а) Взаимодействие вегетатиавной нервной системы и иммунитета . Костный мозг, как и лимфатическую ткань тимуса, лимфатических узлов и селезенки, обильно иннервируют адренергические нервные волокна. Адренорецепторы обнаружены на поверхности Т-лимфоцитов, В-лимфоцитов и макрофагов.

В условиях острого психологического стресса в организме человека повышается содержание норадреналина, активирующего лимфатическую систему: происходит увеличение количества NK-клеток (естественных киллеров) и цитотоксических Т-лимфоцитов. Последующее ослабление иммунного ответа приводит к большей подверженности инфекционным заболеваниям.

б) Висцеральные афференты вегетативной нервной системы в ЦНС . Афферентные нервные волокна проводят возбуждение от органов грудной и брюшной полости, иннервируемых ВНС, к ЦНС. Кроме того, они принимают участие в важных рефлексах, контролирующих кровообращение, дыхание, пищеварение, мочеиспускание и половой акт. Обычно ЦНС не контролирует деятельность внутренних органов, однако при ряде патологических состояний сигнал об изменении их активности достигает сознания. Для постановки клинического диагноза большое значение имеет наличие висцеральной боли.

1. Висцеральная боль . Существуют три основных типа висцеральной боли:
1) Истинная висцеральная боль, ощущаемая непосредственно в пораженном органе.
2) Отраженная висцеральная боль, субъективно ощущаемая в области соответствующих соматических нервов.
3) Висцеросоматическая боль, обусловленная распространением заболевания на соматические структуры.

2. Истинная висцеральная боль . Истинная висцеральная боль характеризуется глубоким и неявным диффузным распределением; в большинстве случаев она сопровождается тошнотой и повышенным потоотделением. Этот тип боли возникает при таких состояниях, как воспаление и/или изъязвление стенки ЖКТ, непроходимость кишечника, обструкция желчных путей или мочеточника, а также при растяжении капсулы паренхиматозных органов (печени, почек, поджелудочной железы) в результате какого-либо заболевания. В то же время внутренние органы остаются нечувствительными к механическому или термическому повреждению.

3. Отраженная висцеральная боль . По мере усиления висцеральная боль в органе начинает субъективно ощущаться в области проекции смежного органа, иннервируемого тем же сегментом спинного мозга. Примеры такой отраженной боли - боль в грудной клетке (стенокардия) при ишемии миокарда, болезненность передней брюшной стенки при заболеваниях желчного пузыря и кишечника, боль в области крестцового отдела позвоночника при родовых схватках.

Согласно теории конвергенции проекции (общепринятой теории развития отраженной боли), головной мозг ошибочно определяет источник болевой импульсации из-за того, что возбуждение как от соматических, так и от висцеральных ноцицептивных рецепторов проводится по общим спиноталамическим путям. До возникновения данной теории считали, что эти нейроны отвечают за передачу сигнала о соматической боли.

4. Висцеросоматическая боль . Париетальные листки серозных оболочек (плевры и брюшины), обильно иннервируемые вышележащими межреберными нервами, очень чувствительны к экссудату острого воспаления. Переход воспалительного процесса на поверхность желудка, кишечника, аппендикса и желчного пузыря вызывает стойкую резкую болезненность передней брюшной стенки в проекции воспаленного органа. При развитии острого перитонита происходит напряжение мышц брюшной стенки (защитный рефлекс).

5. Болезненность . Болезненность (боль при пальпации) живота можно обнаружить при надавливании пальцами или ладонью на брюшную стенку. Фактически врач погружает кончики пальцев до уровня париетальной брюшины и ищет воспаленный орган. В случае если орган обладает большой подвижностью (например, аппендикс), снижения его «подвижной» болезненности можно добиться, попросив пациента повернуться на другой бок.

6. Физическая боль и психика человека . Несмотря на точно установленные механизмы, приводящие к возникновению висцеральной боли (воспаление, спазм гладких мышц, ишемия и растяжение), в некоторых случаях боль в груди или в животе может возникать при отсутствии каких-либо заболеваний внутренних органов. Рецидивирующая или постоянная боль в течение длительного времени (нескольких месяцев), причину которой не удается установить после стандартных диагностических исследований, имеет скорее психологическое, нежели физическое объяснение. Данный факт не отрицает наличие боли, а указывает на ее центральное происхождение.

Пример такой ситуации - дети, подвергшиеся насилию: их жалобы на боли в животе являются «криком отчаяния». У взрослых повторяющиеся и плохо поддающиеся диагностике боли могут быть проявлениями глубокой депрессии.

Синдром раздраженного кишечника (СРК ) - очень распространенное заболевание, обычно возникающее у людей в возрасте 20-40 лет. При данном синдроме развиваются нарушения в клеточной стенке кишечника, однако причиной изменения моторики кишечника, по-видимому, становится расстройство нервной регуляции пищеварительного тракта.

Процесс активации ноцицептивных нейронов стенки кишечника:
(1) Высвобождаемый энтерохромаффинными клетками серотонин активирует ноцицептивный нейрон, идущий к задним рогам спинного мозга.
(2) Противоположный ток импульсов вызывает выделение субстанции Р, которая, в свою очередь, отвечает за высвобождение гистамина из тучных клеток.
(3) Гистамин усиливает действие серотонина.

в) Афферентные нервные волокна сосудов . В анатомии висцеральной афферентной описывают две сети униполярных нейронов, иннервирующие сосуды. Одна из них представлена механорецепторами в каротидном синусе и дуге аорты, их функция - регуляция системного артериального давления; другая нейронная сеть представлена хеморецепторами каротидного тельца, функция которых заключается в регуляции дыхания. Существует устойчивая тенденция считать все сосудистые афференты висцеральными, поскольку афферентные волокна периферических сосудов ни морфологически, ни функционально не отличаются от афферентных волокон сердца. Все они содержат субстанцию Р, не оказывают влияние на здоровье человека, а в случае заболевания или повреждения участвуют в развитии болевого синдрома (например, тянущая боль в ногах при варикозной болезни вен или резкая острая боль при повреждении иглой стенки плечевой артерии во время инъекции в локтевой ямке).

Механизм прохождения нервного импульса к задним корешкам спинного мозга полностью не изучен. Однако предварительно установлено, что нервный импульс от периваскулярных волокон, расположенных над локтем или коленом, идет по ходу симпатических нервов (но в обратном направлении), а импульсы от большинства периферических периваскулярных волокон идут совместно с импульсами от кожных нервов (и в том же направлении). Расположение висцеральных афферентных волокон в составе кожных нервов похоже на таковое в нервных волокнах, заканчивающихся в сухожильных органах Гольджи запястья и голеностопного сустава.

г) Резюме . В составе ВНС существуют три цепи эффекторных нейронов: нейроны гипоталамуса, нейроны ствола головного мозга и преганглионарные спинномозговые нейроны. Аксоны последних образуют синапсы с клетками вегетативных ганглиев, от которых отходят постганглионарные волокна к тканям-мишеням.

Симпатические преганглионарные волокна, идущие к ганглиям в составе симпатического ствола, располагаются на грудном и поясничном уровнях. Часть волокон образует синапсы с нижележащими ганглиями. Другие направляются вверх и образуют синапсы с верхним шейным, средним шейным и звездчатым ганглиями. Отходящие от этих ганглиев постганглионарные волокна иннервируют голову, шею, верхние конечности и сердце. Другая часть волокон направляется вниз и образует синапсы с поясничными или крестцовыми ганглиями, постганглионарные волокна которых проходят в составе пояснично-крестцового сплетения и отвечают за иннервацию сосудов нижних конечностей. Кроме того, выделяют волокна, которые проходят через симпатический ствол, не переключаясь; они образуют синапсы с мозговым веществом надпочечников и с ганглиями брюшной нервной цепочки. Волокна, отходящие от этих ганглиев, иннервируют ЖКТ и мочеполовую систему.

Парасимпатические преганглионарные волокна идут от ядер, расположенных в головном мозге (волокна краниального отдела) и крестцовом отделе спинного мозга (волокна сакрального отдела). Краниальная парасимпатическая иннервация осуществляется посредством глазодвигательного нерва (синапс с ресничным ганглием, иннервация сфинктера зрачка и цилиарной мышцы); лицевого нерва (образует синапс с крылонебным ганглием-иннервация слезных и носовых желез, а также с поднижнечелюстным ганглием-иннервация поднижнечелюстных и подъязычных слюнных желез); языкоглоточного нерва (синапс с ушным ганглием, иннервация околоушной слюнной железы); блуждающего нерва (синапсы с ганглиями на или в стенках сердца, бронхов и ЖКТ, иннервация мышечной ткани и желез этих органов). Сакральная парасимпатическая иннервация осуществляется посредством преганглионарных волокон от крестцовых сегментов S2-S4 спинного мозга (образуют синапсы с интрамуральными ганглиями дистальных отделов толстой кишки и прямой кишки, а также с тазовыми ганглиями, которые отвечают за иннервацию мочевого пузыря и внутренних срамных артерий).

Все преганлионарные волокна-холинергические, активируют ганглионарные никотиновые рецепторы. Все постганглионарные волокна заканчиваются нейроэффекторными соединениями. Как правило, данные синапсы в симпатической нервной системе-адренергические, высвобождающие норадреналин, с помощью которого активируются постсинаптические α 1 -адренорецепторы гладких мышц, пресинаптические α 2 -адренорецепторы местных нервных окончаний, постсинаптические β 1 -адренорецепторы сердечной мышцы или постсинаптические β 2 -адренорецепторы (более чувствительные к адреналину). Адреналин выделяется хромафинными клетками и в результате соединения с β 2 -адренорецепторами вызывает расслабление гладких мышц.

Постганглионарные волокна парасимпатической нервной системы -холинергические; холинергические рецепторы сердечной мышцы, гладких мышц и желез являются мускариновыми.

Висцеральные афференты . Ноцицептивные афферентные волокна от кровеносных сосудов и органов грудной и брюшной полости направляются в ЦНС в составе вегетативных нервных путей. Истинной висцеральной боли свойственен глубокий и неопределенный характер. Отраженную висцеральную боль субъективно ощущают в области соматических структур, иннервация которых идет от соответствующих сегментов спинного мозга. Висцеросоматическая боль обусловлена химическим или термическим повреждением серозных оболочек: она очень сильная и стойкая, сопровождается защитным напряжением поверхностных мышц.

Нервная система подразделяется на центральную (мозг) и периферическую (периферические нервы и ганглии). Центральная нервная система (ЦНС) воспринимает информацию от рецепторов, анализирует ее и дает адекватную ситуации команду исполнительным органам. Функциональной единицей нервной системы является нейрон. В нем различают (рис. 6.) тело (сому ) с крупным ядром и отростки (дендриты и аксон ). Главная функция аксона - проведение нервных импульсов от тела. Дендриты проводят импульсы к соме. По чувствительным (сенсорным) нейронам импульсы передаются от рецепторов, а по эфферентным - от ЦНС к эффекторам. Большинство нейронов в ЦНС – вставочные (анализируют и хранят информацию, а также формируют команды).

Рис. 6. Схема строения нейрона.

Деятельность ЦНС имеет рефлекторную природу. Рефлекс - это ответная реакция организма на раздражение, осуществляемая при участии ЦНС.

Рефлексы классифицируют по биологическому значению (ориентировочные, оборонительные, пищевые и т.д.), расположению рецепторов (экстероцептивные - вызываемые раздражением поверхности тела, интероцептивные - вызываемые раздражением внутренних органов и сосудов; проприоцептивные - возникающие при раздражении рецепторов, находящихся в мышцах, сухожилиях и связках), в зависимости от органов, участвующих в формировании ответной реакции (двигательные, секреторные, сосудистые и др.), в зависимости от того, какие отделы мозга необходимы для осуществления данного рефлекса (спинальные, для которых достаточно нейронов спинного мозга; бульбарные - возникают при участии продолговатого мозга; мезэнцефальные - средний мозг; диэнцефальные - промежуточный мозг; кортикальные - нейроны коры головного мозга). Однако в большинстве рефлекторных актов участвуют практически все отделы ЦНС. Рефлексы также делят на безусловные (врожденные) и условные (приобретенные). Материальным субстратом рефлекса является рефлекторная дуга - нейронная цепь, по которой проходит импульс от рецептивного поля (участка тела, раздражение которого вызывает определенный рефлекс) к исполнительному органу. В состав классической рефлекторной дуги входят: 1) рецептор; 2) чувствительное волокно; 3) нервный центр (объединение вставочных нейронов, обеспечивающее регуляцию определенной функции); 4) эфферентное нервное волокно.

Для нервных центров характерны следующие свойства :

Одностороннее проведение возбуждения (от чувствительного нейрона к эфферентному).

Более медленное проведение возбуждения по сравнению с нервными волокнами (большая часть времени тратится на проведение возбуждения в химических синапсах - в каждом по 1,5-2 мс).

Суммирование афферентных импульсов (проявляется усилением рефлекса).

Конвергенция - несколько клеток могут передавать импульсы к одному нейрону.

Иррадиация - один нейрон может влиять на множество нервных клеток.

Окклюзия (закупорка) и облегчение. При окклюзии количество возбужденных нейронов при одновременном раздражении двух нервных центров меньше, чем сумма возбужденных нейронов при раздражении каждого центра в отдельности. Облегчение характеризуется противоположным эффектом.

Трансформация ритма . Частота импульсов на входе в нервный центр и выходе из него обычно не совпадает.

П оследействие - возбуждение может сохраняться после прекращения раздражения.

Высокая чувствительность к недостатку кислорода и ядам .

Низкая функциональная подвижность и высокая утомляемость .

Посттетаническая потенциация - усиление рефлекторного ответа после длительного раздражения центра.

Тонус – даже при отсутствии раздражений многие центры генерируют импульсы.

Пластичность - способны изменять собственное функциональное назначение.

К основным принципам координации работы нервных центров относятся :

Иррадиация - сильное и длительное раздражение рецептора, может вызвать возбуждение большего числа нервных центров (например, если слабо раздражать одну конечность, то сокращается только она, если же раздражение усилить, то сокращаются обе конечности).

Принцип общего конечного пути - импульсы, приходящие в ЦНС по разным волокнам, могут сходиться к одним нейронам (например, мотонейроны дыхательной мускулатуры участвуют в дыхании, чихании и кашле).

Принцип доминанты (открыт А.А. Ухтомским) – один нервный центр может подчинять себе деятельность всей нервной системы и определять выбор приспособительной реакции.

Принцип обратной связи - она позволяет соотнести изменения параметров системы с ее работой.

Принцип реципрокности - отражает отношения противоположных по функции центров (например, вдох и выдох) и заключается в том, что возбуждение одного из них, тормозит другой.

Принцип субординации (соподчинения) - регуляция сосредоточена в высших отделах ЦНС, а главной является кора больших полушарий.

Принцип компенсации функций - функции поврежденных центров могут выполнять другие структуры мозга.

В нервной системе постоянно взаимодействуют процессы возбуждения и торможения. Возбуждение вызывает рефлекторные реакции, а торможение приспособливает их силу и скорость к имеющимся потребностям.

Торможение в ЦНС открыто И.М.Сеченовым. Несколько позднее Гольц показал, что торможение может вызвать и сильное возбуждение.

Различают следующие виды центрального торможения:

Постсинаптическое (основной вид торможения) - заключается в том, что выделяемый тормозной медиатор гиперполяризует постсинаптическую мембрану, что снижает возбудимость нейрона.

Пресинаптическое - локализуется в отростках возбуждающего нейрона.

Поступательное - обусловлено тем, что на пути следования возбуждения встречается тормозной нейрон.

Возвратное - осуществляется вставочными тормозными клетками.

Пессимальное - связано со стойкой деполяризацией постсинаптической мембраны при частом или длительном раздражении.

Торможение вслед за возбуждением - если после стимуляции на нейроне развивается гиперполяризация то новый обычный по силе импульс не вызывает возбуждения.

Реципрокное торможение - обеспечивает согласованную работу структур-антагонистов, например, мышц-сгибателей и разгибателей.

ЧАСТНАЯ ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Центральная нервная система состоит из головного и спинного мозга.

Спинной мозг располагается в позвоночном канале и состоит из сегментов. Один сегмент иннервирует один свой и два соседних метамера тела. Поэтому поражение одного сегмента приводит к снижению чувствительности в них, а полная ее потеря наблюдается только при повреждении не менее двух соседних сегментов. Каждый из них имеет задние корешки, белое вещество, серое вещество и передние корешки (рис. 7.).

В задних корешках проходят чувствительные центростремительные нервные волокна от рецепторов. Передние корешки - центробежные (двигательные и вегетативные). Если справа перерезать задние корешки, а слева - передние, то правые конечности теряют чувствительность, но способны к движению, а левые сохраняют чувствительность, но не совершают движения.

В сером веществе спинного мозга находятся тела мотонейронов или двигательных нейронов (в передних рогах), интернейронов или промежуточных нейронов (в задних рогах) и вегетативных нейронов (в боковых рогах).

Белое вещество спинного мозга по восходящим путям передает информацию от рецепторов в вышележащие отделы ЦНС, а нисходящие проводящие пути спинного мозга идут от вышележащих нервных центров.

Собственные рефлексы спинного мозга являются сегментарными. Например, шейные и грудные сегменты содержат центры движения рук, а крестцовые - нижних конечностей. В крестцовых сегментах расположен центр отделения мочи.

Полное пересечение спинного мозга приводит к спинальному шоку (временному прекращению деятельности находящихся ниже места перерезки сегментов). Он вызван потерей связи с вышележащими отделами ЦНС. Шок длится у лягушки несколько минут, у обезьян - недели или месяцы, у человека - несколько месяцев.

В головном мозге выделяют (рис. 8.) три основных отдела: ствол, промежуточный и конечный мозг. В свою очередь ствол состоит из продолговатого мозга, варолиева моста, среднего мозга и мозжечка.

Границей между спинным и продолговатым мозгом является место выхода первых шейных корешков.В продолговатый мозг нет сегментов, но есть скопления нейронов (ядра). Они образуют центры вдоха и выдоха, сосудодвигательный центр (регулирует тонус сосудов и уровень кровяного давления), главный центр сердечной деятельности, центр слюноотделения и многие другие. Повреждение продолговатого мозга заканчивается смертью. Это объясняется присутствием в нем жизненно важных центров (дыхательного и сердечно-сосудистых).

Продолговатый мозг отвечает за такие защитные рефлексы как рвота, кашель, чихание, слезоотделение, смыкание век, а также сосание, жевание и глотание. Он же участвует в поддержании позы, перераспределении тонуса мышц при движении, осуществлении первичного анализа кожного, вкусового, слухового и вестибулярного раздражений.

Варолиев мост выполняет двигательные, сенсорные, интегративные и проводниковые функции. Двигательные ядра моста иннервируют мимические и жевательные мышцы, мышцы, отводящие глазное яблоко кнаружи и напрягающие барабанную перепонку. Чувствительные ядра получают сигналы от рецепторов кожи лица, слизистой носа, зубов, надкостницы костей черепа, конъюнктивы и отвечают за первичный анализ вестибулярных и вкусовых раздражений. Вегетативные ядра регулируют секреторную активность слюнных желез. В мосте также располагается пневмотаксический центр , поочередно запускающий центры выдоха и вдоха. Ретикулярная формация моста активирует кору больших полушарий и вызывает пробуждение .

В среднем мозге имеются ядра обеспечивающие поднятие верхнего века, движения глаз, изменения просвета зрачка и кривизны хрусталика. Красные ядра тормозят активность ядер Дейтерса в продолговатом мозге. Перерезка между средним и продолговатым мозгом приводит к децеребрационной ригидности (повышается тонус мышц-разгибателей конечностей, шеи и спины). Это связано с ростом активности ядра Дейтерса. Черное вещество регулирует акты жевания и глотания, а также координирует точные движения пальцев рук. Ретикулярная формация среднего мозга регулирует развитие сна и его смену бодрствованием . Бугры четверохолмия обеспечивают зрительный (поворот головы и глаз в сторону светового раздражителя, фиксацию взора и слежение за движущимися объектами) и слуховой (поворот головы в сторону источника звука) ориентировочные рефлексы. Средний мозг также участвует в рефлекторном удержании частей тела на месте, а также корректирует ориентацию конечностей при смене их положения.

Мозжечок непрерывно получает информацию от мышц, суставов, органов зрения и слуха. Он под контролем коры отвечает за программирование сложных движений, координацию позы и соразмерное целенаправленное движение. Мозжечок влияет на возбудимость отделов конечного мозга, участвует в вегетативном обеспечении деятельности скелетных мышц и сердечнососудистой системы, а также обмена веществ и кроветворения.

Поражения мозжечка сопровождаются: астенией (снижением силы мышечных сокращений и быстрой утомляемостью), атаксией (нарушением координации движений - они размашисты, резки, конечности при ходьбе забрасываются за среднюю линию, наклон головы вниз или в сторону вызывает сильное противоположное движение), астазией (невозможностью сохранить равновесие – животное стоит с широко расставленными лапами), атонией (снижением тонуса мышц), тремором (дрожанием конечностей и головы в покое) и неравномерными движениями .

Основными структурами промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорье).

Таламус является местом обработки всей информации, направляющейся от всех (кроме обонятельных) рецепторов в кору головного мозга.

Главной функцией таламуса является оценка биологического значения всей полученной информации, а затем ее объединение и передача в кору.

У человека зрительный бугор также необходим для проявления эмоций своеобразной мимикой, жестами и вегетативными реакцииями.

Гипоталамус является главным подкорковым вегетативным центром. Раздражение одних его ядер имитирует эффекты парасимпатической нервной системы. Стимуляция других - сопровождается симпатическими эффектами. Ядра гипоталамуса также регулируют смену цикла цикла «сон-бодрствование», обмен веществ и энергии, пищевое (здесь находятся: центр насыщения, центр голода и центр жажды) и половое поведение, мочеотделение, формирование эмоций.

Регуляцию многих функций гипоталамус осуществляет через железы внутренней секреции и, в первую очередь, через гипоталамус.

Преимущественно в стволе мозга располагается ретикулярная формация (РФ). Лишь небольшое количество относящихсяк ней образований находится в таламусе и в верхних сегментах спинного мозга. Ретикулярная формация оказывает генерализованное активирующее влияние на передние отделы головного мозга и всю кору (восходящая активирующая система), а также нисходящее (облегчающее и тормозное) влияние на спинной мозг. Основными, контролирующими моторную активность структурами РФ являются ядро Дейтерса (продолговатый мозг) и красное ядро (средний мозг).

РФ среднего мозга рефлекторно изменяет работу глазодвигательного аппарата (особенно при внезапном появлении движущихся объектов, изменении положения головы и глаз) и регулирует вегетативные функции (например, кровообращение). В РФ продолговатого мозга расположены центры вдоха и выдоха (их деятельность контролируется пневмотаксическим центром варолиева моста), а также сосудодвигательный центр.

Раздражение РФ вызывает «реакцию пробуждения» и ориентировочный рефлекс, влияет на остроту слуха, зрение, обоняние и болевую чувствительность. Перерезка мозга ниже РФ вызывает бодрствование, выше - сна.

Лимбическая система - функциональное объединение структур ЦНС, обеспечивающее (во взаимодействии с отделами коры больших полушарий) эмоционально-мотивационные компоненты поведения и интеграцию функций организма, направленных на его приспособление к условиях существования. Она отвечает на афферентную информацию от поверхности тела и внутренних органов организацией поведенческих актов (половых, оборонительных, пищевых), формированием мотиваций и эмоций, обучением, хранением информации, а также сменой фаз сна и бодрствования.

К отделам лимбической системы относят (рис. 9.): обонятельную луковицу и обонятельный бугорок (у человека развиты слабо), сосцевидные тела, гиппокамп, таламус, миндалину, поясную и гаппокампальную извилины. Нередко к лимбической системе относят большее число структур (например, части лобной и височной коры, гипоталамуса и РФ среднего мозга).

Многие сигналы в лимбической системе проходят по кругам. В «круге Пейпеса» импульсы из гиппокампа переходят в сосцевидные тела, из них в ядра таламуса, затем через поясную и гиппокампальную извилины возвращаются в гиппокамп. Описанная циркуляция обеспечивает формированиие эмоций, памяти и обучение. Другой круг (миндалина → гипоталамус → мезенцефальные структуры → миндалина) регулирует пищевые, сексуальные и агрессивно-оборонительные формы поведения.

Стимуляция определенных зон лимбической системы вызывают приятные ощущения («центры удовольствия»). Рядом с ними находятся структуры, приводящие к реакциям избегания («центры неудовольствия»).

Повреждение лимбической системы приводит к выраженному нарушению социального поведения (ведут себя отчужденно, встревожены и не уверены в себе) и сопоставления новой информации с хранящейся в памяти (не отличают съедобные предметы от несъедобных и поэтому всё берут в рот), становится невозможна концентрация внимания.

Большие полушария и соединяющая их область (мозолистое тело и свод) относятся к конечному мозгу . Каждое полушарие делят на лобную, теменную, затылочную, височную и скрытую (островок) доли. Их поверхность покрыта корой. К конечному мозгу у человека относятся также скопления серого вещества внутри полушарий (базальные ядра ). Отделяет полушарие от ствола мозга гиппокамп. Между базальными ядрами и корой находитсябелое вещество . Оно состоит из множества нервных волокон, соединяющих различные части полушарий друг с другом и иными отделами мозга.

Базальные ганглии обеспечивают переход от замысла движения к действию, управляют силой, амплитудой и направлением движений лица, рта и глаз, тормозят безусловные рефлексы и выработку условных рефлексов, участвуют в формировании памяти и восприятии информации, отвечают за организацию пищевого поведения и ориентировочных реакций.

После разрушения базальных ганглиев возникают: маскообразное лицо, гиподинамия, эмоциональная тупость, подергивание головы и конечностей при движении, монотонная речь, нарушение согласованности перемещения конечностей при ходьбе.

Кора больших полушарий (КБП) головного мозга состоит из множеств нейронов и представляет собой слой серого вещества.

На основании эволюционного подхода, различают древнюю, старую и новую кору. К древней относят мало развитые у человека обонятельные структуры. Старую кору составляют основные части лимбической системы: поясная извилина, гиппокамп, миндалина. Тесная связь древней и старой коры обеспечивает эмоциональный компонент обонятельного восприятия.

Новая кора выполняет наиболее сложные функции. К её сенсорной области сходятся все чувствительные пути. Площадь проекции каждого формирующегося в коре ощущения прямо пропорциональна его важности (проекции с кожи кисти рук больше, чем со всего туловища). В затылочной доле располагается корковая часть зрительного (информирует о свойствах светового сигнала) анализатора. Ее удаление приводит к слепоте. Корковая часть слухового анализатора локализуется в височной доле (воспринимает и анализирует звуковые сигналы, организует слуховой контроль речи). Ее удаление вызывает глухоту. Тактильная, болевая, температурная и другие виды кожной чувствительности проецируются в теменную долю.

Моторные (двигательные) области находятся в лобных долях. В них, каждая группа нейронов отвечает за произвольную активность отдельных мышц (их сокращение вызывается раздражением определенных участков коры). Причем, величина корковой двигательной зоны пропорциональна не массе управляемых мышц, а точности движений (самые большие зоны управляют движениями кисти руки, языком, мимической мускулатурой). Левое полушарие непосредственно связано с двигательными механизмами речи. При его поражении больной понимает речь, но говорить не может.

Моторные области получают необходимую для принятия решения и исполнения информацию из ассоциативных областей (занимают около 80% всей поверхности полушарий), которые объединяют поступающие в неё от всех рецепторов сигналы в целостные акты научения, мышления и долговременной памяти, а также формируют программ целенаправленного поведения. Если теменная ассоциативная кора формирует представления об окружающем пространстве и теле, то височная - участвует в слуховом контроле речи, а лобная - формирует сложное поведение. При повреждении ассоциативных зон ощущения сохранены, но нарушена их оценка. Это проявляется апраксиями (неспособностью производить заученные движения: застегивание пуговиц, написание текста и др.) и агнозиями (расстройствами узнавания). При моторной агнозии - понимает речь, но говорить не может, при сенсорной - говорит, но не понимает речи.

Таким образом, конечный мозг играет роль органа сознания, памяти и умственной деятельности, что проявляется в поведении и необходимо для приспособления человека к меняющимся условиям среды обитания.

ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА

Нервная система разделена на соматическую и вегетативную. Все эффекторные нейроны соматической нервной системы являются мотонейронами. Они начинаются в ЦНС и заканчиваются на скелетной мускулатуре. Вегетативная нервная система иннервирует все внутренние органы, железы (секреторные нейроны), гладкую мускулатуру (мотонейроны) сосудов, пищеварительного тракта и мочевыводящих путей, а также регулирует обмен веществ (трофические нейроны) в различных тканях.

Афферентное звено соматической и вегетативной рефлекторных дуг общее. Аксоны центральных вегетативных нейронов выходят из ЦНС и переключаются в ганглиях на периферический нейрон, который иннервирует соответствующие клетки.

Вегетативная нервная система делится на симпатическую и парасимпатическую.

Симпатическая нервная система иннервирует все органы и ткани организма. Ее центры представлены в боковых рогах серого вещества спинного мозга (от I грудного до II-IV поясничных сегментов). При возбуждении они усиливают работу сердца, рассширяют бронхи и зрачок, снижают активность пищеварения, вызывают сокращение сфинктеров мочевого и желчного пузырей. Симпатические влияния быстро мобилизуют связанный с расходом энергии обмен веществ, дыхание и кровообращение в организме, что позволяет ему оперативно реагировать на неблагоприятные факторы. Этим объясняется и повышение работоспособности скелетных мышц при раздражении симпатического нерва (феномен Орбели – Гинецинского).

Парасимпатическими центрами являются ядра в стволе мозга и крестцовом отделе спинного мозга. Парасимпатическая нервная система не иннервирует скелетные мышцы, многие кровеносные сосуды и органы чувств. При ее возбуждении тормозится работа сердца, сужаются бронхи и зрачок, стимулируется пищеварение, опорожняются желчный и мочевой пузыри, а также прямая кишка. Вызванные парасимпатической нервной системой изменения обмена обеспечивают восстановление и поддержание постоянства состава внутренней среды организма, нарушенного при возбуждении симпатической нервной системы.

Вегетативные функции не подчиняются сознанию, но регулируются практически всеми отделами ЦНС. Стимуляция спинальных центров расширяет зрачок, усиливает потоотделение, сердечную деятельность и расширяет бронхи. Здесь же расположены центры дефекации, мочеиспускания, половых рефлексов. Стволовые центры регулируют зрачковый рефлекс и аккомодацию глаз, тормозят деятельность сердца, возбуждают слезоотделение, усиливают секрецию слюнных, желудочных и поджелудочной желез, а также желчевыделение, сокращения желудка и кишечника. Сосудодвигательный центр отвечает за рефлекторное изменение просвета сосудов. Гипоталамус являются главным подкорковым уровнем вегетативных функций. Он отвечает за появление эмоций, агрессивно-оборонительных и половых реакций. Лимбическая система отвечает за формирование вегетативного компонента эмоциональных реакций. Кора осуществляет высший контроль вегетативных функций, влияя на все подкорковые вегетативные центры, а также координируя вегетативные и соматические функции во время поведенческого акта.

Нейро-гуморальная регуляция процессов жизнедеятельности организма. Нервная система. Рефлекс. Рефлекторная дуга.

Важно понимать, что организм единая система, одной из основных функций которой является поддержание гомеостаза - постоянства внутренней среды.

В зависимости от изменений внешней среды организм реагирует:

· воспринимает изменение параметров окружающей среды (свет, температура, давление и т.д.);

· обрабатывает их;

· выдает физиологическую реакцию.

Эта согласованная работа обеспечивается двумя механизмами - нервной регуляцией игуморальной регуляцией .

Нервная регуляция - регуляция жизнедеятельности организма с помощью нервной системы.

Гуморальная регуляция осуществляется с помощью химических веществ через жидкие среды организма (кровь, лимфу, межклеточную жидкость).

Первый вид - быстрая реакция , буквально за секунды. Вторая - медленная , в течение нескольких минут.

Однако, нельзя их разделять. Это взаимосвязанные процессы - на функционирование нервной системы оказывают влияние биохимические вещества организма и наоборот, ни одно вещество не выделяется организмом без соответствующего нервного импульса. Поэтому зачастую эти два процесса объединяют под термином Нейро-гуморальная регуляция.

Нервная система

За согласованную деятельность различных органов и систем, а также за регуляцию функций организма отвечает нервная система. Она осуществляет также связь организма с внешней средой, благодаря чему мы чувствуем различные изменения в окружающей среде и реагируем на них.

Нервная ткань

Нервная ткань - это специализированная ткань организма, из которой построена вся нервная система. Эта ткань способна воспринимать раздражения из внешней и внутренней среды, возбуждаться под их влиянием, вырабатывать, проводить и передавать нервные импульсы. Таким образом, свойствами нервной ткани являются возбудимость и проводимость .

Нейроны , или нейроциты , - это функциональные и структурные единицы нервной ткани, клетки нервной системы. Каждый нейрон имеет тело и отростки (аксоны и дендриты) . В теле имеются одно ядро, расположенное обычно в центре клетки, и цитоплазма, в которой находится хорошо развитый аппарат для синтеза белка (рибосомы и гранулярная эндоплазматическая сеть). Нейроны отличаются друг от друга по форме, размерам, количеству отростков и функции.

Нейроны проводят нервные импульсы:

· от рецепторов в центральную нервную систему (чувствительные нейроны );

· от центральной нервной системы к исполнительным органам (двигательные, или исполнительные нейроны ).

Вставочные нейроны соединяют между собой чувствительные и двигательные нейроны.

Дендриты и аксон - это названия различных отростков нейрона.


Дендритов может быть разное количество, по ним нервные импульсы распространяются к телу клетки. Дендриты обычно сильно ветвятся и в них присутствуют все органоиды, которые есть в теле клетки.

Аксон , удлиненный отросток нейрона, по нему возбуждение (нервный импульс), распространяется от тела нейрона. Аксон, в отличие от дендритов, как правило не ветвится, в нём нет аппарата для синтеза белка.

Клетки нейроглии - это клетки, которые заполняют все пространства между нейронами, их отростками и кровеносными сосудами. Эти клетки создают опору для нейронов, питают их, защищают, регулируют обмен веществ в нервной ткани и создают барьеры между нервной и другими видами тканей, формируя оболочки вокруг тел и отростков нервных клеток.

Нервный импульс - это форма передачи возбуждения (информации) от одной клетки другим клеткам. Под влиянием различных раздражителей нервная клетка приходит в состояние возбуждения, т. е. состояние выполнения функций. При этом проницаемость клеточной мембраны для ионов натрия повышается и происходит её перезарядка: внутренняя сторона мембраны заряжается положительно, а внешняя - отрицательно (в спокойном состоянии наоборот). В результате между возбуждённым и соседними участками мембраны возникают круговые токи. Эти токи раздражают соседние участки, в которых тоже возникает перезарядка мембраны. Так нервный импульс перемещается от одного участка мембраны к другому, от клетки к клетке. Скорость распространения нервного импульса в скелетных мышцах - 12 - 15 м/с, в гладких - 1 - 18 м/с, в нервных волокнах (отростках нервных клеток), не имеющих оболочки, - 0,5 - 3 м/с, в нервных волокнах, имеющих оболочку, - 30 - 120 м/с.

Основные процессы, происходящие в нервной системе, - возбуждение и торможение . Нервная система отличается высокой возбудимостью и проводимостью, в основе ее регуляторной и координационной деятельности лежат рефлексы - ответы организма на раздражение. Путь, по которому проводятся нервные импульсы при осуществлении рефлексов, называют рефлекторной дугой .

Сначала организм получает информацию - возбуждение, которое по нервным путям - чувствительным путям идет в «аналитический центр» - спинной и головной мозг, который выдает «решение» - ответное возбуждение, которое по двигательному пути идет к рабочему органу - происходит реакция (например, выделение необходимого гормона).

Контакты между нейронами и клетками рабочих органов осуществляются через синапсы. В зависимости от состава жидкости, которую получает клетка-адресат, в ней может возникнуть как возбуждение, так и торможение. Рефлекс происходит, когда все звенья рефлекторной дуги возбуждены. Если хоть в одном звене развивается торможение и нет обходных путей, рефлекс проявляться не будет.

В рефлекторной деятельности различают прямые связи, идущие от мозга к органам и вызывающие их работу, и обратные связи, информирующие мозг о достигнутых результатах. Если рефлекс включает несколько этапов, то последующий этап не начнется, пока в центральную нервную систему по обратным связям не придет информация, что первый этап завершен.

Вместе с органами чувств нервная система участвует в распознавании предметов и явлений внешнего мира, в восприятии, обработке и хранении информации, а также в использовании полученной информации для удовлетворения потребностей организма.

Нервная система состоит из двух частей : центральной и периферической. К центральной части относятся головной мозг и спинной мозг . Их нервные клетки (нейроны) образуют нервные центры , воспринимающие и обрабатывающие поступающую информацию, а также регулирующие работу органов. Тела нейронов находятся в скоплениях серого вещества : либо на поверхности мозга (в коре), либо в его толще (в виде ядер).

ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА

Нервная система Центральная нервная система
головной мозг спинной мозг
большие полушария мозжечок ствол
Состав и строение Доли: лобная, теменная, затылочная, две височные. Кора образована серым веществом - телами нервных клеток. Толщина коры 1,5-3 мм. Площадь коры 2-2,5 тыс. см 2 , она состоит из 14 млрд. тел нейронов. Белое вещество образовано нервными отростками Серое вещество образует кору и ядра внутри мозжечка. Состоит из двух полушарий, соединенных мостом Образован:
  • Промежуточным мозгом
  • Средним мозгом
  • Мостом
  • Продолговатым мозгом
Состоит из белого вещества, в толще находятся ядра серого вещества. Ствол переходит в спинной мозг
Цилиндрический тяж 42-45 см длиной и около 1 см диаметром. Проходит в позвоночном канале. Внутри него находится спинно-мозговой канал, заполненный жидкостью. Серое вещество расположено внутри, белое - снаружи. Переходит в ствол головного мозга, образуя единую систему
Функции Осуществляет высшую нервную деятельность (мышление, речь, вторая сигнальная система, память, воображение, способность писать, читать). Связь с внешней средой происходит с помощью анализаторов, находящихся в затылочной доле (зрительная зона), в височном доле (слуховая зона), вдоль центральной борозды (кожно-мышечная зона) и на внутренней поверхности коры (вкусовая и обонятельная зоны). Регулирует работу всего организма через периферическую нервную систему Регулирует и координирует движения тела мышечный тонус. Осуществляет безусловно-рефлекторную деятельность (центры врожденных рефлексов) Связывает головной мозг со спинным в единую центральную нервную систему. В продолговатом мозге находятся центры: дыхательный, пищеварительный, сердечно-сосудистый. Мост связывает обе половины мозжечка. Средний мозг контролирует реакции на внешние раздражители, тонус (напряжение) мышц. Промежуточный мозг регулирует обмен веществ, температуру тела, связывает рецепторы тела с корой больших полушарий Функционирует под контролем головного мозга. Через него проходят дуги безусловных (врожденных) рефлексов, осуществляющих возбуждение и торможение при движении. Проводящие пути - белое вещество, соединяющее головной мозг со спинним; является проводником нервных импульсов. Регулирует работу внутренних органов через периферическую нервную систему Через спинно-мозговые нервы осуществляется управление произвольными движениями тела
| следующая лекция ==>

#1
такие свойства как возбудимость и сократимость характерны для ткани:
а)эпителиальной
б)соединительной
в)нервной
г)мышечной
#2
гладкая мышечная ткань образует
а)покровы тела
б)кожу
в)стенки кровеносных сосудов
г)костный мозг
#3
чувствительные нейроны участвуют в передаче импульса
а)нейрона к нейрону
б)органов чувств к спинному и головному мозгу
в)спинного и головного мозга к органам
г)одного внутреннего органа к другому
#4
верны ли следующие утверждения?
а) белое вещество образованно аксонами,покрытыми миелиновой оболочкой.
б)двигательные нейроны передают импульсы от органов чувств в спиной и головной мозгу
1)верно только А
2)верно только Б
3)верны оба утверждения
4)оба варианты не верны
#5

Какой элемент соматической рефлекторной дуги полностью расположен в спинном мозге? 1)двигательный нейрон 2)вставочный нейрон

3)рецептор

4)рабочий орган

Папоротник, произрастающий в тенистых зарослях леса, – это поколение, на котором образуются

1)заростки

2)половые клетки

4)предростки

При ранении лёгких в первую очередь необходимо

1)провести искусственное дыхание

2)плотно перевязать рану, зафиксировав грудную клетку на выдохе

3)провести непрямой массаж сердца

4)положить пострадавшего на ровную поверхность и согнуть ноги в коленях

С каким из перечисленных организмов у дуба могут сложиться симбиотические отношения?

2)белый гриб

3)дубовый долгоносик

4)бабочка дубовый шелкопряд

Верны ли следующие суждения о строении нервной системы человека?

А. Нервные узлы – это скопление тел нервных клеток за пределами центральной нервной системы

Б. Двигательные нейроны передают нервные импульсы от органов чувств в спинной мозг.

1)верно только А

2)верно только Б

3)верны оба суждения

4)оба суждения неверны

При прорастании семени ржи проросток первое время получает питательные
вещества из
1)семядоли
2)зародышевого корешка
3)эндосперма
4)почвы

Какой тканью выстланы головка и суставная ямка суставов?
1)хрящевой
2)нервной
3)гладкой мышечной
4)поперечнополосатой мышечной

Что происходит в организме человека, если в воздухе повысилась
концентрация углекислого газа?
1)угнетение дыхательного центра
2)возбуждение дыхательного центра
3)раздражение дыхательных путей
4)сужение капилляров лёгочных пузырьков

Верны ли следующие суждения об агротехнических приёмах выращивания
культурных растений?
А. Азотные удобрения вносят в почву в виде подкормки для усиления роста
листьев и стеблей растений.
Б. Прищипку корней проводят для развития боковых и придаточных корней
в верхних слоях почвы.
1)верно только А
2)верно только Б
3)верны оба суждения
4)оба суждения неверны

Расположите в правильном порядке организмы в цепи питания. В ответе
запишите соответствующую последовательность цифр.
1)паук
2)сова
3)цветущее растение
4)муха
5)жаба

Человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.

Чем является нервный импульс?

Так называют волну возбуждения, что распространяется по волокнам как ответ на раздражение нейронов. Благодаря этому механизму обеспечивается передача информации от различных рецепторов к центральной нервной системе. А от неё, в свою очередь, к разным органам (мышцы и железы). А что же этот процесс являет собой на физиологическом уровне? Механизм передачи нервного импульса заключается в том, что мембраны нейронов могут менять свой электрохимический потенциал. И интересующий нас процесс совершается в области синапсов. Скорость нервного импульса может меняться в рамках от 3 до 12 метров за секунду. Более детально о ней, а также о факторах, что на неё влияют, мы ещё поговорим.

Исследование строения и работы

Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами - их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон. Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована. Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.

Особенности строения и функционирования

Если говорить про путь нервного импульса, то необходимо отметить, что волокно покрывается не по всей своей длине. Особенности построения таковы, что сложившуюся ситуацию лучше всего будет сравнить с созданием изолирующих керамических муфт, что плотно нанизываются на стержень электрического кабеля (хотя в данном случае на аксон). Как результат - есть небольшие неизолированные электрические участки, с которых ионный ток может спокойно вытечь из аксона в окружающую среду (или наоборот). При этом раздражается мембрана. Вследствие этого вызывается генерация в участках, что не изолированы. Этот процесс называется перехватом Ранвье. Наличие такого механизма позволяет сделать так, чтобы нервный импульс распространялся значительно быстрее. Давайте об этом поговорим на примерах. Так, скорость проведения нервного импульса в толстом миелинизированном волокне, диаметр которого колеблется в рамках 10-20 микрон, составляет 70-120 метров за секунду. Тогда как у тех, у кого неоптимальная структура, этот показатель меньше в 60 раз!

Где они создаются?

Нервные импульсы возникают в нейронах. Возможность создания таких «посланий» является одним из основных их свойств. Нервный импульс обеспечивает быстрое распространение однотипных сигналов по аксонам на большое расстояние. Поэтому это самое важное средство организма для обмена информацией в нём. Данные о раздражении передаются с помощью изменения частоты их следования. Здесь работает сложная система периодики, которая может насчитывать сотни нервных импульсов в одну секунду. По несколько подобному принципу, хотя и значительно усложненному, работает компьютерная электроника. Так, когда нервные импульсы возникают в нейронах, то они кодируются определённым образом, а только потом уже передаются. При этом информация группируется в специальные «пачки», которые имеют разное число и характер следования. Всё это, сложенное вместе, и составляет основу для ритмической электрической активности нашего мозга, что можно зарегистрировать благодаря электроэнцефалограмме.

Типы клеток

Говоря про последовательность прохождения нервного импульса, нельзя обойти вниманием (нейроны), по которым и происходит передача электрических сигналов. Так, благодаря им обмениваются информацией разные части нашего организма. В зависимости от их структуры и функционала выделяют три типа:

  1. Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
  2. Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
  3. Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).

Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:

  1. Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
  2. Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.

Говоря про проведение нервного импульса клетками, сложно не рассказать об одном интересном моменте. Так, когда они находятся в покое, то, скажем так, натриево-калиевый насос занимается перемещением ионов таким образом, чтобы достичь эффекта пресной воды внутри и соленой внешне. Благодаря получаемому дисбалансу разницы потенциалов на мембране можно наблюдать до 70 милливольт. Для сравнения - это 5% от обычных Но как только меняется состояние клетки, то получившееся равновесие нарушается, и ионы начинают меняться местами. Так происходит, когда через неё проходит путь нервного импульса. Благодаря активному действию ионов это действие и называют ещё потенциалом действия. Когда он достигает определённого показателя, то начинаются обратные процессы, и клетка достигает состояния покоя.

О потенциале действия

Говоря про преобразование нервного импульса и его распространение, следует отметить, что оно могло бы составлять жалкие миллиметры в секунду. Тогда бы сигналы от руки до мозга доходили бы за минуты, что явно нехорошо. Вот тут и играет свою роль в усилении потенциала действия рассмотренная ранее оболочка из миелина. А все её «пропуски» размещены таким образом, чтобы они только позитивно сказывались на скорости передачи сигналов. Так, когда импульсом достигается конец основной части одного тела аксона, то он передаётся либо следующей клетке, либо (если говорить о мозге) многочисленным ответвлениям нейронов. Вот в последних случаях работает немного другой принцип.

Как всё работает в мозгу?

Давайте поговорим, какая передаточная последовательность нервного импульса работает в наиболее важных частях нашей ЦНС. Здесь нейроны от своих соседей отделяются небольшими щелями, что называются синапсами. Потенциал действия не может переходить через них, поэтому он ищет иной способ, чтобы попасть к следующей нервной клетке. На конце каждого отростка есть небольшие мешочки, что называются пресинаптическими пузырьками. В каждом из них имеются особые соединения - нейромедиаторы. Когда к ним поступает потенциал действия, то высвобождаются из мешочков молекулы. Они пересекают синапс и присоединяются к особенным молекулярным рецепторам, что расположены на мембране. При этом нарушается равновесия и, вероятно, появляется новый потенциал действия. Достоверно это ещё не известно, нейрофизиологи занимаются изучениями вопроса и по сей день.

Работа нейромедиаторов

Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:

  1. Они будут диффундированы.
  2. Подвергнутся химическому расщеплению.
  3. Вернутся назад в свои пузырьки (это называется обратным захватом).

В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде "Прозака" блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.

Сейчас исследователи, которые изучают пограничные состояния человеческой психики, пробуют разобраться, как же это всё влияет на рассудок человека. Ну а пока же у нас нет ответа на такой фундаментальный вопрос: что же заставляет нейрон создавать потенциал действия? Пока механизм «запуска» этой клетки для нас является секретом. Особенно интересным с точки зрения данной загадки является работа нейронов главного мозга.

Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение - необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.

Некоторые теоретические особенности

В статье «нервный импульс» и «потенциал действия» использовались в качестве синонимов. Теоретически это верно, хотя в некоторых случаях необходимо учитывать некоторые особенности. Так, если вдаваться в детали, то потенциал действия является только частью нервного импульса. При детализированном рассмотрении ученых книг можно узнать, что так называют только изменение заряда мембраны с положительного на отрицательный, и наоборот. Тогда как под нервным импульсом понимают сложный структурно-электрохимический процесс. Он распространяется по мембране нейрона как бегущая волна изменений. Потенциал действия - всего лишь электрический компонент в составе нервного импульса. Он характеризирует изменения, что происходят с зарядом локального участка мембраны.

Где же создаются нервные импульсы?

Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:

  1. Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
  2. Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
  3. Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
  4. Аксонный холмик. Так называют место, где начинается аксон. Холмик - это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.

Пример распространяющегося возбуждения

Рассказ медицинскими терминами может вызвать непонимание отдельных моментов. Чтобы устранить это, стоит кратко пройтись по изложенным знаниям. В качестве примера возьмем пожар.

Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.

Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.