Нитроглицерин - одно из наиболее известных взрывчатых веществ, основа состава динамита. Он нашел широкое применение во многих областях промышленности благодаря своим характеристикам, однако до сих пор одна из главных проблем, связанных с ним - вопрос безопасности.

История

История нитроглицерина начинается с итальянского ученого-химика Асканьо Собреро. Он впервые синтезировал это вещество в 1846 году. Первоначально ему было дано название пироглицерина. Уже Собреро обнаружил его большую неустойчивость - нитроглицерин мог взрываться даже от слабых сотрясений или ударов.

Мощность взрыва нитроглицерина теоретически делала его перспективным реагентом в горнодобывающей и строительной промышленностях - он был гораздо эффективнее существовавших на то время видов взрывчатки. Однако упомянутая нестабильность создавала слишком большую угрозу при его хранении и транспортировке - поэтому нитроглицерин отложили в долгий ящик.

Дело чуть сдвинулось с места при появлении и его семьи - отец и сыновья наладили промышленное производство этого вещества в 1862 году, невзирая на все опасности, связанные с ним. Однако случилось то, что должно было случиться рано или поздно - на фабрике произошел взрыв, и младший брат Нобеля погиб. Отец после перенесенного горя отошел от дел, однако Альфред сумел продолжить производство. Для повышения безопасности он смешивал нитроглицерин с метанолом - смесь была более стабильной, однако очень пожароопасной. Это все еще не было окончательным решением.

Им стал динамит - нитроглицерин, поглощенный кизельгуром (осадочной породой). Взрывоопасность вещества уменьшилась на несколько порядков. Позже смесь совершенствовалась, кизельгур заменяли более эффективными стабилизаторами, однако суть оставалось той же - жидкость поглощалась и переставала взрываться от малейших сотрясений.

Физические и химические свойства

Нитроглицерин - это нитроэфир азотной кислоты и глицерина. В нормальных условиях это желтоватая, вязкая маслянистая жидкость. Нитроглицерин нерастворим в воде. Этим его свойством пользовался Нобель: чтобы после транспортировки подготовить нитроглицерин к применению и освободить его от метанола, он промывал смесь водой - метиловый спирт растворялся в ней и уходил, а нитроглицерин оставался. Это же свойство используют при получении нитроглицерина: водой продукт синтеза промывают от остатков реагентов.

Нитроглицерин гидролизуется (с образованием глицерина и азотной кислоты) при нагревании. Без нагревания идет щелочной гидролиз.

Взрывчатые свойства

Как уже было сказано, нитроглицерин крайне неустойчив. Однако здесь стоит сделать важное замечание: он восприимчив именно к механическому воздействию - взрывается от сотрясения или удара. Если просто поджечь его, жидкость, скорее всего, будет спокойно гореть без взрыва.

Стабилизация нитроглицерина. Динамит

Первым опытом по стабилизации нитроглицерина Нобеля был динамит - кизельгур полностью поглощал жидкость, и смесь была безопасной (до тех пор, конечно, пока ее не активируют в подрывной шашке). Причина, по которой используется именно кизельгур - Наличие микротрубочек в этой породе обусловливает эффективное всасывание жидкости (нитроглицерина) и удержание ее там на долгое время.

Получение в лаборатории

Реакция получения нитроглицерина в лаборатории сейчас все та же, которой пользовался еще Собреро - этерификация в присутствии серной кислоты. Сначала берется смесь азотной и серной кислот. Кислоты необходимы концентрированные, с малым количеством воды. Далее к смеси малыми порциями при постоянном перемешивании постепенно добавляется глицерин. Температура должна поддерживаться низкая, так как в горячем растворе вместо этерификации (образования эфира) будет происходить окисление глицерина азотной кислотой.

Но так как реакция идет с выделением большого количества тепла, смесь необходимо постоянно охлаждать (обычно это делается с помощью льда). Как правило, она держится в районе 0 °С, превышение отметки в 25 °С может грозить взрывом. Контроль температуры осуществляется постоянно с помощью термометра.

Нитроглицерин тяжелее воды, однако легче минеральных (азотной и серной) кислот. Поэтому в реакционной смеси продукт будет лежать отдельным слоем на поверхности. После окончания реакции сосуд необходимо еще охладить, подождать, пока в верхнем слое не скопится максимальное количество нитроглицерина, а потом слить его в другую емкость с холодной водой. Затем идет интенсивная промывка в больших объемах воды. Это необходимо для того, чтобы как можно лучше очистить нитроглицерин от всех примесей. Это важно, потому что в комплекте с остатками непрореагировавших кислот взрывоопасность вещества увеличивается в несколько раз.

Промышленное получение

В промышленности уже давно довели до автоматизации процесс получения нитроглицерина. Система, которая используется в настоящее время, в основных своих аспектах была придумана еще в 1935 году Биацци (и так и называется - установка Биацци). Главные технические решения в ней - это сепараторы. Первичная смесь непромытого нитроглицерина сначала в сепараторе под действием центробежных сил разделяется на две фазы - ту, что с нитроглицерином, отбирают для дальнейшей промывки, а кислоты остаются в сепараторе.

Остальные этапы производства совпадают со стандартными. То есть, смешивание глицерина и нитрующей смеси в реакторе (производится с помощью специальных насосов, перемешивается турбинной мешалкой, охлаждение более мощное - с помощью фреона), несколько этапов промывки (водой и чуть подщелоченной водой), перед каждым из которых идет этап с сепаратором.

Установка Биацци достаточно безопасна и обладает достаточно высокой производительностью по сравнению с другими технологиями (однако обычно большое количество продукта теряется при промывке).

Домашние условия

К сожалению, хотя, скорее, к счастью, синтез нитроглицерина в домашних условиях связан со слишком большим количеством трудностей, преодоление которых в основном не стоит результата.

Единственный возможный способ синтеза в домашних условиях - получение нитроглицерина из глицерина (как и в лабораторном способе). И здесь основная проблема - серная и азотная кислоты. Продажа этих реактивов разрешена только определенным юридическим лицам и строго контролируется государством.

Возникает очевидное решение - синтезировать их самостоятельно. Жюль Верн в своем романе "Таинственный остров", рассказывая об эпизоде изготовления главными героями нитроглицерина, опустил конечный момент процесса, однако крайне подробно описал процесс получения серной и азотной кислот.

Действительно заинтересовавшиеся могут заглянуть в книгу (первая часть, глава семнадцатая), однако и тут загвоздка - необитаемый остров буквально изобиловал необходимыми реактивами, поэтому в распоряжении героев оказались серный колчедан, водоросли, много угля (для обжига), калийная селитра и так далее. Будет ли это у среднестатистического увлекающегося человека? Вряд ли. Поэтому домашний нитроглицерин в абсолютном большинстве случаев остается лишь мечтой.

Если бы в своё время итальянский химик А. Сомбреро (Собре-ро) перепутал и вместо азотной кислоты взял в реакцию фосфорную, с него получился бы неплохой фармацевт и он никогда бы не знал что такое пиротехника , и он стал бы первооткрывателем препарата «глицерофосфат», применяемого при истощении организма. В конце концов, лучше бы он изобрёл знаменитую шляпу. Однако судьба распорядилась иначе и именно он в 1846 г. в лаборатории Пелуза синтезировал самое известное взрывчатое вещество тринитроглицерин (знаменитый нитролеум или просто нитроглицерин).

Поначалу Шарль Вюрц (1817-1884) приписал ему жиропо-добную структуру (1854), правда, как посчитали современники «ошибочную». Время всё расставляет по своим местам и сегодня точно установлено, что нитроглицерин действительно является не нитросоединением, а сложным эфиром азотной кислоты. Поэтому грамотнее называть его «глицерина тринитратом». В медицинской практике в качестве сердечно-сосудистого средства нитроглицерин, по-видимому, стал применяться после того, как его изобретатель с болью в сердце понял, что жить остался случайно.

Обнаружить даже следы нитроглицерина можно пробой Вербера: при добавлении анилина и концентрированной серной кислоты образуется пурпурное окрашивание, которое при разбавлении водой сменяется зелёным. В присутствии дифениламина и концентрированной серной кислоты нитроглицерин, как и все нитропроизводные, даёт синее окрашивание.
Его нагревание с раствором щёлочи и бисульфатом калия приводит к выделению акролеина — тошнотворного едкого продукта с запахом рождественского гуся, сгоревшего в духовке.

Качественный нитроглицерин должен выдерживать пробу Абеля: при 65°С не должна окрашиваться йод-крахмальная бумага от выделяющихся при разложении окислов азота.
В своё время (1872) французские химики-изобретатели Бутми и Фоше предложили оригинальный способ уменьшить саморазогревание в синтезе нитроглицерина и предложили предварительно готовить две смеси: сернокисло-глицериновую и серно-азотнокислую. Далее их смешивали в охлаждённом виде, при этом, время основной реакции растягивалось на сутки. Этот метод срочно внедрили в Во-нже (Франция), Намюре (Бельгия) и Дембере (Англия). Как показала практика, даже низкий выход конечного продукта и растянутость операций во времени не смогли гарантировать безопасность такого синтеза. Длительный контакт образующегося нитроглицерина с агрессивной средой многократно увеличивал опасность его спонтанного окисления, что и привело к очередной серии производственных взрывов .
Важным моментом для повышения безопасности синтеза нитроглицерина стало применение продувания реакционной массы сжатым воздухом. Такая операция впервые была внедрена на фабрике Мовбрея в Массачусетсе и хорошо себя зарекомендовала.
С 1880 г. большинство нитроглицериновых заводов перешло на так называемый метод Нобеля

Это аномальное вещество имеет сразу две температуры плавления 13,5°С и 2,9°С для стабильной и лабильной кристаллической модификации. Относительная плотность его в жидком состоянии 1,60115 и 1,59320, удельный вес кристаллов 1,735. Продукт склонен к переохлаждению. Кристаллы лабильной модификации имеют триклинную форму, стабильной - бипирамидально-ромбическую. Нитроглицерин легко переходит из лабильного состояния в стабильное при повышении температуры на 10°С.
Нитроглицерин детонирует при ударе (особенно между железными предметами), быстром нагревании выше 200°С или от прикосновения раскалённого предмета:

4C3H5(ONO2)3 -> 6N2 + 2СО2 + О2 + 10Н2О

При этом из 1 кг нитроглицерина образуется 650 л газообразных веществ.
Замечено, что его склонность к детонации на удар значительно снижается при использовании в производстве оборудования из свинца или меди.

Шамнион первым исследовал температурную деструкцию малых количеств нитроглицерина: при 185°С он активно выделяет бурые пары, при 194°С - медленно улетучивается, при 200°С - быстро испаряется, при 218°С - быстро сгорает, при 241°С - трудно
взрывается, при 257°С - сильно детонирует, при 267°С - взрывается более слабо, а при 287°С слабо детонирует с пламенем.
Впрочем, Конн в своё время установил, что от удара нитроглицерин детонирует на порядок мощнее, чем на раскалённой металлической пластинке, где взрыв может иметь вид слабой вспышки.
Более коварно поступает нитроглицерин, нагреваемый не по каплям, а в массе. Его разогревание до начала кипения (~180-184°С) заканчивается мощным взрывом.

Вопреки сложившемуся мнению, нитроглицерин воспламеняется трудно.
Зажжённый нитроглицерин постепенно сгорает, пока температура массы не превысит 180°С и не прогремит взрыв!
Нитроглицерин является одним из наиболее могучих ВВ. Он имеет положительный кислородный баланс (+3,5%). Скорость его детонации достигает до 7,7 км/с, хотя известны низкоскоростные режимы его взрыва, не превышающие 1,5 км/с. Теплота взрыва нитроглицерина 6220 кДж/ кг, а работоспособность в свинцовой бомбе (проба Трауцля) 550 мл. Его детонацию вызывает груз массой 2 кг, падающий с высоты всего 4 см.

Замёрзший нитроглицерин почти в 3-10 раз менее чувствителен к удару, но очень капризно переносит трение и потому ещё более опасен. Лучшим средством для его надёжной детонации является капсюль с гремучей ртутью (0,1-0,3 г для жидкого и 1-2 г для замороженного). Именно в твёрдом состоянии нитроглицерин развивает рекордную скорость детонации 9,15 км/с.
Он хорошо растворяет в себе некоторые органические вещества, например, камфору и «растворимый пироксилин» (коллодий). Благодаря этому ценному качеству и прекрасным горючим характеристикам нитроглицерин широко применяется в производстве современных видов пороха и твёрдого ракетного топлива.

Нитроглицерин в большой дозе проявляет ядовитые свойства. Свободно впитываясь через кожу, он вызывает головокружение и сильную головную боль, устранить которую можно только чашкой крепкого кофе, желательно с анальгином. Интересно, что бывалые рабочие переносят контакт с коварной жидкостью безболезненно. А вот с дозой более 10 г, принятой внутрь, как известно, пока не справился никто.

Изобретатель : Альфред Нобель
Страна : Швеция
Время изобретения : 1867 г.

На протяжении нескольких веков людям было известно только одно взрывчатое вещество - черный , широко применявшийся как на войне, так и при мирных взрывных работах. Но вторая половина XIX столетия ознаменовалась изобретением целого семейства новых взрывчатых веществ, разрушительная сила которых в сотни и тысячи раз превосходила силу пороха.

Их созданию предшествовало несколько открытий. Еще в 1838 году Пелуз провел первые опыты по нитрации органических веществ. Суть этой реакции заключается в том, что многие углеродистые вещества при обработке их смесью концентрированных азотной и серной кислот отдают свой водород, принимают взамен нитрогруппу NO2 и превращаются в мощную взрывчатку.

Другие химики исследовали это интересное явление. В частности, Шенбейн, нитрируя хлопок, в 1846 году получил пироксилин. В 1847 году, воздействуя подобным образом на глицерин, Собреро открыл нитроглицерин - взрывчатое вещество, обладавшее колоссальной разрушительной силой. Поначалу нитроглицерин никого не заинтересовал. Сам Собреро только через 13 лет вернулся к своим опытам и описал точный способ нитрации глицерина.

После этого новое вещество нашло некоторое применение в горном деле. Первоначально его вливали в скважину, затыкали ее глиной и взрывали посредством погружаемого в него патрона. Однако наилучший эффект достигался при воспламенении капсюля с гремучей ртутью.

Чем же объясняется исключительная взрывная сила нитроглицерина? Было установлено, что при взрыве происходит его разложение, в результате чего сначала образуются газы CO2, CO, H2, CH4, N2 и NO, которые вновь взаимодействуют между собой с выделением огромного количества теплоты. Конечную реакцию можно выразить формулой: 2C3H5(NO3)3 = 6CO2 + 5H2O + 3N + 0, 5O2.

Разогретые до огромной температуры эти газы стремительно расширяются, оказывая на окружающую среду колоссальное давление. Конечные продукты взрыва совершенно безвредны. Все это, казалось, делало нитроглицерин незаменимым при подземных взрывных работах. Но вскоре оказалась, что изготовление, хранение и перевозка этой жидкой взрывчатки чреваты многими опасностями.

Вообще, чистый нитроглицерин довольно трудно воспламенить от открытого огня. Зажженная тухла в нем без всяких последствий. Но зато его чувствительность к ударам и сотрясениям (детонации) была во много раз выше, чем у черного пороха. При ударе, часто совсем незначительном, в слоях, подвергшихся сотрясению, происходило быстрое повышение температуры до начала взрывной реакции. Мини-взрыв первых слоев производил новый удар на более глубокие слои, и так продолжалось до тех пор, пока не происходил взрыв всей массы вещества.

Порой без всякого воздействия извне нитроглицерин вдруг начинал разлагаться на органические кислоты, быстро темнел, и тогда достаточно было самого ничтожного сотрясения бутыли, чтобы вызвать ужасный взрыв. После целого ряда несчастных случаев применение нитроглицерина было почти повсеместно запрещено. Тем промышленникам, которые наладили выпуск этой взрывчатки, оставалось два выхода - либо найти такое состояние, при котором нитроглицерин будет менее чувствителен к детонации, либо свернуть свое производство.

Одним из первых заинтересовался нитроглицерином шведский инженер Альфред Нобель, основавший завод по его выпуску. В 1864 году его фабрика взлетела на воздух вместе с рабочими. Погибло пять человек, в том числе брат Альфреда Эмиль, которому едва исполнилось 20 лет. После этой катастрофы Нобелю грозили значительные убытки - нелегко было убедить людей вкладывать деньги в такое опасное предприятие.

Несколько лет он изучал свойства нитроглицерина и в конце концов сумел наладить вполне безопасное его производство. Но оставалась проблема транспортировки. После многих экспериментов Нобель установил, что растворенный в спирте нитроглицерин менее чувствителен к детонации. Однако этот способ не давал полной надежности. Поиски продолжались, и тут неожиданный случай помог блестяще разрешить проблему.

При перевозке бутылей с нитроглицерином, чтобы смягчить тряску, их помещали в кизельгур - особую инфузорную землю, добывавшуюся в Ганновере. Кизельгур состоял из кремневых оболочек водорослей с множеством полостей и канальцев. И вот как-то раз при пересылке одна бутыль с нитроглицерином разбилась, и ее содержимое вылилось на землю. У Нобеля возникла мысль произвести несколько опытов с этим пропитанным нитроглицерином кизельгуром.

Оказалось, что взрывные свойства нитроглицерина нисколько не уменьшались от того, что его впитала пористая земля, но зато его чувствительность к детонации снижалась в несколько раз. В этом состоянии он не взрывался ни от трения, ни от слабого удара, ни от горения. Но зато при воспламенении небольшого количества гремучей ртути в металлическом капсюле происходил взрыв той же силы, какую давал в том же объеме чистый нитроглицерин. Другими словами, это было как раз то, что нужно, и даже гораздо более того, что надеялся получить Нобель. В 1867 году он взял патент на открытое им соединение, которое назвал динамитом.

Взрывная сила динамита столь же огромна, как и у нитроглицерина: 1 кг динамита в 1/50000 секунды развивает силу в 1000000 кгм, то есть достаточную для того чтобы поднять 1000000 кг на 1 м. При этом если 1 кг черного пороха превращался в газ за 0, 01 секунды, то 1 кг динамита - за 0, 00002 секунды. Но при всем этом качественно изготовленный динамит взрывался только от очень сильного удара. Зажженный прикосновением огня, он постепенно сгорал без взрыва, синеватым пламенем.

Взрыв наступал только при зажигании большой массы динамита (более 25 кг). Подрыв динамита, как и нитроглицерина, лучше всего было проводить с помощью детонации. Для этой цели Нобель в том же 1867 году изобрел гремучертутный капсюльный детонатор. Динамит сразу нашел широчайшее применение при строительстве шоссе, туннелей, каналов, железных дорог и других объектов, что во многом предопределило стремительный рост состояния его изобретателя. Первую фабрику по производству динамита Нобель основал во Франции, затем он наладил его производство в Германии и Англии. За тридцать лет торговля динамитом принесла Нобелю колоссальное богатство - около 35 миллионов крон.

Процесс изготовления динамита сводился к нескольким операциям. Прежде всего, необходимо было получить нитроглицерин. Это было наиболее сложным и опасным моментом во всем производстве. Реакция нитрации происходила, если 1 часть глицерина обрабатывали тремя частями концентрированной азотной кислоты в присутствии 6 частей концентрированной серной кислоты. Уравнение имело следующий вид: C3H5(OH)3 + 3HNO3 = C3H5(NO3)3 + 3H2O.

Серная кислота в соединении не участвовала, но ее присутствие было необходимо, во-первых, для поглощения выделявшейся в результате реакции воды, которая в противном случае, разжижая азотную кислоту, тем самым препятствовала бы полноте реакции, а, во-вторых, для выделения образующегося нитроглицерина из раствора в азотной кислоте, так как он, будучи хорошо растворим в этой кислоте, не растворялся в ее смеси с серной.

Нитрация сопровождалась сильным выделением теплоты. Причем если бы вследствие нагревания температура смеси поднялась выше 50 градусов, то течение реакции направилось бы в другую сторону - началось бы окисление нитроглицерина, сопровождающееся бурным выделением окислов азота и еще большим нагреванием, которое бы привело к взрыву.

Поэтому нитрацию нужно было вести при постоянном охлаждении смеси кислот и глицерина, прибавляя последний понемногу и постоянно размешивая каждую порцию. Образующийся непосредственно при соприкосновении с кислотами нитроглицерин, обладая меньшей плотностью сравнительно с кислой смесью, всплывал на поверхность, и его можно было легко собрать по окончании реакции.

Приготовление кислотной смеси на заводах Нобеля происходило в больших цилиндрических чугунных сосудах, откуда смесь поступала в так называемый нитрационный аппарат. В такой установке можно было за раз обработать около 150 кг глицерина. Впустив требуемое количество кислотной смеси и охладив ее (пропуская холодный сжатый воздух и холодную воду через змеевики) до 15-20 градусов, начинали вбрызгивать охлажденный глицерин. При этом следили, чтобы температура в аппарате не поднималась выше 30 градусов. Если температура смеси начинала быстро подниматься и приближалась к критической, содержимое чана можно было быстро выпустить в большой сосуд с холодной водой.

Операция образования нитроглицерина продолжалась около полутора часов. После этого смесь поступала в сепаратор - свинцовый четырехугольный ящик с коническим дном и двумя кранами, один из которых находился в нижней части, а другой - сбоку. Как только смесь отстаивалась и разделялась, нитроглицерин выпускали через верхний кран, а кислотную смесь - через нижний. Полученный нитроглицерин несколько раз промывали от избытка кислот, так как кислота могла вступить с ним в реакцию и вызвать его разложение, что неминуемо вело к взрыву.

Во избежание этого в герметический чан с нитроглицерином подавали воду и перемешивали смесь с помощью сжатого воздуха. Кислота растворялась в воде, а так как плотности воды и нитроглицерина сильно различались, отделить их затем друг от друга не составляло большого труда. Для того чтобы удалить остатки воды, нитроглицерин пропускали через несколько слоев войлока и поваренной соли.

В результате всех этих действий получалась маслянистая жидкость желтоватого цвета без запаха и очень ядовитая (отравление могло происходить как при вдыхании паров, так и при попадании капель нитроглицерина на кожу). При нагревании свыше 180 градусов она взрывалась с ужасной разрушительной силой.

Приготовленный нитроглицерин смешивали с кизельгуром. Перед этим кизельгур промывали и тщательно измельчали. Пропитывание его нитроглицерином происходило в деревянных ящиках, выложенных внутри свинцом. После смешения с нитроглицерином динамит протирали через решето и набивали в пергаментные патроны.

В кизельгуровом динамите во взрывной реакции участвовал только нитроглицерин. В дальнейшем Нобель придумал пропитывать нитроглицерином различные сорта пороха. В этом случае порох тоже участвовал в реакции и значительно увеличивал силу взрыва.

Нитроглицерин (глицеринтринитрат, тринитроглицерин, тринитрин, НГЦ) - сложный эфир глицерина и азотной кислоты. Исторически сложившееся название «нитроглицерин» с точки зрения современной номенклатуры является несколько некорректным, поскольку нитроглицерин является нитроэфиром, а не «классическим» нитросоединением. Широко известен благодаря своим взрывчатым (и в некоторой степени лекарственным) свойствам. Химическая формула CHONO2(CH2ONO2)2. Впервые синтезирован итальянским химиком Асканьо Собреро в 1847 году, первоначально был назван «пироглицерин» (итал. pyroglycerina).

Согласно номенклатуре IUPAC именуется 1,2,3-тринитроксипропан.

Получение

В лаборатории получают этерификацией глицерина смесью концентрированной азотной и серной кислот (1:1 по мольному соотношению). Кислоты и глицерин должны быть очищены от примесей. Для этого предварительно по каплям при постоянном перемешивании смешивают кислоты, изготавливая таким образом нитрующую смесь, и добавляют к глицерину.

Описание реакции: −HSO4+−NO3↔−2HS[O]O4+NO·2

В концентрированном состоянии серная кислота диссоциирует только на один протон на молекулу. Атом серы VI является сильным акцептором электронных пар и «отнимает» у нитратного иона атом кислорода с электронной парой. Образуется свободный радикал ·NO2. Реакция равновесна с сильным смещением равновесия влево.

Затем эту смесь кислот и глицерина выдерживают 8 часов при температуре 40 °C на водяной бане(чем дольше идёт нитрование - тем выше выход нитроглицерина). Жидкость расслаивается на два слоя. Нитроглицерин тяжелее глицерина и опускается на дно - это нижний слегка желтоватый слой.

Описание реакции: CH2OH-CHOH-CH2OH+3NO·2+3−2HS[O]O4+3+H→CHONO2(CH2ONO2)2+3−HSO4+3H2O

Нитроглицерин отделяют от непрореагировавшего глицерина и кислоты и промывают содовым раствором до полной нейтрализации кислот. При добавлении спирта чувствительность резко падает. В промышленности получают непрерывным нитрованием глицерина нитрующей смесью в специальных инжекторах. В связи с возможной опасностью взрыва, НГЦ не хранят, а сразу перерабатывают в бездымный порох или взрывчатые вещества.

Физикохимические свойства

Сложный эфир глицерина и азотной кислоты. Прозрачная вязкая нелетучая жидкость (как масло), склонная к переохлаждению. Смешивается с органическими растворителями, почти нерастворим в воде (0.13 % при 20 °C, 0,2 % при 50 °C, 0,35 % при 80 °C, по другим данным[источник не указан 849 дней] 1,8 % при 20 °C и 2,5 % при 50 °C). При нагревании с водой до 80 °C гидролизуется. Быстро разлагается щёлочами.

Токсичен, всасывается через кожу, вызывает головную боль. Очень чувствителен к удару, трению, высоким температурам, резкому нагреву и т. п. Чувствительность к удару для груза 2 кг - 4 см (гремучая ртуть - 2 см, тротил - 100 см). Весьма опасен в обращении. При осторожном поджигании в малых количествах неустойчиво горит синим пламенем. Температура кристаллизации 13,5 °C (стабильная модификация, лабильная кристаллизуется при 2,8 °C). Кристаллизуется со значительным увеличением чувствительности к трению. При нагревании до 50 °C начинает медленно разлагаться и становится ещё более взрывоопасным. Температура вспышки около 200 °C. Теплота взрыва 6,535 МДж/кг. Температура взрыва 4110 °C. Несмотря на высокую чувствительность, восприимчивость к детонации довольно низка - для полного взрыва необходим капсюль-детонатор № 8. Скорость детонации 7650 м/с. 8000-8200 м/c - в стальной трубе диаметром 35 мм, инициирован с помощью детонатора № 8. В обычных условиях жидкий НГЦ часто детонирует в низкоскоростном режиме 1100-2000 м/с. Плотность 1,595 г/см³, в твёрдом виде - 1,735 г/см³. Твёрдый нитроглицерин менее чувствителен к удару, но более к трению, поэтому очень опасен. Объем продуктов взрыва 715 л/кг. Фугасность и бризантность сильно зависят от способа инициирования, при использовании слабого детонатора мощность сравнительно невелика. Фугасность в песке - 390 мл, в воде - 590 мл (кристаллического несколько выше), работоспособность (фугасность) в свинцовой бомбе 550 см³. Применяется как компонент некоторых жидких ВВ, динамитов и главным образом бездымных порохов (пластификатор - нитроцеллюлоза). Кроме того, в малых концентрациях применяется в медицине.

Применение во взрывотехнике

Нитроглицерин широко применялся во взрывотехнике. В чистом виде он очень неустойчив и опасен. После открытия Собреро нитроглицерина, в 1853 г. русский химик Зинин предложил использовать его в технических целях. Спустя 10 лет инженер Петрушевский первым начал производить его в больших количествах, под его руководством нитроглицерин был применён в горном деле в 1867 г. Альфред Нобель в 1863 г. изобрёл инжектор-смеситель для производства нитроглицерина и капсюль-детонатор, а в 1867 г. - динамит, получаемый смешением нитроглицерина с кизельгуром (диатомитом, инфузорной землёй).