинауральный слух
  • Работа 1.11. Эстезиометрия кожи
  • Показатели пространственной тактильной чувствительности кожи
  • Работа 1.12. Определение порогов вкусовой чувствительности (густометрия)
  • Показатели порогов вкусовой чувствительности
  • Работа 1.13. Функциональная мобильность сосочков языка до и после приема пищи
  • Показатели функциональной мобильности вкусовых сосочков языка
  • Работа 1.14. Термоэстезиометрия кожи
  • Определение плотности расположения терморецепторов
  • Изучение функциональной мобильности холодовых рецепторов кожи
  • Показатели функциональной мобильности холодовых рецепторов кожи
  • Работа 1.15. Определение чувствительности обонятельного анализатора (ольфактометрия)
  • Пороги обоняния различных пахучих веществ
  • Работа 1.16. Изучение состояния вестибулярного анализатора с помощью функциональных проб у человека
  • Работа 1.17. Определение порогов различения
  • Пороги различения ощущения массы
  • 2. Высшая нервная деятельность
  • Работа 2.1. Выработка мигательного условного рефлекса на звонок у человека
  • Работа 2.2. Образование условного зрачкового рефлекса на звонок и на слово «звонок» у человека
  • Работа 2.3. Исследование биоэлектрической активности коры большого мозга – электроэнцефалография
  • Работа 2.4. Определение объема кратковременной слуховой памяти у человека
  • Набор цифр для исследования кратковременной памяти
  • Работа 2.5. Связь реактивностис личностными чертами – экстраверсией, интроверсией и нейротизмом
  • Работа 2.6. Роль словесных раздражителей в возникновении эмоций
  • Работа 2.7. Исследование изменений ээг и вегетативных показателей при эмоциональном напряжении человека
  • Изменения ээг и вегетативных показателей при эмоциональном напряжении человека
  • Работа 2.8. Изменение параметров вызванного потенциала (вп) на вспышку света
  • Влияние произвольного внимания на вызванные потенциалы
  • Работа 2.9. Отражение семантики зрительного образа в структуре вызванных потенциалов
  • Параметры вп при семантической нагрузке
  • Работа 2.10. Влияние цели на результат деятельности
  • Зависимость результата деятельности от поставленной цели
  • Работа 2.11. Влияние обстановочной афферентации на результат деятельности
  • Зависимость результата деятельности от обстановочной афферентации
  • Работа 2.12. Определение устойчивости и переключаемости произвольного внимания
  • Работа 2.13. Оценка трудоспособности человека при выполнении работы, требующей внимания
  • Корректурная таблица
  • Показатели функционального состояния испытуемого
  • Результаты трудовой деятельности испытуемого
  • Работа 2.14. Значение памяти и доминирующей мотивации в целенаправленной деятельности
  • Результаты суммирования цифр
  • Работа 2.15. Влияние умственного труда на функциональные показатели сердечно-сосудистой системы
  • Работа 2.16. Роль обратной афферентации в оптимизации режима деятельности оператора у компьютера
  • Работа 2.17. Автоматический анализ показателей сердечно-сосудистой системы на разных стадиях образования двигательного навыка
  • Работа 2.18. Анализ скорости обучения оператора в детерминированных средах
  • Работа 2.19. Применение компьютера для изучения кратковременной памяти
  • Рекомендуемая литература
  • Содержание
  • 2. Высшая нервная деятельность 167
  • Локализация функций в коре большого мозга

    Общая характеристика. В определенных участках коры большого мозга сосредоточены преимущественно нейроны, воспринимающие один вид раздражителя: затылочная область – свет, височная доля – звук и т. д. Однако после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются. Согласно теории И. П. Павлова в коре большого мозга имеется «ядро» анализатора (корковый конец) и «рассеянные» нейроны по всей коре. Современная концепция локализации функций базируется на принципе многофункциональности (но не равноценности) корковых полей. Свойство мультифункциональности позволяет той или иной корковой структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей, функцию (О.С. Адрианов). Степень мультифункциональности различных корковых структур неодинакова. В полях ассоциативной коры она выше. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытия афферентных возбуждений, особенно на таламическом и корковом уровнях, модулирующее влияние различных структур, например неспецифических ядер таламуса, базальных ганглиев на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения. С помощью микроэлектродной техники удалось зарегистрировать в различных областях коры большого мозга активность специфических нейронов, отвечающих на стимулы только одного вида раздражителя (только на свет, только на звук и т. п.), т. е. имеется множественное представительство функций в коре большого мозга.

    В настоящее время принято подразделение коры на сенсорные, двигательные и ассоциативные (неспецифические) зоны (области).

    Сенсорные зоны коры. Сенсорная информация поступает в проекционную кору, корковые отделы анализаторов (И.П. Павлов). Эти зоны расположены преимущественно в теменной, височной и затылочной долях. Восходящие пути в сенсорную кору поступают в основном от релейных сенсорных ядер таламуса.

    Первичные сенсорные зоны – это зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма (ядра анализаторов по И. П. Павлову). Они состоят из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

    Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни – на оттенки цвета, другие – на направление движения, третьи – на характер линий (край, полоса, наклон линии) и т.п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных, или модулирующих) систем.

    Вторичные сенсорные зоны расположены вокруг первичных сенсорных зон, менее локализованы, их нейроны отвечают на действие нескольких раздражителей, т.е. они полимодальны.

    Локализация сенсорных зон. Важнейшей сенсорной областью является теменная доля постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий. Эту зону обозначают как соматосенсорную область I . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата – от мышечных, суставных, сухожильных рецепторов (рис. 2).

    Рис. 2. Схема чувствительного и двигательного гомункулусов

    (по У. Пенфильду, Т. Расмуссену). Разрез полушарий во фронтальной плоскости:

    а – проекция общей чувствительности в коре постцентральной извилины; б – проекция двигательной системы в коре предцентральной извилины

    Кроме соматосенсорной области I выделяют соматосенсорную область II меньших размеров, расположенную на границе пересечения центральной борозды с верхним краем височной доли, в глубине латеральной борозды. Точность локализации частей тела здесь выражена в меньшей степени. Хорошо изученной первичной проекционной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах.

    В затылочной доле расположена первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеется топическое представительство рецепторов сетчатки. Каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет сравнительно большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные и слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности, возникают более сложные зрительные образы и их опознание.

    Во вторичных зонах ведущими являются 2-й и 3-й слои нейронов, для которых основная часть информации об окружающей среде и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору, после чего инициируется (в случае необходимости) поведенческая реакция с обязательным участием двигательной коры.

    Двигательные зоны коры. Выделяют первичную и вторичную моторные зоны.

    В первичной моторной зоне (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела (см. рис. 2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Раздражение первичной моторной коры вызывает сокращение мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям конечностями, особенно пальцами рук.

    Вторичная моторная зона (поле 6) расположена как на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора), так и на медиальной поверхности, соответствующей коре верхней лобной извилины (дополнительная моторная область). Вторичная двигательная кора в функциональном плане имеет главенствующее значение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, связанные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть импульсации от базальных ганглиев и мозжечка, участвует в перекодировании информации о плане сложных движений.

    Раздражение коры поля 6 вызывает сложные координированные движения, например поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной речи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающие речевой праксис, а также музыкальный моторный центр (поле 45), обеспечивающий тональность речи, способность петь. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, от базальных ганглиев и мозжечка. Основным эфферентным выходом двигательной коры на стволовые и спинальные моторные центры являются пирамидные клетки V слоя. Основные доли коры большого мозга представлены на рис. 3.

    Рис. 3. Четыре основные доли коры головного мозга (лобная, височная, теменная и затылочная); вид сбоку. В них расположены первичная двигательная и сенсорная области, двигательные и сенсорные области более высокого порядка (второго, третьего и т.д.) и ассоциативная (неспецифичная) кора

    Ассоциативные области коры (неспецифическая, межсенсорная, межанализаторная кора) включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций, поэтому им нельзя приписывать преимущественно сенсорные или двигательные функции, нейроны этих зон обладают большими способностями к обучению. Границы этих областей обозначены недостаточно четко. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и у человека. У человека она составляет около 50% всей коры или 70 % неокортекса. Термин «ассоциативная кора» возник в связи с существовавшим представлением о том, что эти зоны за счет проходящих через них кортико-кортикальных соединений связывают двигательные зоны и одновременно служат субстратом высших психических функций. Основными ассоциативными зонами коры являются: теменно-височно-затылочная, префронтальная кора лобных долей и лимбическая ассоциативная зона.

    Нейроны ассоциативной коры являются полисенсорными (полимодальными): они отвечают, как правило, не на один (как нейроны первичных сенсорных зон), а на несколько раздражителей, т. е. один и тот же нейрон может возбуждаться при раздражении слуховых, зрительных, кожных и др. рецепторов. Полисенсорность нейронов ассоциативной коры создается кортико-кортикальными связями с разными проекционными зонами, связями с ассоциативными ядрами таламуса. В результате этого ассоциативная кора представляет собой своеобразный коллектор различных сенсорных возбуждений и участвует в интеграции сенсорной информации и в обеспечении взаимодействия сенсорных и моторных областей коры.

    Ассоциативные области занимают 2-й и 3-й клеточные слои ассоциативной коры, на которых происходит встреча мощных одномодальных, разномодальных и неспецифических афферентных потоков. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации, т. е. для оперирования значениями слов и использования их для отвлеченного мышления, для синтетического характера восприятия.

    С 1949 г. широкую известность получила гипотеза Д. Хебба, постулирующая в качестве условия синаптической модификации совпадение пресинаптической активности с разрядом пост-синаптического нейрона, поскольку не всякая активность синапса ведет к возбуждению постсинаптического нейрона. На основании гипотезы Д. Хебба можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д.Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль.

    Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга, которую часто называют лимбико-ретикулярный комплекс, или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифические системы мозга с активирующими и инактивируюшими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, голубое пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

    В настоящее время по таламокортикальным проекциям предлагают выделять три основные ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

    Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, в моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др. К гностическим функциям относится оценка пространственных отношений, например, взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса, обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»). Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкорковой извилине левого полушария, он обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

    Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса, других подкорковых ядер. Основная роль лобной ассоциативной коры сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (П. К.Анохин). Префронтальная область играет главную роль в выработке стратегии поведения. Нарушение этой функции особенно заметно, когда необходимо быстро изменить действие и когда между постановкой задачи и началом ее решения проходит некоторое время, т.е. успевают накопиться раздражители, требующие правильного включения в целостную поведенческую реакцию.

    Таламовисочная система. Некоторые ассоциативные центры, например, стереогнозиса, праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины левого полушария. Этот центр обеспечивает речевой гнозис: распознание и хранение устной речи как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения, обеспечивающий распознание и хранение образов.

    Существенную роль в формировании поведенческих актов играет биологическое качество безусловной реакции, а именно ее значение для сохранения жизни. В процессе эволюции это значение было закреплено в двух противоположных эмоциональных состояниях – положительном и отрицательном, которые у человека составляют основу его субъективных переживаний -- удовольствия и неудовольствия, радости и печали. Во всех случаях целенаправленное поведение строится в соответствии с эмоциональным состоянием, возникшим при действии раздражителя. Во время поведенческих реакций отрицательного характера напряжение вегетативных компонентов, особенно сердечно-сосудистой системы, в отдельных случаях, особенно в непрерывных так называемых конфликтных ситуациях, может достигать большой силы, что вызывает нарушение их регуляторных механизмов (вегетативные неврозы).

    В этой части книги рассмотрены основные общие вопросы аналитико-синтетической деятельности мозга, которые позволят перейти в последующих главах к изложению частных вопросов физиологии сенсорных систем и высшей нервной деятельности.

    "

    Лекция 13

    ЛОКАЛИЗАЦИЯ ФУНКЦИЙ В КОРЕ ПОЛУШАРИЙ БОЛЬШОГО МОЗГА

      Общие положения

      Ядра первой сигнальной системы

      Ядра второй сигнальной системы

    Вопрос 1

    Локализация функций в коре больших полушарий

    Нервные клетки коры больших полушарий специализированы для восприятия различных видов раздражений и передачи импульсов на другие поля и ядра ЦНС. И.П. Павлов рассматривал кору полушарий большого мозга как совокупность корковых концов анализаторов. Различные анали­заторы тесно взаимосвязаны, поэтому в коре большого мозга осуществляются анализ и синтез, выработка ответных реакций, регулирующих любые вилы деятельности человека.

    На основе строения и функций различных клеточных слоев вся кора разделена на 9 областей и 52 поля.

    Области коры больших полушарий:

    Предцентральная,

    Постцентральная,

    Островковая,

    Височная,

    Затылочная,

    Верхняя теменная,

    Нижняя теменная,

    Лимбическая.

    В коре большого мозга различают ядра и рассеянные вокруг них элементы.

    Яд­ро – это место концентрации нервных клеток коры, составляющих точную проекцию всех элементов определенного периферического рецептора.

    В ядрах коры происходят высший анализ, синтез и интеграция функций. Таким образом, кору полушарий большого мозга схематично можно представить как совокупность ядер различ­ных анализаторов, между которыми находятся рассеянные эле­менты, относящиеся к разным (смежным) анализаторам.

    Рассмотрим положение некоторых корковых концов различных анализаторов (ядер) по отношению к извилинам и долям полушарий большого мозга у человека (в соответствии с цитоархитектоническими картами).

    В 1909 году немецкий невролог Корбиниан Бродман опубликовал карты цитоархитектонических полей коры больших полушарий головного мозга. Бродман впервые создал карты коры. Впоследствии О. Фогт и Ц. Фогт (1919-1920 гг.) с учётом волоконного строения описали в коре головного мозга 150 миелоархитектонических участков. В Институте мозга АМН СССР И. Н. Филипповым и С. А. Саркисовым были созданы карты коры головного мозга, включающие 47 цитоархитектонических полей.

    Рисунок 1 – Боковая поверхность мозга с пронумерованными полями Бродмана

    Рисунок 2 – Центральная часть мозга с пронумерованными полями Бродмана.

    Поля 3, 1 и 2 – соматосенсорная область, первичная зона, находятся в постцентральной извилине

    Поле 4 – моторная область, располагается в пределах прецентральной извилины

    Поле 5 – вторичная соматосенсорная зона, располагается в пределах верхней теменной дольки

    Поле 6 – премоторная кора и дополнительная моторная кора (вторичная моторная зона), располагается в передних отделах прецентральной и задних отделах верхней и средней лобной извилин.

    Поле 7 – третичная моторная зона, расположена в верхних отделах теменной доли между постцентральной извилиной и затылочной долей.

    Поле 8 – располагается в задних отделах верхней и средней лобной извилин, включает в себя центр произвольных движений глаз

    Поле 9 – дорсолатеральная префронтальная кора

    Поле 10 – передняя префронтальная кора

    Поле 11 – обонятельная область

    Поле 17 – ядерная зона зрительного анализатора – зрительная область, первичная зона

    Поле 18 – ядерная зона зрительного анализатора - центр восприятия письменной речи, вторичная зона

    Поле 19 – ядерная зона зрительного анализатора, вторичная зона (оценка значения увиденного)

    Поле 20 – нижняя височная извилина (центр вестибулярного анализатора)

    Поле 21 – средняя височная извилина (центр вестибулярного анализатора)

    Поле 22 – ядерная зона звукового анализатора

    Поле 24 – детектор ошибок

    Поле 28 – проекционные поля и ассоциативная зона обонятельной системы

    Поле 32 – дорсальная зона передней поясной коры. рецепторная область эмоциональных переживаний.

    Поле 37 – акустико-гностический сенсорный центр речи. это поле контролирует трудовые процессы речью, ответственно за понимание речи.

    Поле 39 – ангулярная извилина, часть зоны Вернике (центр зрительного анализатора письменной речи)

    Поле 40 – краевая извилина, часть зоны Вернике (двигательный анализатор сложных профессиональных, трудовых и бытовых навыков)

    Поле 41 – ядерная зона звукового анализатора, первичная зона

    Поле 42 – ядерная зона звукового анализатора, вторичная зона

    Поле 43 – вкусовая область

    Поле 44 – центр брока

    Поле 45 – триангулярная часть поля Бродмана (музыкальный моторный центр)

    Поле 46 – двигательный анализатор сочетанного поворота головы и глаз в разные стороны

    Поле 47 – ядерная зона пения, речедвигательная его составляющая

    Поле 52 – ядерная зона слухового анализатора, которая отвечает за пространственное восприятие звуков и речи

    Среди ядер коры больших полушарий рассматривают ядра, которые име­ются как в коре полушарий большого мозга человека, так и животных. Они специализированы на восприятии, анализе и синтезе сигналов, поступающих из внешней и внутренней среды, составляющих, по определению И.П. Павлова, первую сигнальную систему действительности. Эти сигналы воспринимаются в виде ощущений, впечатлений и представлений.

    Вторая сигнальная система имеется только у человека и обусловлена развитием речи. Речевые и мыслительные функции выполняются при участии всей коры, однако в коре большого мозга можно выделить определенные зоны, ответственные толь­ко за речевые функции. Так, двигательные анализаторы речи (устной и письменной) располагаются рядом с двигательной об­ластью коры, точнее в тех участках коры лобной доли, которые примыкают к предцентральной извилине.

    Вопрос_2

    Ядра первой сигнальной системы

    Ядра первой сигнальной системы

    1. Ядро коркового анализатора обшей (температурной, боле­вой, осязательной) и проприоцептивной чувствительности обра­зуют нервные клетки, залегающие в коре постцентральной из­вилины (поля 1, 2, 3) и верхней теменной дольки (поля 5 и 7). Проводящие чувствительные пути, следующие к коре большого мозга, перекрещиваются на уровне спинного мозга (пути болевой, температурной чувствительнос­ти, осязания и давления), и на уровне продолговатого мозга (пути проприоцептивной чувствительности коркового направления). Вследствие этого постцентральные извилины каждого из полушарий связаны с противоположной половиной тела.

    2. Ядро двигательного анализатора находится в основном в так называемой двигательной области коры, к которой относятся предцентральная извилина (поля 4 и 6) и парацентральная долька на медиальной поверхности полушария. В 5-м слое (пластинке) коры предцентральной извилины залегают гигантопирамидальные нейроны (клетки Беца). И.П. Павлов относил их к вставочным и отмечал, что эти клетки своими отростками связаны с подкорковыми ядрами, двигательными клетками ядер черепных и спинномозговых нервов. В верхних участках предцентральной извилины и в парацентральной дольке расположе­ны клетки, импульсы от которых направляются к мышцам самых нижних отделов туловища и нижних конечностей. В нижней части предцентральной извилины находятся двига­тельные центры, регулирующие деятельность мышц лица.

    3. Ядра анализатора, обеспечивающее функции сочетания поворота головы и глаз в противоположную сторону, расположе­но в задних отделах средней лобной извилины, в так называе­мой премоторной зоне (поле 8). Сочетанный поворот глаз и го­ловы регулируется не только при поступлении в кору лобной извилины проприоцептивных импульсов от мышц глазного яб­лока, но и при поступлении импульсов из сетчатки глаза в поле 17 затылочной доли, где находится ядро зрительного анализа­тора.

    4. Ядро двигательного анализатора расположено в об­ласти нижней теменной дольки, в надкраевой извилине (глубо­кие слои цитоархитектонического поля 40). Функциональное значение этого ядра - синтез всех целенаправленных движений. Это ядро асимметрично. У прав­шей оно находится в левом, а у левшей - в правом полушарии.

    Способность координировать сложные целенаправленные дви­жения приобретается индивидуумом в течение жизни в резуль­тате практической деятельности и накопления опыта. Целена­правленные движения происходят за счет образования времен­ных связей между клетками, расположенными в предцентральной и надкраевой извилинах. Поражение поля 40 не вызывает паралича, а приводит к потере способности производить слож­ные координированные целенаправленные движения - к апраксии (praxis - практика).

      Ядро кожного анализатора одного из частных видов чувст­вительности, которому присуща функция узнавания предметов на ощупь, - стреогнозии, находится в коре верхней те­менной дольки (поле 7). Корковый конец этого анализатора на­ходится в правом полушарии и представляет собой проекцию рецепторных полей левой верхней конечности. Так, ядро этого анализатора для правой верхней конечности находится в левом полушарии. Поражение поверхностных слоев коры в этом отде­ле мозга сопровождается утратой функции узнавания предметов на ощупь, хотя другие виды общей чувствительности при этом остаются сохранными.

      Ядро слухового анализатора расположено в глубине лате­ральной борозды, на обращенной к островку поверхности сред­ней части верхней височной извилины (там, где видны попереч­ные височные извилины, или извилины Гешля, - поля 41, 42, 52). К нервным клеткам, составляющим ядро слухового анализа­тора каждого из полушарий, подходят проводящие пути от ре­цепторов как левой, так и правой стороны. В связи с этим одно­стороннее поражение этого ядра не вызывает полной утраты способности воспринимать звуки. Двустороннее поражение со­провождается «корковой глухотой».

      Ядро зрительного анализатора расположено на медиаль­ной поверхности затылочной доли полушария большого мозга, по обеим сторонам от шпорной борозды (поля 17,18,19). Ядро зрительного анализатора правого полушария связано с прово­дящими путями от латеральной половины сетчатки правого глаза и медиальной половины сетчатки левого глаза. В коре за­тылочной доли левого полушария проецируются соответствен­но рецепторы латеральной половины сетчатки левого глаза и медиальной половины сетчатки правого глаза. Как и для ядра слухового анализатора, только двустороннее поражение ядер зрительного анализатора приводит к полной «корковой слепо­те». Поражение поля 18, находящегося несколько выше поля 17, сопровождается потерей зрительной памяти, но не слепо­той. Наиболее высоко по отношению к двум предыдущим в коре затылочной доли находится поле 19, поражение которого сопровождается утратой способности ориентироваться в не­знакомой обстановке.

    8. Ядро обонятельного анализатора находится на нижней по­верхности височной доли полушария большого мозга, в области крючка и отчасти в области гиппокампа. Эти участки с точки зрения филогенеза относятся к наиболее древним частям коры большого мозга. Чувство обоняния и чув­ство вкуса тесно взаимосвязаны, что объясняется близким рас­положением ядер обонятельного и вкусового анализаторов. От­мечено также (В.М. Бехтерев), что вкусовое восприятие наруша­ется при поражении коры самых нижних отделов постцентраль­ной извилины (поле 43). Ядра вкусового и обонятельного ана­лизаторов обоих полушарий связаны с рецепторами как левой, так и правой стороны тела.

    Вопрос 3

    Ядра второй сигнальной системы

    9. Ядро двигательного анализатора письменной реч и (анализа­тора произвольных движений, связанных с написанием букв и других знаков) находится в заднем отделе средней лобной изви­лины (поле 40). Оно тесно прилежит к тем отделам предцентральной извилины, которым присуща функция двигательного анализатора руки и сочетанного поворота головы и глаз в про­тивоположную сторону. Разрушение поля 40 не приводит к на­рушению всех видов движений, а сопровождается лишь утратой способности производить рукой точные и тонкие движения приначертании букв, знаков и слов (аграфия).

    10. Ядро двигательного анализатора артикуляции речи (речедвигательный анализатор) располагается в задних отделах ниж­ней лобной извилины (поле 44, или центра Брока). Это ядро граничит с теми отделами предцентральной извилины, кото­рые являются анализаторами движений, производимых при сокращении мыши головы и шеи. Это понятно, так как в рече-двигательном центре осуществляется анализ движений всех мышц: губ, щек, языка, гортани, принимающих участие в акте устной речи (произношение слов и предложении). Поврежде­ние участка коры этой области (поле 44) приводит к двига­тельной афазии, т.е. утрате способности произносить слова. Такая афазия не связана с потерей функции мышц, участву­ющих в речеобразовании. Более того, при поражении поля 44 не утрачивается способность к произношению звуков или пе­нию.

    В центральных отделах нижней лобной извилины (поле 45) находится ядро речевого анализатора, связанного с пением. По­ражение поля 45 сопровождается вокальной амузией - не­способностью к составлению и воспроизведению музыкальных фраз и аграмматизмом - утратой способности состав­лять осмысленные предложения из отдельных слов. Речь таких больных состоит из несвязанного по смысловому значению на­бора слов.

    11. Ядро слухового анализатора устной речи тесно взаимосвя­зано с корковым центром слухового анализатора и располагает­ся, как и последний, в области верхней височной извилины. Это ядро находится в задних отделах верхней височной извили­ны, на стороне, обращенной к латеральной борозде полушария большого мозга (поле 42).

    Поражение ядра не нарушает слухового восприятия звуков вообще, однако при этом утрачивается способность понимать слова, речь (словесная глухота, или сенсорная афазия). Функция этого ядра состоит в том, что человек не только слы­шит и понимает речь другого человека, но и контролирует свою собственную.

    В средней трети верхней височной извилины (поле 22) нахо­дится ядро коркового анализатора, поражение которого сопро­вождается наступлением музыкальной глухоты: музыкальные фразы воспринимаются как бессмысленный набор различных шумов. Этот корковый конец слухового анализатора относится к центрам второй сигнальной системы, воспринимающим сло­весное обозначение предметов, действий, явлений, т.е. воспри­нимающим сигналы сигналов.

    12. Ядро зрительного анализатора письменной речи располо­жено в непосредственной близости к ядру зрительного анализа­тора - в угловой извилине нижней теменной дольки (поле 39). Поражение этого ядра приводит к утрате способности воспри­нимать написанный текст, читать (алексия).

    Лимбическая система - это функциональное объединение структур мозга, которое обеспечивает сложные формы поведения.

    К лимбической системе относятся структуры древней коры, старой коры, мезокортекс и некоторые подкорковые образования. Особенностью лимбической системы является то, что связи между ее структурами образуют множество замкнутых кругов, и это создает условия для длительного циркулирования возбуждения в системе. Описаны основные круги, обладающие функциональной спецификой. Это большой круг Пейпса, который включает: гиппокамп - свод - мамиллярные тела - мамиллярно-таламический пучок Вик-д, Азира - передние ядра таламуса - кора поясной извилины - парагиппокампова извилина - гиппокамп.

    Очень важной полифункциональной структурой в большом круге является гиппокамп. Его повреждение у человека нарушает память на события, которые предшествовали повреждению, нарушается запоминание, обработка новой информации, различение пространственных сигналов, снижается эмоциональность, инициативность, замедляется скорость протекания основных нервных процессов.

    Малый круг Наута образуют: миндалина - конечная полоска - гипоталамус - перегородка - миндалина.

    Важной структурой малого круга является миндалина. Ее функции связаны с обеспечением оборонительного поведения, вегетативными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения. Многочисленные вегетативные эффекты миндалины обусловлены связью с гипоталамусом.

    В целом лимбическая система обеспечивает:

    • 1. Организацию вегетативно-соматических компонентов эмоций.
    • 2. Организацию кратковременной и долговременной памяти.
    • 3. Участвует в формировании ориентировочно-исследовательской деятельности (синдром Клювера - Бьюси).
    • 4. Организует простейшую мотивационно - информационную коммуникацию (речь).
    • 5. Участвует в механизмах сна.
    • 6. Здесь находится центр обонятельной сенсорной системы.

    По Мак Лину (1970) с функциональной точки зрения лимбика делится на: 1) нижний отдел - миндалина и гиппокамп, которые являются центрами эмоций и поведения для выживания и самосохранения; 2) верхний отдел - поясная извилина и височная кора, они представляют центры общительности и сексуальности; 3) средний отдел - гипоталамус и поясная извилина - центры биосоциальных инстинктов.

    Полушария мозга состоят из белого вещества, которое снаружи покрыто серым веществом или корой. Кора самый молодой и сложный отдел мозга, где идет обработка сенсорной информации, формируются двигательные команды, интегрируются сложные формы поведения. Кроме нейронов, здесь имеется огромное количество глиальных клеток, которые выполняют ионорегулирующую и трофическую функцию.

    Кора головного мозга имеет морфофункциональные особенности: 1) многослойность расположения нейронов; 2) модульный принцип организации; 3) соматотопическая локализация рецепторных систем; 4) экранность - распределение внешней рецепции на плоскости нейронального поля коркового конца анализатора; 5) зависимость уровня активности от влияния подкорковых структур и ретикулярной формации; 6) наличие представительства всех функций нижележащих структур ЦНС; 7) цитоархитектоническое распределение на поля; 8) наличие в специфических проекционных сенсорных и моторной системах коры вторичных и третичных полей с превалированием ассоциативных функций; 9) наличие специализированных ассоциативных областей коры; 10) динамическая локализация функций, которая выражается в возможности компенсации функций утраченных структур коры; 11) перекрытие в коре зон соседних периферических рецептивных полей; 12) возможность длительного сохранения следов раздражения; 13) реципрокная функциональная взаимосвязь возбудительных и тормозных состояний коры; 14) способность к иррадиации состояния; 15) наличие специфической электрической активности.

    Кора состоит из 6 слоев:

    • 1. Наружный молекулярный слой представлен сплетением нервных волокон, которые лежат параллельно поверхности корковых извилин и являются в основном дендритами пирамидных клеток. Сюда приходят афферентные таламокортикальные волокна от неспецифических ядер таламуса, они регулируют уровень возбудимости корковых нейронов.
    • 2. Наружный зернистый слой образован мелкими звездчатыми клетками, которые определяют длительность циркулирования возбуждения в коре и имеют отношение к памяти.
    • 3. Наружный пирамидный слой образуют средние по величине пирамидные клетки.

    Функционально 2-й и 3-й слои осуществляют кортико-кортикальные ассоциативные связи.

    • 4. К внутреннему зернистому слою приходят афферентные таламокортикальные волокна от специфических (проекционных) ядер таламуса.
    • 5. Внутренний пирамидный слой образуют гигантские пирамидные клетки Беца. Аксоны этих клеток образуют кортикоспинальные и кортикобульбарные тракты, которые участвуют в координации целенаправленных движений и позы.
    • 6. Полиморфный или слой веретеновидных клеток. Здесь формируются кортикоталамические пути.

    Для всех анализаторов характерен соматотопический принцип организации проекции на кору периферических рецепторных систем. Например, в сенсорной коре II центральной извилины имеются участки представительства каждой точки кожной поверхности, в двигательной коре каждая мышца имеет свою топику, свое место, в слуховой коре имеется топическая локализация определенных тонов.

    Особенностью корковых полей является экранный принцип функционирования, который заключается в том, что рецептор проецирует свой сигнал не на один нейрон коры, а на их поле, которое образуется коллатералями и связями нейронов. Сигнал при этом фокусируется не точка в точку, а на множестве нейронов, что и обеспечивает его полный анализ и возможность, при необходимости, передачи в другие структуры.

    В вертикальном направлении входные и выходные волокна вместе со звездчатыми клетками образуют «колонки», которые являются функциональными единицами коры. И при погружении микроэлектрода перпендикулярно в кору, он на всем пути встречает нейроны, реагирующие на один вид раздражения, в то время если микроэлектрод идет горизонтально по коре, то он встречает нейроны, реагирующие на разные виды стимулов.

    Наличие структурно различных полей предполагает и разное их функциональное назначение.

    Важнейшая двигательная область коры находится в прецентральной извилине. В 30 г.г. прошлого столетия Пенфилд установил наличие правильной пространственной проекции соматических мышц различных отделов тела на двигательную область коры. Наиболее обширными и с самым низким порогом являются зоны, управляющие движениями кистей рук и мимической мускулатурой лица. На медиальной поверхности рядом с первичной была обнаружена вторичная двигательная область. Но эти области помимо моторного выхода из коры имеют самостоятельные сенсорные входы от кожных и мышечных рецепторов, поэтому их назвали первичной и вторичной мотосенсорной корой.

    В постцентральной извилине находится первая соматосенсорная область, куда приходят афферентные сигналы от специфических ядер таламуса. Они несут информацию от рецепторов кожи и двигательного аппарата. И здесь отмечается соматотопическая организация.

    Вторая соматосенсорная область находится в сильвиевой борозде, а т.к. первая и вторая соматосенсорная зона кроме афферентных входов имеет и моторные выходы их правильнее называть первичной и вторичной сенсомоторными зонами.

    В затылочной области локализована первичная зрительная область.

    В височной доле - слуховая область.

    В каждой доле коры полушарий рядом с проекционными зонами расположены поля, которые не связаны с выполнением специфической функции --это ассоциативная кора, нейроны которой отвечают на раздражения различных модальностей и участвуют в интеграции сенсорной информации, а также обеспечивают связь между чувствительными и двигательными зонами коры. Это является физиологической основой высших психических функций.

    Лобные доли имеют обширные двусторонние связи с лимбической системой мозга и участвуют в управлении врожденными поведенческими актами при помощи накопленного опыта, обеспечивают согласование внешних и внутренних мотиваций поведения, разработку стратегии поведения и программы действий, мыслительные особенности личности.

    В деятельности полушарий нет полной симметрии. Так, у 9 из 10 человек, левое полушарие доминирует для двигательных актов (праворукие) и речи. У большинства «левшей» центр речи также находится слева. Т.е. абсолютного доминирования нет. Асимметрия полушарий особенно заметна при отделении одного полушария от другого (комиссуротомия). В левом полушарии находится центр письменной речи, стереогнозис. В левом полушарии лучше узнаются стимулы словесные, легко различимые, знакомые. Левым полушарием лучше выполняются задачи на временные отношения, установление сходства, идентичность стимулов по названиям. Левое полушарие осуществляет аналитическое и последовательное восприятие, обобщенное узнавание.

    В правом полушарии осуществляется стереогнозис для левой руки, понимание элементарной речи, невербальное мышление (т.е. мышление образами), лучше узнаются стимулы несловесные, трудно различимые, незнакомые. Лучше выполняются задачи на пространственные отношения, установление различий, идентичность стимулов по физическим свойствам. В правом полушарии имеет место целостное, одновременное восприятие, конкретное узнавание.

    Правое полушарие у 9 из 10 человек слегка приторможено, доминирует альфа-ритм, оно в свою очередь несколько притормаживает левое полушарие и не дает ему перевозбудиться. При выключении правого полушария человек много и непрерывно говорит (логорея), много обещает, но не выполняет обещания (болтун).

    С усыплением левого полушария, наоборот, человек молчит, печален.

    Правое полушарие отвечает за невербальное (подсознательное) мышление. Левое полушарие отвечает за осознание того, что подсознательно посылает ему правое полушарие.

    Функциональное состояние структур головного мозга изучается методами регистрации электрических потенциалов. Если регистрирующий электрод располагается в подкорковой структуре, то регистрируемая активность называется субкортикограммой, если в коре мозга - кортикограммой, если электрод располагается на поверхности кожи головы, то через него регистрируется суммарная активность, в которой есть вклад как коры, так и подкорковых структур - это проявление активности называется электроэнцефалограммой (ЭЭГ).

    ЭЭГ представляет собой волнообразную кривую, характер которой зависит от состояния коры. Так в покое у человека на ЭЭГ преобладает медленный альфа - ритм (8 -12 Гц, амплитуда = 50 мкВ). При переходе к деятельности идет смена альфа - ритма на быстрый бета - ритм (14 - 30 Гц, амплитуда 25 мкВ). Процесс засыпания сопровождается более медленным тета - ритмом (4 - 7 Гц) или дельта - ритмом (0,5 - 3,5 Гц, амплитуда 100 - 300 мкВ). Когда на фоне покоя или другого состояния мозга человека предъявляется раздражение, например, свет, звук, электрический ток, то с помощью микроэлектродов, вживленных в определенные структуры коры, регистрируются так называемые вызванные потенциалы, латентный период и амплитуда которых зависят от интенсивности раздражения, а компоненты, количество и характер колебаний зависят от адекватности стимула.

    В настоящее время принято делить кору на сенсорные, двигательные, или моторные, и ассоциативные зоны. Такое деление было получено благодаря экспериментам на животных с удалениями различных участков коры, наблюдениями за больными, име­ющими патологический очаг в мозге, а также с помощью прямого электрического раздражения коры и периферических структуре регистрацией электрической активности в коре.

    В сенсорных зонах представлены корковые концы всех анали­заторов. Для зрительного он располагается в затылочной доле мозга (поля 17, 18, 19). В поле 17 заканчивается центральный зрительный путь, информирующий о наличии и интенсивности зрительного сигнала. Поля 18 и 19 анализируют цвет, форму, размеры и качество предмета. При поражении поля 18 больной видит, но не узнает предмета и не различает его цвета (зрительная агнозия).

    Корковый конец слухового анализатора локализуется в ви­сочной доле коры (извилина Гешля), поля 41, 42, 22. Они участвуют в восприятии и анализе слуховых раздражений, организации слу­хового контроля речи. Больной, имеющий повреждение поля 22 теряет способность понимать значение произносимых слов.

    В височной доле располагается также корковый конец вести булярного анализатора.

    Кожный анализатор, а также болевая и температурная чув ствительность проецируются на заднюю центральную извилину, в верхней части которой представлены нижние конечности, в средней - туловище, в нижней - руки и голова.

    В коре теменной доли заканчиваются пути соматической чув­ ствительности, относящиеся к речевой функции, связанной с оценкой воздействия на рецепторы кожи, веса и свойств поверх­ности, формы и размера предмета.

    Корковый конец обонятельного и вкусового анализаторов расположен в гиппокампальной извилине. При раздражении этой области возникают обонятельные галлюцинации, а ее по­вреждение приводит к аносмии (потере способности ощущать за­пахи).

    Моторные зоны находятся в лобных долях в области перед­ней центральной извилины мозга, раздражение которой вызы­вает двигательную реакцию. Кора прецентральной извилины (поле 4) представляет первичную двигательную зону. В пятом слое этого поля находятся очень крупные пирамидные клетки (гигантские клетки Беца). Лицо проецируется на нижнюю треть прецентральной извилины, рука занимает ее среднюю треть, ту­ловище и таз - верхнюю треть извилины. Двигательная зона коры для нижних конечностей находится на медиальной по­верхности полушария в области передней части парацентральной дольки.

    Премоторная область коры (поле 6) располагается кпереди от первичной двигательной зоны. Поле 6 называют вторичной мо­ торной областью. Ее раздражение вызывает вращение туловища и глаз с подниманием контралатеральной руки. Аналогичные дви­жения наблюдаются у больных во время приступа эпилепсии, ес­ли эпилептический очаг локализуется в этой области. Недавно до­казана ведущая роль поля 6 в реализации двигательных функций. Поражение поля 6 у человека вызывает резкое ограничение дви­гательной активности, с трудом выполняются сложные комплек­сы движений, страдает спонтанная речь.

    К полю 6 примыкает поле 8 (лобное глазодвигательное), раз­дражение которого сопровождается поворотом головы и глаз в сторону, противоположную раздражаемой. Стимуляция различ­ных участков двигательной коры вызывает сокращение соответ­ствующих мышц на противоположной стороне.

    Передние отделы лобной коры связывают с «творческим» мышлением. С клинической и функциональной точек зрения ин­тересной областью является нижняя лобная извилина (поле 44). В левом полушарии она связана с организацией двигательных ме­ханизмов речи. Раздражение этой области может вызвать вока­лизацию, но не членораздельную речь, а также прекращение ре­чи, если человек говорил. Поражение этой области приводит к моторной афазии - больной понимает речь, но сам говорить не может.

    К ассоциативной коре относят теменно-височно-затылочную, префронтальную и лимбическую области. Она занимает около 80% всей поверхности коры больших полушарий. Ее нейро­ны обладают мультисенсорными функциями. В ассоциативной коре происходит интеграция различной сенсорной информации и формируется программа целенаправленного поведения, ассо­циативная кора окружает каждую проекционную зону, обеспечи­вая взаимосвязь, например, между сенсорными и моторными об­ластями коры. Нейроны, расположенные в этих областях, облада­ют полисенсорностью, т.е. способностью отвечать как на сенсор­ную, так и моторную информацию.

    Теменная ассоциативная область коры больших полушарий участвует в формировании субъективного представления об ок­ружающем пространстве, о нашем теле.

    Височная область коры участвует в речевой функции посред­ством слухового контроля речи. При поражении слухового цент­ра речи больной может говорить, правильно излагать свои мысли, но не понимает чужой речи (сенсорная слуховая афазия). Эта об­ласть коры играет определенную роль в оценке пространства. По­ражение зрительного центра речи приводит к потере способнос­ти читать и писать. С височной корой связывают функцию памя­ти и сновидений.

    Лобные ассоциативные поля имеют прямое отношение к лимбическим отделам мозга, они принимают участие в формирова­нии программы сложных поведенческих актов в ответ на воздей­ствие внешней среды на основе сенсорных сигналов всех модаль­ностей.

    Особенностью ассоциативной коры является пластичность нейронов, способных к перестройкам в зависимости от поступа­ющей информации. После операции удаления какой-либо облас­ти коры в раннем детстве утраченные функции этой области пол­ностью восстанавливаются.

    Кора больших полушарий способна, в отличие от нижележа­щих структур мозга, длительно, в течение всей жизни сохранять следы поступившей информации, т.е. участвовать в механизмах долговременной памяти.

    Кора больших полушарий - регулятор вегетативных функ­ций организма («кортиколизация функций»). В ней представле­ны все безусловные рефлексы, а также внутренние органы. Без коры невозможно выработать условные рефлексы на внутрен­ние органы. При раздражении интерорецепторов методом вы­званных потенциалов, электростимуляции и разрушения опреде­ленных участков коры доказано ее влияние на деятельность раз­личных органов. Так, разрушение поясной извилины изменяет акт дыхания, функции сердечно-сосудистой системы, желудоч­но-кишечного тракта. Кора тормозит эмоции - «умейте властво­вать собой».