План:

    Введение
  • 1 История
  • 2 Способы заражения
  • 3 Клиническая картина
    • 3.1 Инкубационный период
    • 3.2 Лёгкая степень
    • 3.3 Тяжёлая степень
  • 4 Лечение
  • 5 Прогноз
  • Примечания

Введение

Лихорадка Рифт-Валли (лихорадка долины Рифт, лат. Febris Rift-Vallее ) - острое трансмиссивное вирусное заболевание. Вирусы-возбудители лихорадки Рифт-Валли относятся к арбовирусам семейства буньявирусов рода Phlebovirus вида Rift-Valley . Распространён в Южной и Восточной Африке. Вирус обнаружен у комаров Culex pipiens , Eretmapodites chrysogaster , Aedes cabbalus , Aedes circurnluteolus , Culex theiler . В Египет заболевание, возможно, было занесено комарами Culex pipiens .


1. История

Впервые вирус был выявлен в 1931 году во время расследования эпидемии среди овец на одной ферме в Рифтовой долине (Rift Valley) (Кения), из-за чего и получил своё название. С того времени эпидемии этого вируса регистрировались в Африке к югу от Сахары и в Северной Африке. В 1997-1998 годах произошла крупная вспышка в Кении, Сомали и Танзании, а в сентябре 2000 года случаи заболевания лихорадкой Рифт-Валли были зарегистрированы в Саудовской Аравии и Йемене. Это было первое подтверждённое появление болезни за пределами африканского континента.


2. Способы заражения

Лихорадкой Рифт-Валли обычно болеют животные, однако возможна передача вируса и человеку:

  • большинство случаев инфицирования людей происходит в результате прямых или косвенных контактов с кровью или органами инфицированных животных;
  • имеются некоторые фактические данные о возможности инфицирования человека лихорадкой Рифт-Валли при потреблении непастеризованного или сырого молока инфицированных животных;
  • инфицирование людей происходит также в результате укусов инфицированных комаров, чаще всего комаров рода Aedes ;
  • возможна также передача вируса лихорадки Рифт-Валли гематофагами (питающимися кровью мухами).

3. Клиническая картина

3.1. Инкубационный период

Инкубационный период длится от 2 до 6 дней. Начало происходит внезапно. Тяжесть заболевания варьирует - от лёгкой до тяжёлой с возможными осложнениями вплоть до летального исхода. Болезнь может развиваться без каких-либо симптомов, либо может развивается лёгкая форма болезни, для которой характерен лихорадочный синдром с внезапным наступлением гриппозной лихорадки, мышечных болей, болей в суставах и головной боли.

Для типичной клинической картины лихорадки Рифт-Валли характерны две степени течения болезни, с тремя подгруппами у второй формы.


3.2. Лёгкая степень

Появляется недомогание, чувство познабливания или озноб, головная боль, ретроорбитальные боли, боли в мышцах всего туловища и конечностях, боль в поясничной области. Температура тела обычно быстро повышается до 38,3–40°C. Далее наступает ухудшение аппетита, боли в эпигастрии, потеря вкуса, фотофобия. При физикальном обследовании отмечают покраснение лица и инъекцию сосудов конъюнктивы. Температура может повышаться дважды: первичное повышение длится 2–3 дня, за ним следуют ремиссия и повторное повышение температуры.


3.3. Тяжёлая степень

Тяжёлое течение болезни делится на несколько групп в зависимости от того, как будет протекать болезнь, а также возможные осложнения.

В большинстве случаев болезнь протекает не очень тяжело, но у незначительной доли людей развивается гораздо более тяжёлая форма болезни. Обычно она сопровождается появлением одного или нескольких из трёх явных синдромов: болезни глаз (у 0,5–2% людей), менингоэнцефалита (менее чем у 1%) или геморрагическая форма (менее чем у 1%).

  • Глазная форма - при этой форме появляются симптомы, обычные для лёгкой формы болезни, но вдобавок поражаются и сетчатки глаз. Как правило поражения глаз происходят через одну–три недели после появления первых симптомов. Заболевшие обычно жалуются на расплывчатое или ослабленное зрение. Через 10–12 недель болезнь может пройти сама по себе без каких-либо длительных последствий. Однако при поражениях желтого пятна (macula) у 50% пациентов наблюдается постоянная потеря зрения. Смерть среди пациентов с одной лишь окулярной формой болезни происходит редко - обычно это уже больные или пожилые люди с плохим иммунитетом.
  • Менингоэнцефалитная форма - эта форма болезни обычно происходит через одну–четыре недели после появления первых симптомов самой болезни. Клинические симптомы включают сильную головную боль, потерю памяти, галлюцинации, спутанность сознания, дезориентацию, головокружение, судороги, летаргию и кому. Позднее могут наступить неврологические осложнения. Смертность среди заболевших этой формой низкая, но остаточный неврологический дефицит, который может быть тяжёлым, встречается часто.
  • Геморрагическая форма - самая опасная форма, смертность без правильного лечения достигает 50%. Симптомы этой формы болезни появляются через два–четыре дня после наступления болезни. Сначала появляются признаки тяжёлого поражения печени, такие как желтуха, затем - признаки кровоизлияний, такие как рвота кровью, кровь в фекалиях, красная сыпь или кровоподтёки, кровотечения из носа и дёсен, меноррагии и кровотечения из мест венепункций. Смерть, как правило, наступает через три–шесть дней после появления симптомов. Вирус в крови заболевших этой формой можно обнаружить в течение 10 дней.

Осложнения при тяжёлых формах, как правило, связаны с геморрагическими проявлениями - генерализованные кровоизлияния или с поражением печени (желтуха). При обширном некрозе печени через 7–10 дней после начала болезни может наступить смерть.

Через 2–7 дней после начала лихорадки возможна потеря зрения, включая световое восприятие. Развиваются отёк желтого пятна, кровоизлияние, васкулит, ретинит и окклюзии сосудов. У 50% больных острота зрения не восстанавливается.

В периферической крови в начале заболевания количество лейкоцитов не изменяется, но затем развивается лейкопения со снижением общего числа нейтрофильных гранулоцитов и увеличением палочкоядерных форм.


4. Лечение

При лёгкой форме возможно лечение на дому без соблюдения специальных мер, при тяжёлой и тем более при геморрагической форме - госпитализация и общая поддерживающая терапия. У больных геморрагической формой обязательно должен проводиться мониторинг состояния печени три раза в сутки. Правильно поставленный диагноз, своевременная госпитализация, а также адекватное и правильное лечение могут существенно снизить шанс смерти при геморрагической форме.

5. Прогноз

При лёгкой степени благоприятный, при тяжёлой условно благоприятный, при геморрагической форме условно неблагоприятный.

скачать
Данный реферат составлен на основе

СЛАЙД 1

Лекция №4. Гуморальные факторы врожденного иммунитета

1. Система комплемента

2. Белки острой фазы воспаления

3. Биогенные амимны

4. Липидные медиаторы

5. Цитокины

6. Интерфероны

СЛАЙД 2

Гуморальная составляющая врожденного иммунитета представлена несколькими взаимосвязанными системами - системой комплемента, цитокиновой сетью, бактерицидными пептидами, а также гуморальными системами, связанными с воспалением.

Действие большинства этих систем подчиняется одному из двух принципов - каскада и сети. По каскадному принципу функционирует система комплемента, при активации которой происходит последовательное вовлечение факторов. При этом эффекты каскадных реакций проявляются не только в конце активационного пути, но и на промежуточных стадиях.

Принцип сети характерен для системы цитокинов и предполагает возможность одновременного функционирования различных компонентов системы. Основа функционирования такой системы - тесная взаимосвязь, взаимное влияние и значительная степень взаимозаменяемости компонентов сети.

СЛАЙД 3

Комплемент – сложный белковый комплекс сыворотки крови.

Система комплемента состоит из 30 белков (компонентов, или фракций , системы комплемента).

Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента .

1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его

2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.

Фракции системы комплемента обозначаются по-разному.

1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.

2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.

СЛАЙД 4

Пути активации комплемента

Существуют три пути активации комплемента: классический, лектиновый и альтернативный.

СЛАЙД 5

1. Классический путь активации комплемента является основным. Участие в этом пути активации комплемента – главная функция антител.

Активацию комплемента по классическому пути запускает иммунный комплекс : комплекс антигена с иммуноглобулином (класса G или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.

Классический путь активации комплемента осуществляется следующим образом.

а. Сначала активируется фракция С1 : она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).

б. С1-эстераза расщепляет фракцию С4 .

в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток - здесь присоединяет к себе фракцию С2 .

г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b .

д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути .

е. С3-конвертаза расщепляет фракцию С3 , нарабатываю большие количества активной фракции С3b.

ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b ).

з. С5-конвертаза расщепляет фракцию С5 .

и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6 .

к. Комплекс С5bС6 присоединяет фракцию С7 .

л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки .

м. К этому комплексу присоединяется белок С8 и белок С9 . Данный полимер формирует в мембране микробной клетки пору диаметром около 10 нм, что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).

СЛАЙД 6

2. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы).

СЛАЙД 7

3. Альтернативный путь активации комплемента начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.

1. Дальнейшие события развиваются следующим образом.

а. С3b связывает фактор В , образуя комплекс С3bВ.

б. В связанном с С3b виде фактор В выступает в качестве субстрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb . Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути .

в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).

2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.

Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно , еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс, разные составляющие которого могут просто проявляться в разной степени.

СЛАЙД 8

Функции системы комплемента

Система комплемента играет очень важную роль в защите макроорганизма от патогенов.

1. Система комплемента участвует в инактивации микроорганизмов , в т.ч. опосредует действие на микробы антител.

2. Активные фракции системы комплемента активируют фагоцитоз (опсонины - С3b и C5b) .

3. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции .

СЛАЙД 9

Активные фракции комплемента С3а и С5а называются анафилотоксинами , так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия. Наиболее сильным анафилотоксином является С5а. Анафилотоксины действуют на разные клетки и ткани макроорганизма.

1. Действие их на тучные клетки вызывает дегрануляцию последних.

2. Анафилотоксины действуют также на гладкие мышцы , вызывая их сокращение.

3. Действуют они и на стенку сосуда : вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации (выхода) из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.

Корме того, анафилотоксины являются иммуномодуляторами , т.е. они выступают в роли регуляторов иммунного ответа.

1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).

2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).

СЛАЙД 10

Белки острой фазы

Некоторые гуморальные реакции врожденного иммунитета по своему назначению аналогичны реакциям адаптивного иммунитета и могут рассматриваться как их эволюционные предшественники. Такие реакции врожденного иммунитета имеют преимущество перед адаптивным иммунитетом в быстроте развития, однако недостаток их заключается в отсутствии специфичности в отношении антигенов. Пару сходных по результатам реакций врожденного и адаптивного иммунитета мы рассмотрели выше в разделе, посвященном комплементу (альтернативная и классическая активация комплемента). Другой пример будет рассмотрен в данном разделе: белки острой фазы в ускоренном и упрощенном варианте воспроизводят некоторые эффекты антител.

Белки (реактанты) острой фазы представляют группу протеинов, секретируемых гепатоцитами. При воспалении продукция белков острой фазы изменяется. При усилении синтеза белки называют положительными, а при понижении синтеза - отрицательными реактантнами острой фазы воспаления.

Динамика и выраженность изменений сывороточной концентрации различных белков острой фазы при развитии воспаления неодинакова: концентарция С-реактивного белка и сывороточного амилоида Р возрастает очень сильно (в десятки тысяч раз) - быстро и кратковременно (практически нормализуется к концу 1-й недели); уровни гаптоглобина и фибриногена возрастают слабее (в сотни раз) соответственно на 2-й и 3-й неделях воспалительной реакции. В данной презентации будут рассмотрены только положительные реактанты, участвующие в иммунных процессах.

СЛАЙД 11

Согласно выполняемым функциям выделяют несколько групп белков острой фазы.

К транспортным белкам относят преальбумин, альбумин, орозомукоид, липокалины, гаптоглобин, трансферрин, маннозасвязывающий и ретинолсвязывающий белки и т.д. Они играют роль переносчиков метаболитов, ионов металлов, физиологически активных факторов. Роль факторов этой группы существенно возрастает и качественно изменяется при воспалении.

Другую группу образуют протеазы (трипсиноген, эластаза, катепсины, гранзимы, триптазы, химазы, металлопротеиназы), активация которых необходима для формирования многих медиаторов воспаления, а также для осуществления эффекторных функций, в частности киллерной. Активация протеаз (трипсина, химотрипсина, эластазы, металлопротеиназ) уравновешивается накоплением их ингибиторов. α2-Макроглобулин участвует в подавлении активности протеаз разных групп.

Помимо перечисленных, к белкам острой фазы относят факторы коагуляции и фибринолиза, а также белки межклеточного матрикса (например, коллагены, эластины, фибронектин) и даже белки системы комплемента.

СЛАЙД 12

Пентраксины. Наиболее полно проявляют свойства реактантов острой фазы белки семейства пентраксинов: в первые 2-3 сут развития воспаления их концентрация в крови повышается на 4 порядка.

С-реактивный белок и сывороточный амилоид Р образуются и секретируются гепатоцитами. Основной индуктор их синтеза - IL-6. Белок PTX3 вырабатывают миелоидные (макрофаги, дендритные клетки), эпителиальные клетки и фибробласты в ответ на стимуляцию через TLR, а также под действием провоспалительных цитокинов (например, IL-1β, TNFα).

Концентрация пентраксинов в сыворотке резко возрастает при воспалении: С-реактивного белка и сывороточного амилоида Р - с 1 мкг/мл до 1–2 мг/мл (т.е. в 1000 раз), РТХ3 - с 25 до 200–800 нг/мл. Пик концентрации достигается через 6–8 ч после индукции воспаления. Для пентраксинов характерна способность связываться с самыми разнообразными молекулами.

С-реактивный белок был впервые идентифицирован благодаря его способности связывать полисахарид С (Streptococcus рneumoniae ), что и определило его название. Пентраксины взаимодействуют и с множеством других молекул: C1q, бактериальными полисахаридами, фосфорилхолином, гистонами, ДНК, полиэлектролитами, цитокинами, белками межклеточного матрикса, сывороточными липопротеинами, компонентами комплемента, друг с другом, а также с ионами Са 2+ и других металлов.

Для всех рассматриваемых пентраксинов существуют высокоаффинные рецепторы на миелоидных, лимфоидных, эпителиальных и других клетках. Кроме того, эта группа белков острой фазы обладает достаточно высоким сродством к таким рецепторам, как FcγRI и FcγRII. Многочисленность молекул, с которыми взаимодействуют пентраксины, определяет широкое разнообразие их функций.

Распознавание и связывание пентраксинами PAMP дает основание рассматривать их как вариант растворимых патогенраспознающих рецепторов.

К наиболее важным функциям пентраксинов относят их участие в реакциях врожденного иммунитета в качестве факторов, запускающих активацию комплемента через C1q и участвующих в опсонизации микроорганизмов.

Комплементактивирующая и опсонизирующая способность пентраксинов делает их своеобразными «протоантителами», частично выполняющими функции антител на начальном этапе иммунного ответа, когда истинные адаптивные антитела еще не успели выработаться.

Роль пентраксинов во врожденном иммунитете заключается также в активации нейтрофилов и моноцитов/макрофагов, регуляции синтеза цитокинов и проявлении хемотаксической активности по отношению к нейтрофилам. Помимо участия в реакциях врожденного иммунитета пентраксины регулируют функции межклеточного матрикса при воспалении, контроле апоптоза и элиминации апоптотических клеток.

СЛАЙД 13

Биогенные амины

К этой группе медиаторов относят гистамин и серотонин, содержащиеся в гранулах тучных клеток. Освобождаясь при дегрануляции, эти амины вызывают разнообразные эффекты, играющие ключевую роль в развитии ранних проявлений гиперчувствительности немедленного типа.

Гистамин (5-β-имидазолилэтиламин) - главный медиатор аллергии. Он образуется из гистидина под влиянием фермента гистидиндекарбоксилазы.

Поскольку гистамин содержится в гранулах тучных клеток в готовом виде, а процесс дегрануляции происходит быстро, гистамин очень рано появляется в очаге аллергического поражения, причем сразу в большой концентрации, что определяет проявления немедленной гиперчувствительности. Гистамин быстро метаболизируется (95% за 1 мин) с участием 2 ферментов - гистамин-N-метилтрансферазы и диаминооксидазы (гистаминазы); при этом образуется (в соотношении примерно 2:1) соответственно N-метилгистамин и имидазолацетат.

Известно 4 разновидности рецепторов для гистамина Н 1 -Н 4 . При аллергических процессах гистамин действует преимущественно на гладкие мыщцы и эндотелий сосудов, связываясь с их Н 1 -рецепторами. Эти рецепторы поставляют активационный сигнал, опосредованный превращениями фосфоинозитидов с образованием диацилглицерола и мобилизацией Са 2+ .

Указанные эффекты частично обусловлены образованием в клетках (мишенях гистамина) оксида азота и простациклина. Действуя на нервные окончания, гистамин вызывает ощущение зуда, характерного для аллергических проявлений в коже.

У человека гистамин играет важную роль в развитии кожной гиперемии и аллергического ринита. Менее очевидно его участие в развитии общих аллергических реакций и бронхиальной астмы. В то же время через Н 2 -рецепторы гистамин и родственные вещества оказывают регуляторное действие, иногда уменьшающее проявления воспаления, ослабляя хемотаксис нейтрофилов и выброс ими лизосомных ферментов, а также высвобождение самого гистамина.

Через Н 2 -рецепторы гистамин действует на сердце, секреторные клетки желудка, подавляет пролиферацию и цитотоксическую активность лимфоцитов, а также секрецию ими цитокинов. Большинство этих эффектов опосредовано активацией аденилатциклазы и повышением внутриклеточного уровня цАМФ.

Данные об относительной роли различных рецепторов гистамина в реализации его действия очень важны, поскольку многие антиаллергические препараты представляют собой блокаторы Н 1 (но не Н 2 и других) рецепторов гистамина.

СЛАЙД 14

Липидные медиаторы.

Важную роль в регуляции иммунных процессов, а также в развитии аллергических реакций играют гуморальные факторы липидной природы. Наиболее многочислены и важны из них эйкозаноиды.

Эйкозаноиды - продукты метаболизма арахидоновой кислоты - жирной полиненасыщенной кислоты, молекула которой содержит 20 атомов углерода и 4 ненасыщенные связи. Арахидоновая кислота образуется из мембранных фосфолипидов как прямой продукт действия фосфолипазы А (PLA) или косвенный продукт превращений, опосредованных PLC.

Образование арахидоновой кислоты или эйкозаноидов происходит при активации различных типов клеток, особенно участвующих в развитии воспаления, в частности аллергического: эндотелиальных и тучных клеток, базофилов, моноцитов и макрофагов.

Метаболизм арахидоновой кислоты может проходить по 2 путям - катализироваться циклооксигеназой или 5’-липоксигеназой. Циклооксигеназный путь приводит к образованию простагландинов и тромбоксанов из нестабильных промежуточных продуктов - эндоперекисных простагландинов G2 и H2, а липоксигеназный - к образованию лейкотриенов и 5-гидроксиэйкозатетраеноата через промежуточные продукты (5-гидроперокси-6,8,11,14-эйкозатетраеновую кислоту и лейкотриен А4), а также липоксинов - продуктов двойной липоксигенации (под действием двух липоксигеназ - см. далее).

Простагландины и лейкотриены во многих отношениях проявляют альтернативные физиологические эффекты, несмотря на то, что внутри этих групп существуют значительные различия в активности.

Общее свойство этих групп факторов - преобладающее действие на стенку сосудов и гладкие мышцы, а также хемотаксический эффект. Эти эффекты реализуются при взаимодействии эйкозаноидов со специфическими рецепторами на поверхности клеток. Некоторые представители семейства эйкозаноидов усиливают действие других вазоактивных и хемотаксических факторов, например, анафилатоксинов (С3а, С5а).

СЛАЙД 15

Лейкотриены (LT) - С 20 -жирные кислоты, молекула которых в положении 5 содержит ОН-группу, а в положении 6 - боковые серосодержащие цепи, например глутатион.

Выделяют 2 группы лейкотриенов:

Одна из них включает лейкотриены С4, D4 и Е4, называемые цистеиниллей-котриенами (Cys-LT),

Во вторую входит один фактор - лейкотриен B4.

Лейкотриены образуются и секретируются в течение 5–10 мин после активации тучных клеток или базофилов.

Лейкотриен C4 присутствует в жидкой фазе в течение 3–5 мин, при этом он превращается в лейкотриен D4. Лейкотриен D4 существует в последующие 15 мин, медленно превращаясь в лейкотриен E4.

Лейкотриены оказывают свое действие через рецепторы, относящиеся к группе пуриновых рецепторов семейства родопсиноподобных рецепторов, 7-кратно пронизывающих мембрану и связанных с протеином G.

Рецепторы лейкотриенов экспрессируются на клетках селезен-ки, лейкоцитах крови, кроме того, CysLT-R1 представлен на макрофагах, клетках кишечника, воздухоносного эпителия, а CysLT-R2 - на клетках надпочечников и головного мозга.

Цистеиниловые лейкотриены (особенно лейкотриен D4) вызывают спазм гладкой мускулатуры и регулируют локальный кровоток, снижая артериальное давление. Цистеиниловые лейкотриены - медиаторы аллергических реакций, в частности, медленной фазы бронхоспазма при бронхиальной астме.

Кроме того, они подавляют пролиферацию лимфоцитов и способствуют их дифференцировке.

Ранее комплекс этих факторов (лейкотриены C4, D4 и E4) называли медленнореагирующей субстанцией А. Лейкотриен B4 (дигидроксиэйкозатетраеновая кислота) проявляет хемотаксическое и активирующее действие преимущественно в отношении моноцитов, макрофагов, нейтрофилов, эозинофилов и даже Т-клеток.

Еще один продукт липоксигеназного пути - 5-гидроксиэйкозатетраеноат - менее активен, чем лейкотриены, но может служить хемоаттрактантом и активатором нейтрофилов и тучных клеток.

СЛАЙД 16

Простагландины (PG ) - С 20 -жирные кислоты, молекула которых содержит циклопентановое кольцо.

Варианты простагландинов, отличающиеся по типу и положению замещающих групп (окси-, гидрокси-), обозначаются различными буквами; цифры в названии означают число ненасыщенных связей в молекуле.

Простагландины накапливаются в очаге воспаления позже кининов и гистамина, несколько позже лейкотриенов, но одновременно с монокинами (через 6–24 ч после запуска воспаления).

Помимо вазоактивного и хемотаксического эффекта, достигаемого в кооперации с другими факторами, простагландины (особенно простагландин E2) оказывают регулирующее действие при воспалительных и иммунных процессах.

Экзогенный простагландин E2 вызывает некоторые проявления воспалительной реакции, но подавляет иммунный ответ и аллергические реакции.

Так, простагландин E2 снижает цитотоксическую активность макрофагов, нейтрофилов и лимфоцитов, пролиферацию лимфоцитов, выработку этими клетками цитокинов.

Он способствует дифференцировке незрелых лимфоцитов и клеток других кроветворных рядов.

Некоторые эффекты простагландина Е2 связаны с повышением уровня внутриклеточного цАМФ.

Простагландины E2 и D2 подавляют агрегацию тромбоцитов; простагландины F2 и D2 вызывают сокращение гладкой мускулатуры бронхов, тогда как простагландин E2 расслабляет ее.

СЛАЙД 17

Тромбоксан А2 (ТХА2 ) - С 20 -жирная кислота; в его молекуле есть 6-членное кислородсодержащее кольцо.

Это очень нестабильная молекула (время полужизни - 30 с), превращающаяся в неактивный тромбоксан В2.

Тромбоксан А2 вызывает сужение сосудов и бронхов, агрегацию тромбоцитов с высвобождением из них ферментов и других активных факторов, способствующих митогенезу лимфоцитов.

Другой продукт циклоксигеназного пути - простагландин I2 (простациклин) - тоже нестабилен. Он проявляет свое действие через цАМФ, сильно расширяет сосуды, увеличивает их проницаемость, ингибирует агрегацию тромбоцитов.

Наряду с пептидным фактором брадикинином простациклин вызывает ощущение боли при воспалении.

СЛАЙД 18

Цитокины


Похожая информация.


Biological functions of complement

Odintsov Yu.N., Perelmuter V.M.

Сибирский государственный медицинский университет, г. Томск

ã Одинцов Ю.Н., Перельмутер В.М.

Комплемент является одним из важнейших факторов резистентности организма. Система комплемента может принимать участие в различных эффекторных механизмах, прежде всего в лизисе (комплементарный киллинг) и опсонизации микроорганизмов. В переключе­ нии литической функции комплемента на опсоническую могут принимать участие макрофаги. Функции комплемента при бактериозах за­ висят от особенностей патогенеза инфекционного заболевания.

Ключевые слова: комплемент, бактериолиз, опсонизация, инфекционный процесс.

One of the true basic resistance factors is complement. Main functions of it consist in bacterial lysis, bacterial opsonisation for phagocytosis. Alteration of lytic function for opsonic function depends upon macrophages. Complement functions at bacteriosis depend on phathogenesis fea­ tures in infectious disease.

Key words: complement, bakteriolysis, opsonisation, infectious process.

УДК 576:8.097.37

Организм человека имеет две основные линии защиты от возбудителей инфекционных заболеваний: неспецифиче­ скую (резистентность) и специфическую (иммунитет).

Факторы первой линии защиты (резистентности) харак­ теризуются рядом общих признаков: 1) они сформированы задолго до встречи с возбудителем (внутриутробный пери­ од); 2) неспецифичны; 3) генетически детерминированы; 4) генотипически и фенотипически неоднородны (гетероген­ ны) в популяции; 5) высокая резистентность к одному возбу­ дителю может сочетаться с низкой к другому; 6) резистент­ ность прежде всего зависит от функционального состояния макрофагов, которое контролируется генами, не связанными с HLA, и состояния системы комплемента (контролируемой HLA).

Комплемент - многокомпонентная ферментная система плазмы, состав и функция которой в основном хорошо изуче­ ны, является одним из важнейших факторов резистентности организма. В 1960-1970-е гг. было особенно популярно определение титра комплемента как одного из показателей резистентности. И в настоящее время изучению функции комплемента посвящено множество исследований. Вместе с тем существуют не только определенные трудности и противоречия при объ­

яснении механизма активации комплемента, но до сих пор

остаются недостаточно изученными некоторые механизмы активации и функционирования комплемента. К таким дис­ куссионным вопросам относятся механизм действия ингиби­ торов активации комплемента in vivo , механизм переключе­ ния активации комплемента с литической на опсоническую функцию и понимание роли комплемента в саногенезе при различных инфекциях.

Известно 14 белков (компонентов) плазмы крови, со­ ставляющих систему комплемента . Они синтезируются гепатоцитами, макрофагами и нейтрофилами . Большинство из них относятся к β -глобулинам. Согласно но­ менклатуре, принятой ВОЗ, система комплемента обознача­ ется символом С, а ее индивидуальные компоненты симво­ лами Cl, C2, С3, С4, С5, С6, С7, С8, С9 или прописными бук­ вами (D, B, P). Часть компонентов (Cl, C2, С3, С4, С5, B) де­ лится на составляющие их субкомпоненты - более тяже­ лые, обладающие ферментативной активностью, и менее тяжелые, не обладающие ферментативной активностью, но сохраняющие самостоятельную биологическую функцию. Активированные комплексы белков системы комплеме нта помечают чертой над комплексом (например, C4b2a3b - С5-конвертаза).

Помимо белков собственно комплемента (C1-C9) в осуществлении его биологической активности принимают

участие и другие белки, выполняющие регуляторные функ­ ции:

а) рецепторы мембран клеток макроорганизма к суб­ компонентам комплемента: CR1(CD35), CR2(CD21), CR3(CD11b/CD18), CR4(CD11c/CD18), C1qR, C3a/C4aR, C5aR;

б) мембранные белки клеток макроорганизма: мембран­ ный кофакторный белок (МКБ, или MCP - membrane-assoti­ ated cofactor of proteolysis, CD46), фактор, ускоряющий дис­ социацию (ФУД, или DAF - decay accelerating factor, CD55), протектин (CD59);

в) белки плазмы крови, осуществляющие позитивную или негативную регуляцию: 1) позитивная регуляция - фак­ тор В, фактор D, пропердин (Р); 2) негативная регуляция - фактор I, фактор Н, белоксвязывающий C4b (C4 binding pro­ tein, C4bp), C1-ингибитор (C1-inh, серпин), S-белок (витро­ нектин).

Таким образом, в функциях системы комплемента при­ нимают участие более 30 компонентов. Каждый белковый компонент (субкомпонент) комплемента обладает опреде­ ленными свойствами (табл. 1).

В норме компоненты комплемента находятся в плазме в неактивном состоянии. Они становятся активными в процессе многоступенчатых реакций активации. Активированные компоненты комплемента действуют в определенном поряд­ ке в виде каскада ферментативных реакций, а продукт пред­ шествующей активации служит катализатором для включе­ ния в последующую реакцию нового субкомпонента или компонента комплемента.

Система комплемента может принимать участие в раз­ личных эффекторных механизмах:

1) лизис микроорганизмов (комплементарный киллинг);

2) опсонизация микроорганизмов;

3) расщепление иммунных комплексов и их клиренс;

4) активация и хемотаксическое привлечение лейкоци­ тов в очаг воспаления;

5) усиление индукции специфических антител путем: а) усиления локализации антигена на поверхности В-лимфо­ цитов и антигенпредставляющих клеток (АПК); б) снижения порога активации В-лимфоцитов.

Наиболее важными из функций комплемента являются лизис мембран патогенов и опсонизация микроорганизмов.

Т а б л и ц а 1

Компоненты и субкомпоненты комплемента, принимающие участие в классическом и альтернативном путях активации комплемента

Компонент

Молекулярная

Субкомпонент

Концентрация в сыворотке

(субкомпонент)

масса, кД

крови, мкг/мл

Ферментный комплекс

Связывание с длинной цепью IgG или IgM

комплекса антиген - антитело

Протеаза, активирующая Cls

Сериновая протеаза, активирующая C4 и C2

Формируют С3-конвертазу (C4b2a),

а затем и С5-конвертазу (C4b2a3b)

классического пути

Формирование мембраноатакующего комплекса, образую­

щего пору в мембране клетки-мишени

Формируют С3-конвертазу (C3bВbР), а затем

и С5-конвертазу (C3bВb3b) альтернативного пути

Пропердин (Р)

Стабилизатор С3-конвертазы альтернативного пути

(C3bВb), блокирует диссоциацию C3bВb

Комплементарный

микроорганизмов

под действием фактора Н

Лизис микроорганизмов происходит в результате об­

разования мембраноатакующего комплекса (МАК), состоя­

щего из компонентов комплемента. В зависимости от того, каким образом произошло образование МАК, различают несколько путей активации комплемента.

Классический (иммунокомплексный) путь активации комплемента

Этот путь активации комплемента называется классиче­ ским вследствие того, что он был описан первым и долгое время оставался единственным из известных сегодня. В классическом пути активации комплемента пусковую роль выполняет комплекс антиген - антитело (иммунный комплекс (ИК)). Первым звеном активации комплемента яв­ ляется связывание C1q-субкомпонента C1-компонента с им­ муноглобулином иммунного комплекса. В частности, в слу­ чае активации комплемента иммуноглобулинами класса G (IgG1, IgG2, IgG3, IgG4) это осуществляется аминокислотны­ ми остатками в позициях 285, 288, 290, 292 тяжелой цепи IgG . Активация этого участка происходит только после образования комплекса антиген - антитело (АГ-АТ). Способностью активировать комплемент по классическому пути обладают с убывающей интенсивностью IgM, IgG3, IgG1 и IgG2.

Компонент комплемента C1q состоит из трех субъеди­ ниц (рис. 1), каждая из которых имеет два центра для связы­ вания с Ig в комплексе АГ-АТ. Таким образом, полная мо­ лекула C1q располагает шестью такими центрами. При об­ разовании комплекса АГ-IgM молекула C1q связывается не менее чем с двумя вторыми доменами (CH2) одной и той же молекулы IgM, а при участии в образовании комплекса АГ- АТ иммуноглобулинов класса G - со вторыми доменами (CH2) не менее чем двух разных молекул IgG в комплексах АГ-IgG . Присоединившийся к АГ-АТ C1q приобретает свойства сериновой протеазы и инициирует активацию и встраивание в C1q двух молекул С1r. С1r, в свою очередь, инициирует активацию и встраивание в C1q еще двух других молекул - С1s. Активированный С1s обладает активностью сериновой эстеразы.

Затем С1s комплекса С1 расщепляет С4 на больший фрагмент С4b и меньший C4a. С4b соединяется ковалент­ ными связями с амино- и гидроксильными группами молекул клеточной мембраны (рис. 2). Фиксированный на поверхно­ сти мембраны (или комплекса АГ-АТ) С4b связывает С2, который становится доступным для ферментативного рас­ щепления той же сериновой протеазой С1s. В результате образуется мелкий фрагмент 2b и более крупный фрагмент С2а, который, соединяясь с прикрепленным к поверх ности мембраны С4b, образует ферментный комплекс C4b2a , на­

Обзор литературы

зываемый С3-конвертазой классического пути активации комплемента.

Рис. 1. Компоненты ферментного комплекса C1 (1q2r2s) и его взаимодействие с комплексом антиген - антитело (АГ-IgG или АГ-IgM):

J - цепь, объединяющая мономеры пентамера

Рис. 2. Активация комплемента по классическому пути

Образовавшаяся С3-конвертаза взаимодействует с С3 и расщепляет его на меньший фрагмент С3а и больший С3b. Концентрация С3 в плазме самая высокая из всех компо нентов комплемента, а один ферментный комплекс C4b2a (С3-конвертаза) способен расщепить до 1 тыс. моле­ кул С3. Это создает высокую концентрацию C3b на поверх­ ности мембраны (амплификация образования С3b). Затем С3b ковалентно связывается с С4b, находящимся в составе С3-конвертазы. Сформированный трехмолекулярный комплекс C4b2a3b является С5-конвертазой. С3b в составе С5-конвертазы ковалентно соединяется с поверхностью ми­ кроорганизмов (рис. 2).

Субстратом для С5-конвертазы является компонент C5 комплемента, расщепление которого заканчивается образо­ ванием меньшего по размерам С5а и большего С5b. Об­

Одинцов Ю.Н., Перельмутер В.М.

разование С5b инициирует формирование мембраноатакую­ щего комплекса. Оно протекает без участия ферментов пу­ тем последовательного присоединен ия к С5b компонентов C6, C7, C8 и C9 комплемента. C5b6 является гидрофиль­ ным, а C5b67 - гидрофобным комплексом, который встраи­ вается в липидный бислой мембраны. Присоединение к C5b67 С8 еще более погружает образовавшийс я комплекс C5b678 в мембрану. И, наконец, к C5b678 комплек- су фик сируется 14 молекул С9. Сформировавшийся C5b6789 и является мембраноатакующим ком плексом. По­ лимеризация молекул С9 в комплексе C5b6789 приводит к образованию неспадающейся поры в мембране. Через пору в клетку поступают вода и Na+ , что приводит к лизису клетки (рис. 3).

Рис. 3. Схема формирования мембраноатакующего комплекса (C5b6789)

Интенсивность образования МАК при классическом пути активации комплемента возрастает за счет петли усиления альтернативного пути активации комплемента. Петля усиле­ ния начинается с момента образования ковалентной связи С3b с поверхностью мембраны. В образовании петли участ­ вуют три дополнительных белка плазмы: B, D и Р (пропер­ дин). Под влиянием фактора D (сериновой эстеразы) свя­ занный с С3b белок В расщепляется на меньший фрагмент Ba и больший Bb, который связыв ается с С3b (см. рис. 2). Присоединение к комплексу C3bBb пропер дина, выполняю­ щего роль стабилизатора комплекса C3bBb , завершает об ­ разование С3-конвертазы альтернативного пути - C3bBbP

С3-конвертаза альтернативного пути расщепляет молеку­ лы С3, образуя дополнительные С3b, что обеспечивает формирование все большего количества С5-конвертазы и в конечном итоге - большего количества МАК. МАК действу­

Биологические функции комплемента

ет самостоятельно, а возможно, индуцирует апоптоз через каспазный путь .

Альтернативный (самопроизвольный) путь активации комплемента

Механизм активации комплемента по альтернативному пути обусловлен спонтанным гидролизом тиоэфирной связи в нативной молекуле С3. Этот процесс происходит в плазме постоянно и называется «холостой» активацией С3. В ре­ зультате гидролиза С3 образуется его активированная форма, обозначаемая С3i. В дальнейшем С3i связывает фактор В. Фактор D расщепляет фактор В в составе комплекса С3iВ на малый фрагмент Ba и большой Вb. Об­ разовавшийся комплекс С3iВb является жидкофазной С3конвертазой альтернативного пути активации комплемента. Далее жидкофазная конвертаза С3iВb расщепляет С3 на C3a и C3b. Если C3b остается свободным, он разрушается, подвергаясь гидролизу водой. Если C3b ковалентно свя­

зывается с поверхностью бактериальной мембраны (мембраны любых микроорганизмов ), то он не подвергается протеолизу. Более того, он инициирует образование петли усиления альтернативного пути. К фиксированному C3b присоединяется фактор В (C3b имеет б ó льшую аффинность к фактору В, чем к фактору Н), образуется комплекс C3bВ, от которого фактор D отщепляет мелкий фрагмент Ва. После присоединения пропердина, являющегося с табилиз атором комплекса C3bВb, образуется комплекс C3bBbP , представляющий собой связанную с поверхностью мембраны С3-конвер­ тазу альтернативного пути. Связанная С3-конвертаза ини­ циирует прикрепление в том же месте дополнительных мо­ лекул C3b (амплификация C3b), что приводит к быстрому локальному накоплению C3b . Далее связанная С3-конвертаза расщепляет С3 на С3a и С3b. П рисоеди не­ ние C3 b к С3-конвертазе образует комплекс C3bBb3b (C3b 2 Bb), который является С5-конвертазой альтернативно­ го пути. Затем происходит расщепление компонента С5 и образование МАК, как и при классическом пути активации комплемента.

Обзор литературы

Рис. 4. Альтернативный (самопроизвольный) путь активации комплемента

Лектиновый путь активации комплемента

Липополисахариды (ЛПС) грамотрицательных бакте­ рий, в составе которых могут содержаться остатки манно­ зы, фукозы, глюкозамина, связываются лектинами (сыво­ роточные протеины, прочно связывающие углеводы) и ин­ дуцируют лектиновый путь активации комплемента. Например, триггером лектинового пути активации компле­ мента может быть маннансвязывающий лектин (МСЛ), как и C1q, относящийся к семейству кальцийзависимых лекти­ нов

Он соединяется с маннозой, находящейся в составе клеточной стенки бактерий, и приобретает способность взаимодействовать с двумя маннансвязываю­ щими лектинассоциированными сериновыми протеиназами

МАСП1 и МАСП2, идентичными соответственно C1r и C1s.

Взаимодействие [МСЛ-МАСП1-МАСП2] аналогично образованию комплекса . В дальнейшем ак­ тивация комплемента происходит так же, как и по классиче­ скому пути (рис. 5).

Рис. 5. Лектиновый путь активации комплемента (М - манноза в составе поверхностных структур клетки, например, ЛПС)

Белки семейства пентраксинов, обладающие свойства­ ми лектинов, таких как амилоидный протеин, С-реактивный протеин, также способны активировать комплемент по лектиновому пути, взаимодействуя с соот­ ветствующими субстратами клеточных стенок бактерий. Так, С-реактивный протеин активирует форсфорилхолин клеточ­ ной стенки грамположительных бактерий. И затем активи­ рованный форсфорилхолин запускает классический путь сборки компонентов комплемента.

C3b, который образуется из С3, под влиянием любой С3-конвертазы связывается с мембраной мишени и стано­ вится местом дополнительного образования C3b. Эта сту­ пень каскада получила название «петля усиления». Каким бы ни был путь активации комплемента, если его не блокиру­ ет один из регуляторных факторов, он заканчивается образо­ ванием мембраноатакующего комплекса, образующего не­ спадающуюся пору в мембране бактерии, что приводит к ее гибели.

Альтернативный и лектиновый пути активации компле­ мента по времени запуска при инфекционном заболевании яв­ ляются ранними. Они могут активироваться уже в первые часы после попадания патогена во внутреннюю среду ма­ кроорганизма. Классический путь активации комплемента яв­ ляется поздним: он начинает «работать» лишь при появлении антител (IgM, IgG).

Регуляторные белки активации комплемента

Процесс активации комплемента регулируется мем­ бранными (табл. 2) и плазменными (табл. 3) белками .

Пути активации комплемента и образование МАК могут быть блокированы различными факторами:

1) классический, лектиновый:

Действием С1-ингибитора, связывающего и инактиви­ рующего С1r и C1s;

- подавлением образования С3-конвертазы классиче­ ского и лектинового пути (C4b2a) под действием факторов I, Н, C4-bp, ФУД, МКБ и CR1;

- подавлением взаимодействия компонентов компле­ мента с поверхностью клеток макроорганизма действием ФУД (CD55), CR1(CD35), МКБ(CD46);

2) альтернативный:

- диссоциацией комплексов C3iBb и C3bBb действием фактора Н;

- расщеплением C3b фактором I при участии одного из трех кофакторов: фактора Н (плазмы), CR1 или МКБ (свя­ занных на поверхности клеток макроорганизма);

- подавлением образования С3-конвертазы альтерна­ тивного пути на поверхности клеток макроорганизма дей­ ствием ФУД, CR1 или МКБ.

Мембранные регуляторные белки

Т а б л и ц а 2

Клеточные (расположены на мембранах клеток макроорганизма)

Экспрессия на клетках

Результат

В-лимфоциты;

Подавляет активацию

моноциты (макрофаги);

вызывает и ускоряет диссоциацию C4b2a на C4b и 2a;

комплемента по любому пути

гранулоциты;

на мембранах клеток соб­

фолликулярные дендрит-

кофактор катаболизма C3b под действием фактора I;

ственного организма

ные клетки;

НК-клетки

Т-лимфоциты;

Подавляет образование конвертаз: C4b2a и C3bBb;

В-лимфоциты;

кофактор катаболизма C4b под действием фактора I;

моноциты (макрофаги);

кофактор катаболизма C3b под действием фактора I

гранулоциты;

дендритные клетки;

НК-клетки

Т-лимфоциты;

- « -

В-лимфоциты;

моноциты (макрофаги);

подавляет связывание C2 с C4b;

гранулоциты;

ускоряет диссоциацию C4b2a на C4b и 2a;

дендритные клетки;

ускоряет диссоциацию C3bBb с освобождением C3b

НК-клетки;

тромбоциты

Протектин (CD59)

Все клетки макро-

Связывается с 5b678 и подавляет его погружение в мембрану

Предотвращает лизис

Обзор литературы

организма

и развертывание С9

собственных клеток

Плазменные регуляторные белки

Т а б л и ц а 3

Молекулярная масса

Реализация эффекта

и концентрация

на соматических клетках и (или)

в сыворотке

на патогенах

Подавляет образование конвертазы C4b2a классического пути;

Подавляет активацию компле­

(легко связывается

подавляет образование конвертазы C3bBb альтернативного пути;

мента по любому пути

с сиаловыми кислота­

вызывает диссоциацию жидкофазной конвертазы C3iBb на C3i и Bb;

на мембранах клеток собствен­

ми поверхности клеток

кофактор катаболизма C3i и Bb;

ного организма и микроорганиз­

макроорганизма)

вызывает диссоциацию конвертазы C3bBb на C3b и Bb

Подавляет образование конвертазы C4b2a классического пути

Подавляет активацию компле­

(протеаза плазмы)

мента по классическому пути на

мембранах клеток собственного

организма

и микроорганизмах

Вместе с одним из кофакторов (МКБ, CR1, C4bp) расщепляет

Подавляет активацию компле­

4b на C4c и C4d;

мента по любому пути на мем­

вместе с одним из кофакторов (МКБ, CR1, H) расщепляет C3b;

бранах клеток собственного орга­

фактор катаболизма C3b и C3i

C4bp (C4 binding

Подавляет связывание C2 с C4b;

Подавляет активацию компле­

protein, белоксвязыва­

подавляет образование конвертазы C4b2a классического пути;

мента по классическому

вызывает диссоциацию C4b2a на C4b и 2a;

и лектиновому пути на мембра­

кофактор катаболизма C4b под действием фактора I

ма и микроорганизмах

C1-ингибитор

Связывает и ингибирует C1r и C1s (сер иновых п ротеаз ин гибитор);

Подавляет активацию компле­

(C1-inh, серпин)

отщепляет C1r и C1s от C1q (C1q остается связанным

мента по классическому

с Fc-фрагментом Ig);

и лектиновому пути на мембра­

ограничивает время контакта C1s с C4 и C2;

нах клеток собственного организ­

ограничивает спонтанную активацию C1 в плазме крови

ма и микрорганизмах

Образует комплекс 5b67-S, инактивирует его способность внедриться в ли­

Блокирует образование МАК

(витронектин)

пидный слой мембраны

Подавление образования МАК

1. Гидрофобный комплекс C5b67 , который начинает встраивается в липидный бислой мембраны, может быть инактивирован S-белком (витронектином). Образовавшийся комплекс 5b67S внедриться в липидный слой мембраны не может.

2. Присоединение компонента 8 к комплексу C5b67 в жидкой фазе может быть блокировано липопротеидами низ­ кой плотности (ЛПНП).

3. Погружение в мембрану C5b678 и присоединение С9 предотвращает CD59 (протектин), белок мембраны клеток макроорганизма.

4. Удаление фрагментов мембраны клеток макроорга­ низма со встроенным МАК путем эндоцитоза либо экзоцитоза.

Таким образом, регуляторные белки клеточного проис­ хождения самостоятельно ингибируют активацию компле­ мента с образованием МАК только на поверхности сомати­ ческих клеток и не эффективны в ингибиции литической функции на поверхности патогенов.

Напротив, регуляторные белки плазменного происхо­ ждения ингибируют активацию комплемента не только на поверхности соматических клеток, но и на мембранах пато­ генов.

Опсонизация микроорганизмов компонентами комплемента

Комплементарный лизис микроорганизмов является ранней реакцией макроорганизма на попадание патогенов в его внутреннюю среду . Образующиеся при активации комплемента по альтернативному или лектиновому пути субкомпоненты C2b, C3a, C4a, C5a, Ba привлекают в очаг воспаления клетки и активируют их эффекторные функции.

Из компонентов комплемента опсонизирующими свой­ ствами обладают в основном 3b и 4b. Для их образования необходимы два условия: первое - активация комплемента одним из описанных выше путей, второе - блокирование активационного процесса, благодаря которому невозможно образование МАК и лизис патогена. В этом и состоит

переключение литической программы активации комплемен­ та на опсоническую.

В реальных условиях инфекционного процесса переключение на опсоническую программу активации комплемента, обеспечивающую фагоцитоз патогена и кли­ ренс иммунных комплексов , может происходить благо­ даря эффектам регуляторных белков. Сборка на мембране компонентов комплемента может завершиться образовани­ ем мембраноатакующего комплекса, а может быть прервана на уровне образования 4b и еще более активно на уровне образования 3b факторами I и H .

Фактор I является основным ферментом, вызывающим деградацию C3b. Фактор H в этом процессе выполняет роль кофактора. Действуя совместно, они обладают способно­ стью инактивировать как жидкофазный, так и мембранный C3b (свободный или в составе любой конвертазы), отщеп­ ляя от него фрагмент C3f (инактивированный C3b обознача­ ется как C3bi). Затем они продолжают расщепление C3bi следующим образом:

К мембранному C3b и его мембранному субкомпоненту деградации C3bi на клетках макроорганизма имеются соот­ ветствующие рецепторы (табл. 4). C3b и инактивированный C3b (C3bi) являются лигандами для рецепторов CR1 (C3b, C3bi), CR3 (C3bi), CR4 (C3bi), расположенных на нейтрофи­ лах , моноцитах (макрофагах) , эндотелии пу­ повины . C3b и C3bi выполняют роль активных опсони­ нов .

Предположительно, совместное действие факторов I и H может переключать образование литического комплекса (МАК, комплементарный киллинг) на другой механизм уни­ чтожения патогена - фагоцитарный киллинг (рис. 6). Раство­ римые ингибиторы активации комплемента (I и H), продуци­ рующиеся макрофагами, позже появляющимися в очаге вос­ паления, действуют в микроокружении фагоцита, препят­ ствуя образованию конвертазы C3 на поверхности бактерий

и обеспечивая, таким образом, наличие «свободных» C3b. Рецептор макрофага к C3b, связывая лиганд (C3b), фикси­ рует бактерию на поверхности макрофага. Ее фагоцитоз осуществляется при совместном участии двух лиганд-рецеп­ торных комплексов: рецептор к C3b + C3b и Fcγ R + IgG . Другая пара - рецептор к C3b + C3bi инициирует фагоцитоз

и без участия антител .

Биологический смысл переключения активации компле­ мента с литической на опсоническую функцию, вероятно, за­ ключается в том, что все бактерии, которые не лизировались до встречи с фагоцитом, должны быть фагоцитированы c по­ мощью C3b-опсонина. Такой механизм переключения актива­ ции комплемента на опсонический необходим не только для фагоцитоза жизнеспособных патогенов в ранние сроки инфек­ ции, но и для утилизации фагоцитами «осколков» микроорга­ низмов.

Рецепторы к субкомпонентам комплемента

Т а б л и ц а 4

Рецептор (complement

Экспрессия на клетках

Эффект связывания

Нейтрофилы, моноциты (макрофаги), В-лимфоциты, фол­

Опсонизированный фагоцитоз, активация В-

ликулярные дендритные клетки, эритроциты, эпителий по­

лимфоцитов, транспорт иммунных комплек­

чечных клубочков

сов на эритроцитах

Нейтрофилы, моноциты (макрофаги), НК-клетки, фоллику­

Опсонизированный фагоцитоз

лярные дендритные клетки

Нейтрофилы

Опсонизированный фагоцитоз

(р 150-95) (CD11c/CD18)

CR2 (CD21), компонент коре­

В-клетки, фолликулярные дендритные клетки

Усиливает активационные реакции BCR, ин­

цепторного комплекса В-лим­

дуцирует нефагоцитируемое связывание

фоцитов (BCR + CD19, CR2,

комплекса АГ-АТ на фолликулярных ден­

дритных клетках

Обзор литературы

Рис. 6. Переключение активации комплемента на процесс фагоцитоза

Является целесообразным рассмотреть вопрос о воз­ можной роли комплемента в патогенезе различных групп бактериозов, разделенных ранее в зависимости от меха­ низма саногенеза.

Токсигенные бактериозы (дифтерия, газовая гангре­ на, ботулизм, столбняк и др.). Обычная локализация возбу­ дителей - входные ворота инфекции. Основной эффектор патогенеза - токсин (Т-зависимый антиген, антиген первого типа). Т-зависимые поверхностные антигены этих бактерий в индукции иммунного ответа принимают незначительное участие. Основной эффектор саногенеза - антитоксин (IgG). Тип иммунного ответа - Th2. Выздоровление насту­ пает вследствие образования и последующей элиминации иммунных комплексов, а также фагоцитарного киллинга бак­ терий в очаге воспаления. Роль комплемента при этих бак­ териозах, вероятно, ограничена участием в элиминации им­ мунных комплексов токсин - антитоксин. В нейтрализации токсина (т.е. в саногенезе токсигенных инфекций) компле­ мент существенной роли не играет.

Нетоксигенные негранулематозные бактериозы

1. Возбудители содержат поверхностные Т-неза­ висимые антигены (Ti-антигены, антигены второго типа):

Бактерии содержат классический ЛПС (Ti-антигены энтеропатогенных кишечных палочек, сальмонелл, шигелл и др.). Обычная локализация возбудителей - от входных во­ рот в слизистых кишечного тракта до региональных лимфати­ ческих узлов. Основной эффектор патогенеза - эндотоксин и живые бактерии. Тип иммунного ответа - Th2. Иммунный

ответ на ЛПС характеризуется продукцией антител IgMкласса. Саногенез наступает прежде всего вследствие уни­ чтожения бактерий нефагоцитарным путем в преиммунную фазу инфекционного процесса за счет лектинового и аль­ тернативного пути активации комплемента.

В иммунную фазу инфекционного процесса - за счет им­ мунного лизиса с участием IgM и комплемента по классиче­ скому пути активации. Фагоцитоз не имеет существенного зна­ чения в саногенезе при бактериозах этой группы. Активация системы комплемента при этих заболеваниях может способ­ ствовать саногенезу ;

Бактерии содержат поверхностные (капсульные)

Ti-антигены (пневмококки, гемофильные бактерии и др.). Обычная локализация возбудителей - от входных ворот в слизистых дыхательного тракта до региональных лимфати­ ческих узлов, нередко проникают в кровь. Основной эффек­ тор патогенеза - живые бактерии. Тип иммунного ответа - Th2. В иммунном ответе на поверхностные антигены проис­ ходит образование антител IgM-класса. Саногенез осуще­ ствляется прежде всего вследствие уничтожения бактерий нефагоцитарным путем в преиммунную фазу инфекционно­ го процесса за счет лектинового и альтернативного пути ак­ тивации комплемента. В иммунную фазу инфекционного процесса - за счет иммунного лизиса с участием IgM и комплемента по классическому пути активации. В случае проникновения бактерий этой группы в кровь основную роль в очищении макроорганизма от возбудителей играет селе­ зенка - основное место фагоцитоза слабоопсонизирован­ ных (или неопсонизированных) бактерий - и способность

Одинцов Ю.Н., Перельмутер В.М.

IgM «нацеливать» сенсибилизированные им бактерии на фагоцитоз купферовыми клетками с последующим перено­ сом еще не дезинтегрированных до конца фрагментов бак­ терий в желчные капилляры. Соли желчных кислот расщеп­ ляют фрагменты бактерий, которые выводятся в кишечник. Активация системы комплемента при этой группе заболева­ ний также может способствовать саногенезу .

2. Возбудители содержат поверхностные Т-зависи­ мые антигены (T-антигены, антигены первого типа).

Локализация возбудителей (стафилококки, стрептококки и др.) - входные ворота (кожа, слизистые), региональные лимфатические узлы, системное поражение (органы). Основные эффекторы патогенеза - живые бактерии и, в меньшей степени, их токсины.

В иммунном ответе четко прослеживается смена синтеза IgM на IgG. Тип иммунного ответа при адекватном течении инфекционного заболевания (у пациентов без признаков им­ мунодефицита) - Th2. Саногенез обусловлен иммунным фагоцитозом, иммунным лизисом и антитоксинами. При этих инфекциях в преиммунную фазу саногенез осуществляется за счет альтернативного пути активации комплемента и опсонизации бактерий продуктами активации комплемента с последующим их фагоцитозом. В иммунную фазу инфекци­ онного процесса саногенез связан с комплементарным кил­ лингом при классическом пути активации комплемента с участием IgM и IgG, а также с фагоцитозом опсонизирован­ ных продуктами активации комплемента и IgG бактерий .

Гранулематозные бактериозы

1. Возбудители острых неэпителиоидноклеточ­ ных гранулематозных бактериозов (листерии, сальмо­ неллы брюшного тифа, паратифов А, В и др.).

Возбудители содержат поверхностные Т-зависимые ан­ тигены. Эффекторами патогенеза являются живые бакте­ рии. Фагоцитоз незавершенный. Тип иммунного ответа - Th2 и Th1. Появление IgM сопровождается образованием гранулем . Смена IgM на IgG ведет к обратному развитию гранулем. Саногенез осуществляется за счет альтернатив­ ного пути активации комплемента и опсонизации бактерий продуктами активации комплемента с последующим их фа­ гоцитозом. В иммунную фазу инфекционного процесса сано­ генез связан с комплементарным киллингом при классиче­ ском пути активации комплемента с участием IgM и IgG, а также с фагоцитозом опсонизированных продуктами актива­ ции комплемента и IgG бактерий.

Биологические функции комплемента

2. Возбудители хронических эпителиоиднокле­ точных гранулематозных бактериозов (микобактерии туберкулеза, лепры; бруцеллы и др.).

Возбудители содержат поверхностные Т-зависимые ан­ тигены. Эффекторами патогенеза являются живые бакте­ рии. Фагоцитоз незавершенный. Тип иммунного ответа - Th2 и Th1. Появление IgM, по-видимому, также может яв­ ляться ведущим фактором образования гранулем. Действия цитокинов Th1-набора недостаточно для завершенности фа­ гоцитоза, что приводит к появлению в гранулеме эпителио­ идных клеток. Ни один из вариантов активации комплемента в саногенезе не играет существенной роли .

Заключение

Комплемент (система комплемента) является одним из первых гуморальных факторов, с которым сталкивается па­ тоген при его попадании во внутреннюю среду макроорга­ низма. Механизмы активации компонентов комплемента позволяют использовать его как для лизиса патогенов, так и для усиления фагоцитоза. Не при всех бактериальных ин­ фекционных заболеваниях содержание и уровень компле­ мента в крови можно использовать как прогностический тест.

Литература

1. Одинцов Ю.Н., Перельмутер В.М., Климентьева Т.К. Тафтсин: роль в развитии негранулематозных и гранулематозных бакте­ риозов // Бюл. сиб. медицины. 2002. Т. 1. № 3. С. 98-102.

2. Перельмутер В.М., Одинцов Ю.Н. Основная функция иммуно­ глобулинов класса M (IgM) - регуляция проницаемости гема­

тотканевого барьера для бактерий и их антигенов // Бюл. сиб. медицины. 2005. Т. 4. № 3. С. 38-42.

3. Ройт А. Основы иммунологии. Пер. с англ. М.: Мир, 1991. 328 с.

4. Ройт А., Бростофф Дж., Мейл Д. Иммунология. Пер. с англ. М.: Мир, 2000. 581 с.

5. Хаитов Р.М., Игнатьева Г.А., Сидорович И.Г. Иммунология. М.: Медицина, 2000. 432 с.

6. Ярилин А.А. Основы иммунологии. М.: Медицина, 1999. 607 с.

7. Alban S., Classen B., Brunner G., Blaschek W. Differentiation be­ tween the complement modulating effects of an arabinogalactan-protein from Echinacea purpurea and heparin // Planta Med. 2002. V. 68 (12). P. 1118-1124.

8. Ambrosio A.R., De Messias-Reason I.J. Leishmania (Viannia) braziliensis: interaction of mannose-binding lectin with surface gly­ coconjugates and complement activation. An antibody-independent defence mechanism // Parasite Immunol. 2005. V. 27. P. 333-340.

9. Andersson J., Larsson R., Richter R. et al. Binding of a model regula­ tor of complement activation (RCA) to a biomaterial surface: surfacebound factor H inhibits complement activation // Biomaterials. 2001. V. 22. P. 2435-2443.

, Эстетическая, биологическая и культурная роль коллоидных систем , 1. Место и роль безопасности в профессиональной деятельности..do , НИР Деньги и их роль в экономике.docx , Какую роль в становлении личности играет семья.docx , Гальперин П.Я. Поэтапное формирование умствен. действий.docx , ПР 01 Определение идеи проекта. Формирование целей проекта в рам , Место и роль философии в культуре ХХ века..docx .
Эффекторная роль комплемента. Формирование мембраноатакующего комплекса и его роль в лизисе клетки.

а) участвует в лизисе микробных и других клеток (цитотоксическое действие);
б) обладает хемотаксической активностью ;
в) принимает участие в анафилаксии;
г) участвует в фагоцитозе.

Основные полезные эффекты комплемента:


  • содействие в уничтожении микроорганизмов;

  • интенсивное удаление иммунных комплексов;

  • индукция и усиление гуморального иммунного ответа.

  • Система комплемента может вызывать повреждение клеток и тканей собственного организма в следующих случаях:

  • если происходит ее генерализованная массированная активация , например при септицемии, вызванной грамотрицательными бактериями;

  • если ее активация происходит в очаге тканевого некроза, в частности при инфаркте миокарда ;

  • если активация происходит при аутоиммунной реакции в тканях.
Терминальные компоненты каскада комплемента - С5b, С6, С7, С8 и С9 - являются общими для всех путей активации. Они связываются друг с другом и формируют мембраноатакующий комплекс (МАК), который вызывает лизис клетки.

Первая фаза: прикрепление С6 к С5b на поверхности клетки. Затем С7 связывается с С5b и С6 и проникает в наружную мембрану клетки. Последующее связывание С8 с С5b67 приводит к образованию комплекса, глубже проникающего в мембрану клетки. На мембране клетки C5b-С8 действует как рецептор для С9 - молекулы типа перфорина, который связывается с С8. Дополнительные молекулы С9 взаимодействуют в комплексе с молекулой С9, образуя полимеризованные С9 (поли-С9). Они формируют трансмембранный канал, нарушающий осмотическое равновесие в клетке: через него проникают ионы и поступает вода. Клетка набухает, мембрана становится проницаемой для макромолекул, которые затем покидают клетку. В результате происходит лизиc клетки.

Система комплимента - комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитическихферментов, предназначенная для гуморальнойзащиты организма от действия чужеродных агентов , она участвует в реализации иммунного ответаорганизма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

По классическому пути комплемент активируется комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к комплексу АГ+АТ компонента С1 , который распадается на субъединицы C1q, C1r и С1s. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в последовательности: С4 , С2, СЗ. «Ранний» компонент комплемента С3 активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемента проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при альтернативном пути начинается с взаимодействия антигена с протеинами В , D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути - образуется мембраноатакующий комплекс.

Лектиновый пут ь активации комплемента также происходит без участия антител. Он инициируется особым маннозосвязывающим белком сыворотки крови, который после взаимодействия с остатками маннозы на поверхности микробных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента образуются продукты протеолиза его компонентов - субъединицы СЗа и СЗb, С5а и С5b и другие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях , являются хемоаттрактантами, СЗb - играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са 2 + и Mg 2+ .

ЗАОЧНАЯ АКАДЕМИЯ ПОСЛЕДИПЛОМНОГО ОБРАЗОВАНИЯ

ЗАОЧНАЯ АКАДЕМИЯ ПОСЛЕДИПЛОМНОГО ОБРАЗОВАНИЯ

К. П. Кашкин, Л. Н. Дмитриева

БЕЛКИ СИСТЕМЫ КОМПЛЕМЕНТА: СВОЙСТВА И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ (Лекция)

Кафедра иммунологии Российской медицинской академии последипломного образования Минздрава РФ, Москва

Защита организма от чужеродных агентов осу­ществляется с участием множества так называе­мых антигеннеспецифиче-ских клеточных и гумо­ральных факторов имму­нитета. Последние пред­ставлены различными бел­ками и пептидами крови. присутствующими также и в других жидкостях орга­низма. Гуморальные анти-геннеспецифические фак­торы иммунитета или са­ми обладают антимикроб­ными свойствами или спо­собны активировать дру­гие гуморальные и клеточ­ные механизмы иммунной защиты организма.

В 1894 г. В. И. Исаев и Р. Пфейффер показали, что свежая сыворотка крови иммунизированных животных обладает бакте-риолитическими свойствами. Позднее этот антимикробный сы-вороточный фактор был назван алексином (греческий alexo - защищаю, отражаю), или комплементом и охарактеризован как термолабильный фактор, обеспечивающий лизис микробов в иммунной сыворотке, а также лизис сенсибилизированных ан­тителами эритроцитов.

Согласно современным представлениям, комплемент - это система сывороточных белков, которая может активиро­ваться в результате взаимодействия некоторых инициальных компонентов системы с комплексами антиген-антитело или с другими активирующими систему молекулами.

Белки системы комплемента представлены 13 гликопротеи-нами плазмы крови. Регуляция системы осуществляется семью белками плазмы крови и множеством связанных с мембранами клеток белков и рецепторов.

В литературе систему комплемента обозначают латинской буквой С", отдельные же компоненты - дополнительно араб­скими цифрами (Cl, C2, СЗ и т. д.) или заглавными буквами (факторы: В, D): субъединицы комплемента, а также продукты расщепления или активации белков системы - дополнительно малыми латинскими буквами (например: Clq, СЗа, СЗЬ и т. д.);

активированные формы компонентов комплемента могут обозна­чаться штрихом сверху (Cl , СЗ, В и т. д.). Нумерация компо­нентов С" соответствует хронологии их открытия и не всегда сов­падает с последовательностью вовлечения компонентов в реак­цию активации системы комплемента.

Активация системы комплемента происходит в результате взаимодействия некоторых циркулирующих в крови белков системы комплемента с активирующими систему агентами. Та­кое взаимодействие изменяет конформационную структуру мо­лекул соответствующих компонентов комплемента, так что у белковых молекул вскрываются участки, способные взаимодей­ствовать с последующими компонентами системы, фиксиро­вать их и иногда расщеплять.

Такой "каскадный" тип активации характерен как для системы комплемента, так и для многих других бел­ковых систем крови. При активации системы компле­мента происходят "потребле­ние" растворимых в плазме нативных белков компле­мента и их фиксация на раз­личных нерастворимых но­сителях (агрегаты молекул, поверхности клеток и т. д.).

Классический путь активации системы комплемента

Известны два главных пути активации компле­мента - классический, от­крытый первым, и альтер­нативный, установленный позднее. Классический путь отличается от альтернатив­ного тем, что активация системы инициируется Clq-субком-понснтом комплемента, в результате взаимодействия Clq с Fc-фрагментом конформационно измененных IgG и IgM крови. Конформационые изменения Fc-фрагментов у IgG и IgM воз­никают при взаимодействии этих иммуноглобулинов крови с антигенами, а также искусственно в результате термической (63°С, 10 мин) или химической (диазобензидин) обработки им­муноглобулинов.

В зависимости от той роли, которую играют отдельные компоненты комплемента в процессе активации и обеспече­нии функции системы, белки комплемента можно условно разделить на несколько блоков: распознающий (Cl), активи­рующий систему (C2, С4, СЗ) и атакующий мембраны клеток (С5, С6, С7, С8, С9). Свойства белков, входящих в эти блоки, суммированы в табл. I. Активация системы комплемента клас­сическим способом начинается с Clq-субкомпонента компле­мента, конформационные изменения молекул которого "запус­кают" этот процесс (рис. 1). Clq является сывороточным глико-протеином, построенным из 18 полипептидных цепей трех ти­пов: А, В и С. Цепи А, В и С со стороны N-концов цепочек собраны вместе, образуя шесть глобулярных головок. Сами А-, В- и С-цепочки с помощью дисульфидных связей удерживают­ся друг с другом, формируя шесть подобных коллагену трой­ных спиралей. С-концы полипептидных цепочек всех шести спи­ралей Clq удерживаются вместе. По форме молекула Clq напо­минает моллюска с шестью щупальцами (рис. 2). Как и у колла­гена, в составе Clq в больших количествах содержатся глицин, гидрооксипролин и гидрооксилизин. Около 8% массы Clq со­ставляют углеводы, среди которых доминируют гликозилгалак-тозильные остатки. Clq не обладает энзиматической активно­стью, но с помощью своих шести коллагеноподобных трехспи­ральных нитей - "щупалец" - взаимодействует как с циркули­рующими в крови комплексами из С1г- и Cls-субкомпонентов комплемента (участки нитей между глобулярными головками и центральной частью молекулы Clq), так и с Fc-участками кон­формационно измененных молекул IgG и IgM (глобулярные го­ловки на свободных концах шести нитей Clq). Изолированный из крови Clr-компонент комплемента представляет собой ди-мер (С1Гз), При рН 5,0 диссоциирующий на две мономерные молекулы С1г. Каждый мономер С1г представлен полипептид-ной цепью из 688 аминокислотных остатков. Полипептидная цепь мономера образует на конечных участках молекулы по одному домену. При димеризации участок контактного связы­вания мономеров располагается между этими доменами так, что димер С1гз имеет форму асимметричной "X". Активированный С1г2 является сериновой протеазой и в построении активного

Рис. 1. Классический путь активации системы комплемента.

а - компоненты комплементз в водной фазе; б - компоненты комплемента, иммобилизованные на мембранах клеток; Аг - антигены на мембране клеток; at - антитела к соответствующим антигенам классов IgM и IgG; МАК. - мембраноатакующий комплекс.