Оксиды – сложные вещества, состоящие из двух элементов, один из которых кислород. В названиях оксидов сначала указывают слово оксид, затем название второго элемента, которым он образован. Какие особенности имеют кислотные оксиды, и чем они отличаются от других видов оксидов?

Классификация оксидов

Оксиды делятся на солеобразующие и несолеобразующие. Уже по названию ясно, что несолеобразующие не образуют солей. Таких оксидов немного: это вода H 2 O, фторид кислорода OF 2 (если условно его считать оксидом), угарный газ, или оксид углерода (II), монооксид углерода CO; оксиды азота (I) и (II): N 2 O (оксид диазота, веселящий газ) и NO (монооксид азота).

Солеобразующие оксиды образуют соли при взаимодействии с кислотами или щелочами. В качестве гидроксидов им соответствуют основания, амфотерные основания и кислородосодержащие кислоты. Соответственно они называются основными оксидами (например, CaO), амфотерными оксидами (Al 2 O 3) и кислотными оксидами, или ангидридами кислот (CO 2).

Рис. 1. Виды оксидов.

Часто перед учащимися встает вопрос, как отличить основной оксид от кислотного. Прежде всего необходимо обратить внимание на второй элемент рядом с кислородом. Кислотные оксиды – содержат неметалл или переходный металл (CO 2 , SO 3 , P 2 O 5) основные оксиды – содержат металл (Na 2 O, FeO, CuO).

Основные свойства кислотных оксидов

Кислотные оксиды (ангидриды) – вещества, которые проявляют кислотные свойства и образуют кислородосодержащие кислоты. Следовательно, кислотным оксидам соответствуют кислоты. Например, кислотным оксидам SO 2 ,SO 3 соответствуют кислоты H 2 SO 3 и H 2 SO 4 .

Рис. 2. Кислотные оксиды с соответствующими кислотами.

Кислотные оксиды, образуемые неметаллами и металлами с переменной валентностью в высшей степени окисления (например, SO 3 , Мn 2 O 7), реагируют с основными оксидами и щелочами, образуя соли:

SO 3 (кислотный оксид)+CaO (основной оксид)=СaSO 4 (соль);

Типичными реакциями являются взаимодействие кислотных оксидов с основаниями в результате чего образуется соль и вода:

Mn 2 O 7 (кислотный оксид)+2KOH (щелочь)=2KMnO 4 (соль)+H 2 O (вода)

Все кислотные оксиды, кроме диоксида кремния SiO 2 (кремниевый ангидрид, кремнезем), реагируют с водой, образуя кислоты:

SO 3 (кислотный оксид)+H 2 O (вода)=H 2 SO 4 (кислота)

Кислотные оксиды образуются при взаимодействии с кислородом простых и сложных веществ (S+O 2 =SO 2), либо при разложении в результате нагревания сложных веществ, содержащих кислород, – кислот, нерастворимых оснований, солей (H 2 SiO 3 =SiO 2 +H 2 O).

Список кислотных оксидов:

Название кислотного оксида Формула кислотного оксида Свойства кислотного оксида
Оксид серы (IV) SO 2 бесцветный токсичный газ с резким запахом
Оксид серы (VI) SO 3 легколетучая безцветная токсичная жидкость
Оксид углерода (IV) CO 2 бесцветный газ без запаха
Оксид кремния (IV) SiO 2 бесцветные кристаллы, обладающие прочностью
Оксид фосфора (V) P 2 O 5 белый легковозгораемый порошок с неприятным запахом
Оксид азота (V) N 2 O 5 вещество, состоящее из бесцветных летучих кристаллов
Оксид хлора (VII) Cl 2 O 7 бесцветная маслянистая токсичная жидкость
Оксид марганца (VII) Mn 2 O 7 жидкость с металлическим блеском, являющаяся сильным окислителем.

Рис. 3. Примеры кислотные оксиды.

Что мы узнали?

Кислотные оксиды относятся к солеобразующим оксидам и образуются с помощью кислот. Кислотные оксиды вступают в реакции с основаниями и водой, а их образование происходит при нагревании и разложении сложных веществ.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 532.

30.0061 г/моль Физические свойства Состояние (ст. усл.) бесцветный газ Плотность 0,00134 (газ) г/см³ Термические свойства Температура плавления −163.6 °C Температура кипения −151.7 °C Энтальпия образования (ст. усл.) 81 кДж/моль Химические свойства Растворимость в воде 0,01 г/100 мл Классификация Рег. номер CAS

Оксид азота(II) (мон(о)оксид азота , окись азота , нитрозил-радикал ) NO - несолеобразующий оксид азота . Он представляет собой бесцветный газ, плохо растворимый в воде. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N 2 O 2 . Это непрочные соединения с ΔH° димеризации = 17 кДж. Жидкий оксид азота(II) на 25 % состоит из молекул N 2 O 2 , а твердый оксид целиком состоит из них.

Получение

Оксид азота(II) - единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200-1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах:

N 2 + O 2 → 2NO - 180,9 кДж 2NO + O 2 → 2NO 2 .

При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты .

В лаборатории его обычно получают взаимодействием 30%-ной HNO 3 с некоторыми металлами , например, с медью :

3Cu + 8HNO 3 (30 %) → 3Cu(NO 3) 2 + 2NO + 4H 2 O.

Более чистый, не загрязнённый примесями NO можно получить по реакциям:

FeCl 2 + NaNO 2 + 2HCl → FeCl 3 + NaCl + NO + H 2 O; 2HNO 2 + 2HI → 2NO + I 2 ↓ + 2H 2 O.

Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии , Cr 2 O 3 (как катализаторов):

4NH 3 + 5O 2 → 4NO + 6H 2 O.

Химические свойства

При комнатной температуре и атмосферном давлении окисление NO кислородом воздуха происходит мгновенно:

2NO + O 2 → 2NO 2

Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя:

2NO + Cl 2 → 2NOCl (нитрозилхлорид).

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

2SO 2 + 2NO → 2SO 3 + N 2 .

В воде NO мало растворим и с ней не реагирует, являясь несолеобразующим оксидом.

Физиологическое действие

Как и все оксиды азота (кроме N 2 O), NO - токсичен, при вдыхании поражает дыхательные пути.

За два последних десятилетия было установлено, что эта молекула NO обладает широким спектром биологического действия, которое условно можно разделить на регуляторное, защитное и вредное. NO, являясь одним из мессенджеров, участвует в регуляции систем внутри- и межклеточной сигнализации. Оксид азота, производимый клетками эндотелия сосудов, отвечает за расслабление гладких мышц сосудов и их расширение(вазодилатацию), предотвращает агрегацию тромбоцитов и адгезию нейрофилов к эндотелию, участвует в различных процессах в нервной, репродуктивной и иммунной системах. NO также обладает цитотоксическими и цитостатическими свойствами. Клетки-киллеры иммунной системы используют оксид азота для уничтожения бактерий и клеток злокачественных опухолей. С нарушением биосинтеза и метаболизма NO связаны такие заболевания, как эссенциальная артериальная гипертензия, ишемическая болезнь сердца, инфаркт миокарда, первичная легочная гипертензия, бронхиальная астма, невротическая депрессия, эпилепсия, нейродегенеративные заболевания (болезнь Альцгеймера, болезнь Паркинсона), сахарный диабет, импотенция и др.

Оксид азота может синтезироваться несколькими путями. Растения используют неферментативную фотохимическую реакцию между NO 2 и каротиноидами. У животных синтез осуществляют семейство NO-синтаз (NOS). NOS-ферменты - члены гем-содержащего суперсемейства ферментов, названных монооксигеназами. В зависимости от структуры и функций, NOS могут быть разделены на три группы: эндотелиальные (eNOS), нейрональные (nNOS) и индуцибельные (iNOS). В активный центр любой из NO-синтаз входит железопорфириновый комплекс, содержащий аксиально координированный цистеин или метионин. Хотя все изоформы NOS катализируют образование NO, все они являются продуктами различных генов, каждая из них имеет свои особенности как в механизмах действия и локализации, так и в биологическом значении для организма. Поэтому указанные изоформы принято также подразделять на конститутивную (cNOS) и индуцибельную (iNOS) синтазы оксида азота.

cNOS постоянно находится в цитоплазме, зависит от концентрации ионов кальция и кальмодулина (белок, являющийся внутриклеточным посредником переноса ионов кальция) и способствует выделению небольшого количества NO на короткий период в ответ на стимуляцию рецепторов.Индуцибельная NOS появляется в клетках только после индукции их бактериальными эндотоксинами и некоторыми медиаторами воспаления, такими как гамма-интерферон, фактор некроза опухоли и др. Количество NO, образующегося под влиянием iNOS, может варьировать и достигать больших количеств (наномолей). При этом продукция NO сохраняется длительнее.

Характерной особенностью NO является способность быстро (менее чем за 5 секунд) диффундировать через мембрану синтезировавшей его клетки в межклеточное пространство и легко (без участия рецепторов) проникать в клетки-мишени. Внутри клетки он активирует одни энзимы и ингибирует другие, таким образом, участвуя в регуляции клеточных функций. По сути, монооксид азота является локальным тканевым гормоном. NO играет ключевую роль в подавлении активности бактериальных и опухолевых клеток путем либо блокирования некоторых их железосодержащих ферментов, либо путем повреждения их клеточных структур оксидом азота или свободными радикалами, образующимися из оксида азота. Одновременно в очаге воспаления накапливается супероксид, который вызывает повреждение белков и липидов клеточных мембран, что и объясняет его цитотоксическое действие на клетку-мишень. Следовательно, NO, избыточно накапливаясь в клетке, может действовать двояко: с одной стороны вызывать повреждение ДНК и с другой - давать провоспалительный эффект.

Оксид азота способен инициировать образование кровеносных сосудов . В случае инфаркта миокарда оксид азота играет положительную роль, так как индуцирует новый сосудистый рост, но при раковых заболеваниях тот же самый процесс вызывает развитие опухолей, способствуя питанию и росту раковых клеток. С другой стороны, вследствие этого улучшается доставка оксида азота в опухолевые клетки. Повреждение ДНК под действием NO является одной из причин развития

Сегодня мы начинаем знакомство с важнейшими классами неорганических соединений. Неорганические вещества по составу делятся, как вы уже знаете, на простые и сложные.


ОКСИД

КИСЛОТА

ОСНОВАНИЕ

СОЛЬ

Э х О у

Н n A

А – кислотный остаток

Ме(ОН) b

ОН – гидроксильная группа

Me n A b

Сложные неорганические вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли. Мы начинаем с класса оксидов.

ОКСИДЫ

Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых кислород, с валентность равной 2. Лишь один химический элемент - фтор, соединяясь с кислородом, образует не оксид, а фторид кислорода OF 2 .
Называются они просто - "оксид + название элемента" (см. таблицу). Если валентность химического элемента переменная, то указывается римской цифрой, заключённой в круглые скобки, после названия химического элемента.

Формула

Название

Формула

Название

оксид углерода (II)

Fe 2 O 3

оксид железа (III)

оксид азота (II)

CrO 3

оксид хрома (VI)

Al 2 O 3

оксид алюминия

оксид цинка

N 2 O 5

оксид азота (V)

Mn 2 O 7

оксид марганца (VII)

Классификация оксидов

Все оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные) и несолеобразующие или безразличные.

Оксиды металлов Ме х О у

Оксиды неметаллов неМе х О у

Основные

Кислотные

Амфотерные

Кислотные

Безразличные

I, II

Ме

V-VII

Me

ZnO,BeO,Al 2 O 3 ,

Fe 2 O 3 , Cr 2 O 3

> II

неМе

I, II

неМе

CO, NO, N 2 O

1). Основные оксиды – это оксиды, которым соответствуют основания. К основным оксидам относятся оксиды металлов 1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II (кроме ZnO - оксид цинка и BeO – оксид берилия):

2). Кислотные оксиды – это оксиды, которым соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп с валентностью от V до VII (Например, CrO 3 -оксид хрома (VI), Mn 2 O 7 - оксид марганца (VII)):


3). Амфотерные оксиды – это оксиды, которым соответствуют основания и кислоты. К ним относятся оксиды металлов главных и побочных подгрупп с валентностью III , иногда IV , а также цинк и бериллий (Например, BeO , ZnO , Al 2 O 3 , Cr 2 O 3 ).

4). Несолеобразующие оксиды – это оксиды безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II (Например, N 2 O , NO , CO ).

Вывод:характер свойств оксидов в первую очередь зависит от валентности элемента.

Например, оксиды хрома:

CrO ( II - основный);

Cr 2 O 3 ( III - амфотерный);

CrO 3 ( VII - кислотный).

Классификация оксидов

(по растворимости в воде)

Кислотные оксиды

Основные оксиды

Амфотерные оксиды

Растворимы в воде.

Исключение – SiO 2

(не растворим в воде)

В воде растворяются только оксиды щелочных и щелочноземельных металлов

(это металлы

I «А» и II «А» групп,

исключение Be , Mg )

С водой не взаимодействуют.

В воде не растворимы

Выполните задания:

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выпишите оксиды и классифицируйте их.

Получение оксидов

Тренажёр "Взаимодействие кислорода с простыми веществами"

1. Горение веществ (Окисление кислородом)

а) простых веществ

Тренажёр

2Mg +O 2 =2MgO

б) сложных веществ

2H 2 S+3O 2 =2H 2 O+2SO 2

2.Разложение сложных веществ

(используйте таблицу кислот, см. приложения)

а) солей

СОЛЬ t = ОСНОВНЫЙ ОКСИД+КИСЛОТНЫЙ ОКСИД

СaCO 3 =CaO+CO 2

б) Нерастворимых оснований

Ме(ОН) b t = Me x O y + H 2 O

Cu (OH) 2 t =CuO+H 2 O

в) кислородсодержащих кислот

Н n A = КИСЛОТНЫЙ ОКСИД + H 2 O

H 2 SO 3 =H 2 O+SO 2

Физические свойства оксидов

При комнатной температуре большинство оксидов - твердые вещества (СаО, Fe 2 O 3 и др.), некоторые - жидкости (Н 2 О, Сl 2 О 7 и др.) и газы (NO, SO 2 и др.).

Химические свойства оксидов

ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ

1. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

2. Основной оксид + Кислота = Соль + Н 2 О (р. обмена)

3 K 2 O + 2 H 3 PO 4 = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Вода = Щёлочь (р. соединения)

Na 2 O + H 2 O = 2 NaOH

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ

1. Кислотный оксид + Вода = Кислота (р. соединения)

С O 2 + H 2 O = H 2 CO 3 , SiO 2 – не реагирует

2. Кислотный оксид + Основание = Соль + Н 2 О (р. обмена)

P 2 O 5 + 6 KOH = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

4. Менее летучие вытесняют более летучие из их солей

CaCO 3 + SiO 2 = CaSiO 3 + CO 2

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ

Взаимодействуют как с кислотами, так и со щелочами.

ZnO + 2 HCl = ZnCl 2 + H 2 O

ZnO + 2 NaOH + H 2 O = Na 2 [ Zn (OH ) 4 ] (в растворе)

ZnO + 2 NaOH = Na 2 ZnO 2 + H 2 O (при сплавлении)

Применение оксидов

Некоторые оксиды не растворяются в воде, но многие вступают с водой в реакции соединения:

SO 3 + H 2 O = H 2 SO 4

CaO + H 2 O = Ca ( OH ) 2

В результате часто получаются очень нужные и полезные соединения. Например, H 2 SO 4 – серная кислота, Са(ОН) 2 – гашеная известь и т.д.

Если оксиды нерастворимы в воде, то люди умело используют и это их свойство. Например, оксид цинка ZnO – вещество белого цвета, поэтому используется для приготовления белой масляной краски (цинковые белила). Поскольку ZnO практически не растворим в воде, то цинковыми белилами можно красить любые поверхности, в том числе и те, которые подвергаются воздействию атмосферных осадков. Нерастворимость и неядовитость позволяют использовать этот оксид при изготовлении косметических кремов, пудры. Фармацевты делают из него вяжущий и подсушивающий порошок для наружного применения.

Такими же ценными свойствами обладает оксид титана (IV) – TiO 2 . Он тоже имеет красивый белый цвет и применяется для изготовления титановых белил. TiO 2 не растворяется не только в воде, но и в кислотах, поэтому покрытия из этого оксида особенно устойчивы. Этот оксид добавляют в пластмассу для придания ей белого цвета. Он входит в состав эмалей для металлической и керамической посуды.

Оксид хрома (III) – Cr 2 O 3 – очень прочные кристаллы темно-зеленого цвета, не растворимые в воде. Cr 2 O 3 используют как пигмент (краску) при изготовлении декоративного зеленого стекла и керамики. Известная многим паста ГОИ (сокращение от наименования “Государственный оптический институт”) применяется для шлифовки и полировки оптики, металлических изделий, в ювелирном деле.

Благодаря нерастворимости и прочности оксида хрома (III) его используют и в полиграфических красках (например, для окраски денежных купюр). Вообще, оксиды многих металлов применяются в качестве пигментов для самых разнообразных красок, хотя это – далеко не единственное их применение.

Задания для закрепления

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выберите из перечня: основные оксиды, кислотные оксиды, безразличные оксиды, амфотерные оксиды и дайте им названия .

3. Закончите УХР, укажите тип реакции, назовите продукты реакции

Na 2 O + H 2 O =

N 2 O 5 + H 2 O =

CaO + HNO 3 =

NaOH + P 2 O 5 =

K 2 O + CO 2 =

Cu(OH) 2 = ? + ?

4. Осуществите превращения по схеме:

1) K → K 2 O → KOH → K 2 SO 4

2) S→SO 2 →H 2 SO 3 →Na 2 SO 3

3) P→P 2 O 5 →H 3 PO 4 →K 3 PO 4

Реферат на тему:

Оксид азота(II)



План:

    Введение
  • 1 Получение
  • 2 Химические свойства
  • 3 Физиологическое действие
  • 4 Применение
  • 5 Смотри также

Введение

Оксид азота (II) (мон(о)оксид азота , окись азота , нитрозил-радикал ) NO - несолеобразующий оксид азота. Он представляет собой бесцветный газ, плохо растворимый в воде. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N 2 O 2 . Это непрочные соединения с ΔH° димеризации = 17 кДж. Жидкий оксид азота (II) на 25 % состоит из молекул N 2 O 2 , а твердый оксид целиком состоит из них.


1. Получение

Оксид азота (II) - единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200-1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах:

N 2 + O 2 → 2NO - 180,9 кДж

и тотчас же реагирует с кислородом:

2NO + O 2 → 2NO 2 .

При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты.

В лаборатории его обычно получают взаимодействием 30%-ной HNO 3 с некоторыми металлами, например, с медью:

3Cu + 8HNO 3 (30 %) → 3Cu(NO 3) 2 + 2NO + 4H 2 O.

Более чистый, не загрязнённый примесями NO можно получить по реакциям:

FeCl 2 + NaNO 2 + 2HCl → FeCl 3 + NaCl + NO + H 2 O; 2HNO 2 + 2HI → 2NO + I 2 ↓ + 2H 2 O.

Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии Pt, Cr 2 O 3 (как катализаторов):

4NH 3 + 5O 2 → 4NO + 6H 2 O.

2. Химические свойства

При комнатной температуре и атмосферном давлении окисление NO кислородом воздуха происходит мгновенно:

2NO + O 2 → 2NO 2

Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя:

2NO + Cl 2 → 2NOCl (нитрозилхлорид).

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

2SO 2 + 2NO → 2SO 3 + N 2 .

В воде NO мало растворим и с ней не реагирует, являясь несолеобразующим оксидом.


3. Физиологическое действие

Оксид азота (белый) в цитоплазме клеток хвойных пород деревьев через час после механического воздействия. Темно-зелёные круги в клетках - ядра, в некоторых из ядер, в свою очередь, заметны ядрышки (светло-зелёные).

Как и все оксиды азота (кроме N 2 O), NO - токсичен, при вдыхании поражает дыхательные пути.

За два последних десятилетия было установлено, что эта молекула NO обладает широким спектром биологического действия, которое условно можно разделить на регуляторное, защитное и вредное. NO, являясь одним из мессенджеров, участвует в регуляции систем внутри- и межклеточной сигнализации. Оксид азота, производимый клетками эндотелия сосудов, отвечает за расслабление гладких мышц сосудов и их расширение(вазодилатацию), предотвращает агрегацию тромбоцитов и адгезию нейрофилов к эндотелию, участвует в различных процессах в нервной, репродуктивной и иммунной системах. NO также обладает цитотоксическими и цитостатическими свойствами. Клетки-киллеры иммунной системы используют оксид азота для уничтожения бактерий и клеток злокачественных опухолей. С нарушением биосинтеза и метаболизма NO связаны такие заболевания, как эссенциальная артериальная гипертензия, ишемическая болезнь сердца, инфаркт миокарда, первичная легочная гипертензия, бронхиальная астма, невротическая депрессия, эпилепсия, нейродегенеративные заболевания (болезнь Альцгеймера, болезнь Паркинсона), сахарный диабет, импотенция и др.

Оксид азота может синтезироваться несколькими путями. Растения используют неферментативную фотохимическую реакцию между NO 2 и каротиноидами. У животных синтез осуществляют семейство NO-синтаз (NOS). NOS-ферменты - члены гем-содержащего суперсемейства ферментов, названных монооксигеназами. В зависимости от структуры и функций, NOS могут быть разделены на три группы: эндотелиальные (eNOS), нейрональные (nNOS) и индуцибельные (iNOS). В активный центр любой из NO-синтаз входит железопорфириновый комплекс, содержащий аксиально координированный цистеин или метионин. Хотя все изоформы NOS катализируют образование NO, все они являются продуктами различных генов, каждая из них имеет свои особенности как в механизмах действия и локализации, так и в биологическом значении для организма. Поэтому указанные изоформы принято также подразделять на конститутивную (cNOS) и индуцибельную (iNOS) синтазы оксида азота.

cNOS постоянно находится в цитоплазме, зависит от концентрации ионов кальция и кальмодулина (белок, являющийся внутриклеточным посредником переноса ионов кальция) и способствует выделению небольшого количества NO на короткий период в ответ на стимуляцию рецепторов. Индуцибельная NOS появляется в клетках только после индукции их бактериальными эндотоксинами и некоторыми медиаторами воспаления, такими как гамма-интерферон, фактор некроза опухоли и др. Количество NO, образующегося под влиянием iNOS, может варьировать и достигать больших количеств (наномолей). При этом продукция NO сохраняется длительнее.

Характерной особенностью NO является способность быстро (менее чем за 5 секунд) диффундировать через мембрану синтезировавшей его клетки в межклеточное пространство и легко (без участия рецепторов) проникать в клетки-мишени. Внутри клетки он активирует одни энзимы и ингибирует другие, таким образом, участвуя в регуляции клеточных функций. По сути, монооксид азота является локальным тканевым гормоном. NO играет ключевую роль в подавлении активности бактериальных и опухолевых клеток путем либо блокирования некоторых их железосодержащих ферментов, либо путем повреждения их клеточных структур оксидом азота или свободными радикалами, образующимися из оксида азота. Одновременно в очаге воспаления накапливается супероксид, который вызывает повреждение белков и липидов клеточных мембран, что и объясняет его цитотоксическое действие на клетку-мишень. Следовательно, NO, избыточно накапливаясь в клетке, может действовать двояко: с одной стороны вызывать повреждение ДНК и с другой - давать провоспалительный эффект.

Оксид азота способен инициировать образование кровеносных сосудов. В случае инфаркта миокарда оксид азота играет положительную роль, так как индуцирует новый сосудистый рост, но при раковых заболеваниях тот же самый процесс вызывает развитие опухолей, способствуя питанию и росту раковых клеток. С другой стороны, вследствие этого улучшается доставка оксида азота в опухолевые клетки. Повреждение ДНК под действием NO является одной из причин развития апоптоза (запрограммированный процесс клеточного «самоубийства», направленный на удаление клеток, утративших свои функции). В экспериментах наблюдалось дезаминирование дезоксинуклеозидов, дезоксинуклеотидов и неповрежденной ДНК при воздействии раствора, насыщенного NO. Этот процесс ответствен за повышение чувствительности клеток к алкилирующим агентам и ионизирующему излучению, что используется в антираковой терапии.

Клиренс NO (скорость очищения крови от NO в процессе его химических превращений) происходит путем образования нитритов и нитратов и составляет в среднем не более 5 секунд. В клиренс могут быть вовлечены промежуточные ступени, связанные со взаимодействием с супероксидом или с гемоглобином с образованием пероксинитрита. Оксид азота может быть восстановлен NO-редуктазой - ферментом, тесно связанным с NO-синтазой.

В 1998 году трое американцев - Фурчготт, Игнарро и Мюрад - были удостоены премии Нобелевского комитета по физиологии «за открытия, касающиеся окиси азота как сигнальной молекулы в сердечно-сосудистой системе».

Оксидами называют бинарные соединения химических элементов с кислородным атомом, у которого окислительная степень равна 2-. Азот, обладающий меньшим электроотрицательным значением, образует различные комбинации с кислородом. Эти соединения относятся к разным классам веществ. Оксид азота кислород содержит в количестве, которое устанавливает валентность элемента N. Она колеблется от 1 до 5.

Какие бывают оксиды

Существует около десятка азотистых соединений, содержащих O-элемент. Из них пять наиболее часто встречаемых: оксид одновалентного, оксид двухвалентного, оксид трехвалентного, оксид четырехвалентного и оксид пятивалентного азота.

Остальные соединения считаются менее распространенными. К ним относят оксид азота четырехвалентного в форме димера, нестабильные молекулы нитрилазида, нитрозилазида, тринитрамида и нитратный радикал.

Формулы оксидов азота

Ниже приведены обозначения наиболее значимых соединений элемента N.

Это прежде всего оксид азота, формула которого состоит из двух химических знаков - N и O. За ними ставятся индексы, в зависимости от степени окисления атомов.

  • Азота одновалентного оксид имеет формулу N 2 O. В нем атом N заряжен +1.
  • Азота двухвалентного оксид имеет формулу NO. В нем атом N заряжен +2.
  • Азота трехвалентного оксид имеет формулу N 2 O 3 . В нем атом N заряжен +3.
  • Четырехвалентный оксид азота, формула которого NO 2 , имеет заряд атома N +4.
  • Пятивалентное кислородное соединение обозначается как N 2 O 5 . В нем атом N заряжен +5.

Описание одновалентного оксида азота

Он еще именуется диазотом, закисью и газом веселящим. Последнее название произошло от действия, связанного с опьянением.

Оксид азота с валентностью I в условиях нормальной температуры существует в форме негорючего газа, без цвета, который проявляет приятный сладковатый привкус и запах. Воздух легче данного соединения. Оксид растворяется в водной среде, этаноле, эфирах и кислоте серной.

Вода, щелочные и кислотные растворы не способны с ним вступать в реакцию, он не образует соли. Не подвергается воспламенению, зато способен поддержать процесс горения.

Аммиак оксид азота переводит в азид (N3NH4).

При соединении с молекулами эфиров, хлорэтана и циклопропана образуется взрывоопасная смесь.

Обычные условия способствуют его инертности. Под действием нагревания вещество восстанавливается.

Описание оксида двухвалентного азота

Его еще называют моноокисью, окисью или нитрозил-радикалом. В условиях нормальной температуры является бесцветным негорючим газом, слаборастворимым в водной среде. Воздухом окисляется, получается NO 2. Жидкая и твёрдая его форма становятся голубого цвета.

Оксид азота может быть восстановителем в реакциях взаимодействия с галогенами. Продуктом их присоединения является нитрозилгалогенид, который имеет формулу NOBr.

Диоксид серы и другие сильные восстановители окисляют NO с получением молекул N 2 .

Описание оксида трехвалентного азота

Они именуется ангидридом азотистым. В нормальном состоянии может быть жидкостью, с синей окраской, а стандартные параметры среды переводят оксид в форму газа, не имеющего цвета. Обладает устойчивостью только при низких температурах.

Молекулы N 2 O 3 диссоциируют во время нагревания с выделением одно- и двухвалентного оксида.

В качестве ангидрида присоединяет воду с получением кислоты азотистой, а со щелочами формирует соли в виде нитритов.

Описание оксида четырехвалентного азота

По-другому его называют диоксидом. Существует в форме буро-красного газа, у которого имеется острый запах, а также может быть желтоватой жидкостью.

Относится к кислотным оксидам, у которых развита хорошо химическая активность.

Его молекулы окисляют неметаллы с образованием кислородсодержащих соединений и свободного азота.

Диоксид взаимодействует с оксидом четырехвалентной и шестивалентной серы. Получается кислота серная. Метод ее синтеза называют нитрозным.

В водной среде можно растворить оксид азота. Азотная кислота является результатом данной реакции. Такой процесс называют диспропорционированием. Промежуточным компонентом считается кислота азотистая, которая быстро распадается.

Если растворить азота четырехвалентного оксид в щелочи, то происходит образование растворов нитратов и нитритов. Можно использовать его жидкую форму для взаимодействия с металлом, тогда получится безводная соль.

Описание оксида пятивалентного азота

Его также называют диазотным пентаоксидом, нитратом нитрония, нитриловым нитратом или азотным ангидридом.

Существует в форме бесцветных кристаллов, которые обладают летучестью и неустойчивостью. Их стабильность наблюдается при низкой температуре. Такую структуру образуют нитрат- и нитрит-ионы.

В газообразном виде вещество имеет форму ангидрида NO 2 −O−NO 2 .

Оксид азота пятивалентный обладает свойствами кислотными. Он легко разлагается с выделением кислорода.

Вещество реагирует с водой, в результате получается азотная кислота.

Щелочи растворяют ангидрид с выделением солей нитратов.

Как получают оксиды азота

Закись N 2 O образуется при острожном нагревании аммония нитрата в сухом виде, однако такой способ может сопровождаться взрывом.

Предпочтительным методом получения оксида одновалентного является воздействие кислотой азотной в концентрированном виде на кислоту сульфаминовую. Главным условием считается нагревание.

Нитрозил, или NO, - это особый оксид азота, получение которого осуществляется при взаимодействии молекул N 2 и O 2 . Важным условием такого процесса является сильное нагревание свыше 1000 °C.

Природный способ получения связан с грозовыми разрядами в атмосферном воздухе. Такой оксид быстро соединяется с кислородными молекулами и формируется диоксид.

Лабораторный метод синтеза NO связан с реакцией металлов и неконцентрированной кислоты азотной. Примером такой реакции может быть взаимодействие меди с HNO 3 .

Другой способ образования моноокиси азота - реакция хлорида железа двухвалентного с натрия нитритом и кислотой соляной. Результатом процесса являются железа трехвалентного и натрия хлориды, вода и сама окись.

В промышленных масштабах его добывают за счет окисления аммиачных молекул во время нагревания и под высоким давлением. Ускорителем процесса является платина или хрома трехвалентного оксид.

Диоксид, или NO 2, получается при взаимодействии мышьяка трехвалентного оксида с 50 % кислотой азотной, которую наносят по каплям на поверхность твердого реагента. Образуется смесь из оксидов двухвалентного и четырехвалентного азота.

Если ее охладить до температуры -30 °С, то синтезируется ангидрид азотистый, или N 2 O 3 .

В порошкообразном виде он получается в случае пропускания тока электрического сквозь газообразную его форму.

Если на крахмальный порошок подействовать кислотой азотной с концентрацией 50 %, то выделяется оксид двухвалентного и четырехвалентного азота, газ углекислый и вода. В дальнейшем из полученных первых двух соединений формируется молекула N 2 O 3 .

В результате теплового расщепления свинцового нитросоединения выделяется свободный кислород и оксид свинца.

Ангидрид, или N 2 O 5, образуется благодаря отщеплению молекулы воды от кислоты азотной действием фосфора оксида пятивалентного.

Другой способ его синтеза является пропускание сухого хлора сквозь безводный серебряный нитрат.

Если на диоксид азотный подействовать молекулами озона, то формируется N 2 O 5 .