И теорему о производной сложной функции, формулировка которой такова:

Пусть 1) функция $u=\varphi (x)$ имеет в некоторой точке $x_0$ производную $u_{x}"=\varphi"(x_0)$, 2) функция $y=f(u)$ имеет в соответствующей точке $u_0=\varphi (x_0)$ производную $y_{u}"=f"(u)$. Тогда сложная функция $y=f\left(\varphi (x) \right)$ в упомянутой точке также будет иметь производную, равную произведению производных функций $f(u)$ и $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_{u}"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

или, в более короткой записи: $y_{x}"=y_{u}"\cdot u_{x}"$.

В примерах этого раздела все функции имеют вид $y=f(x)$ (т.е. рассматриваем лишь функции одной переменной $x$). Соответственно, во всех примерах производная $y"$ берётся по переменной $x$. Чтобы подчеркнуть то, что производная берётся по переменной $x$, часто вместо $y"$ пишут $y"_x$.

В примерах №1, №2 и №3 изложен подробный процесс нахождения производной сложных функций. Пример №4 предназначен для более полного понимания таблицы производных и с ним имеет смысл ознакомиться.

Желательно после изучения материала в примерах №1-3 перейти к самостоятельному решению примеров №5, №6 и №7. Примеры №5, №6 и №7 содержат краткое решение, чтобы читатель мог проверить правильность своего результата.

Пример №1

Найти производную функции $y=e^{\cos x}$.

Нам нужно найти производную сложной функции $y"$. Так как $y=e^{\cos x}$, то $y"=\left(e^{\cos x}\right)"$. Чтобы найти производную $\left(e^{\cos x}\right)"$ используем формулу №6 из таблицы производных . Дабы использовать формулу №6 нужно учесть, что в нашем случае $u=\cos x$. Дальнейшее решение состоит в банальной подстановке в формулу №6 выражения $\cos x$ вместо $u$:

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)" \tag {1.1}$$

Теперь нужно найти значение выражения $(\cos x)"$. Вновь обращаемся к таблице производных, выбирая из неё формулу №10. Подставляя $u=x$ в формулу №10, имеем: $(\cos x)"=-\sin x\cdot x"$. Теперь продолжим равенство (1.1), дополнив его найденным результатом:

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x") \tag {1.2} $$

Так как $x"=1$, то продолжим равенство (1.2):

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x")=e^{\cos x}\cdot (-\sin x\cdot 1)=-\sin x\cdot e^{\cos x} \tag {1.3} $$

Итак, из равенства (1.3) имеем: $y"=-\sin x\cdot e^{\cos x}$. Естественно, что пояснения и промежуточные равенства обычно пропускают, записывая нахождение производной в одну строку, - как в равенстве (1.3). Итак, производная сложной функции найдена, осталось лишь записать ответ.

Ответ : $y"=-\sin x\cdot e^{\cos x}$.

Пример №2

Найти производную функции $y=9\cdot \arctg^{12}(4\cdot \ln x)$.

Нам необходимо вычислить производную $y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"$. Для начала отметим, что константу (т.е. число 9) можно вынести за знак производной:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)" \tag {2.1} $$

Теперь обратимся к выражению $\left(\arctg^{12}(4\cdot \ln x) \right)"$. Чтобы выбрать нужную формулу из таблицы производных было легче, я представлю рассматриваемое выражение в таком виде: $\left(\left(\arctg(4\cdot \ln x) \right)^{12}\right)"$. Теперь видно, что необходимо использовать формулу №2, т.е. $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. В эту формулу подставим $u=\arctg(4\cdot \ln x)$ и $\alpha=12$:

Дополняя равенство (2.1) полученным результатом, имеем:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))" \tag {2.2} $$

В этой ситуации часто допускается ошибка, когда решатель на первом шаге выбирает формулу $(\arctg \; u)"=\frac{1}{1+u^2}\cdot u"$ вместо формулы $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. Дело в том, что первой должна находиться производная внешней функции. Чтобы понять, какая именно функция будет внешней для выражения $\arctg^{12}(4\cdot 5^x)$, представьте, что вы считаете значение выражения $\arctg^{12}(4\cdot 5^x)$ при каком-то значении $x$. Сначала вы посчитаете значение $5^x$, потом умножите результат на 4, получив $4\cdot 5^x$. Теперь от этого результата берём арктангенс, получив $\arctg(4\cdot 5^x)$. Затем возводим полученное число в двенадцатую степень, получая $\arctg^{12}(4\cdot 5^x)$. Последнее действие, - т.е. возведение в степень 12, - и будет внешней функцией. И именно с неё надлежит начинать нахождение производной, что и было сделано в равенстве (2.2).

Теперь нужно найти $(\arctg(4\cdot \ln x))"$. Используем формулу №19 таблицы производных, подставив в неё $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)" $$

Немного упростим полученное выражение, учитывая $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)"=\frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" $$

Равенство (2.2) теперь станет таким:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" \tag {2.3} $$

Осталось найти $(4\cdot \ln x)"$. Вынесем константу (т.е. 4) за знак производной: $(4\cdot \ln x)"=4\cdot (\ln x)"$. Для того, чтобы найти $(\ln x)"$ используем формулу №8, подставив в нее $u=x$: $(\ln x)"=\frac{1}{x}\cdot x"$. Так как $x"=1$, то $(\ln x)"=\frac{1}{x}\cdot x"=\frac{1}{x}\cdot 1=\frac{1}{x}$. Подставив полученный результат в формулу (2.3), получим:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)"=\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot 4\cdot \frac{1}{x}=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}. $$

Напомню, что производная сложной функции чаще всего находится в одну строку, - как записано в последнем равенстве. Поэтому при оформлении типовых расчетов или контрольных работ вовсе не обязательно расписывать решение столь же подробно.

Ответ : $y"=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}$.

Пример №3

Найти $y"$ функции $y=\sqrt{\sin^3(5\cdot9^x)}$.

Для начала немного преобразим функцию $y$, выразив радикал (корень) в виде степени: $y=\sqrt{\sin^3(5\cdot9^x)}=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$. Теперь приступим к нахождению производной. Так как $y=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$, то:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)" \tag {3.1} $$

Используем формулу №2 из таблицы производных , подставив в неё $u=\sin(5\cdot 9^x)$ и $\alpha=\frac{3}{7}$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}-1} (\sin(5\cdot 9^x))"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" $$

Продолжим равенство (3.1), используя полученный результат:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" \tag {3.2} $$

Теперь нужно найти $(\sin(5\cdot 9^x))"$. Используем для этого формулу №9 из таблицы производных, подставив в неё $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Дополнив равенство (3.2) полученным результатом, имеем:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)" \tag {3.3} $$

Осталось найти $(5\cdot 9^x)"$. Для начала вынесем константу (число $5$) за знак производной, т.е. $(5\cdot 9^x)"=5\cdot (9^x)"$. Для нахождения производной $(9^x)"$ применим формулу №5 таблицы производных, подставив в неё $a=9$ и $u=x$: $(9^x)"=9^x\cdot \ln9\cdot x"$. Так как $x"=1$, то $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Теперь можно продолжить равенство (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Можно вновь от степеней вернуться к радикалам (т.е. корням), записав $\left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}$ в виде $\frac{1}{\left(\sin(5\cdot 9^x)\right)^{\frac{4}{7}}}=\frac{1}{\sqrt{\sin^4(5\cdot 9^x)}}$. Тогда производная будет записана в такой форме:

$$ y"=\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}. $$

Ответ : $y"=\frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}$.

Пример №4

Показать, что формулы №3 и №4 таблицы производных есть частный случай формулы №2 этой таблицы.

В формуле №2 таблицы производных записана производная функции $u^\alpha$. Подставляя $\alpha=-1$ в формулу №2, получим:

$$(u^{-1})"=-1\cdot u^{-1-1}\cdot u"=-u^{-2}\cdot u"\tag {4.1}$$

Так как $u^{-1}=\frac{1}{u}$ и $u^{-2}=\frac{1}{u^2}$, то равенство (4.1) можно переписать так: $\left(\frac{1}{u} \right)"=-\frac{1}{u^2}\cdot u"$. Это и есть формула №3 таблицы производных.

Вновь обратимся к формуле №2 таблицы производных. Подставим в неё $\alpha=\frac{1}{2}$:

$$\left(u^{\frac{1}{2}}\right)"=\frac{1}{2}\cdot u^{\frac{1}{2}-1}\cdot u"=\frac{1}{2}u^{-\frac{1}{2}}\cdot u"\tag {4.2} $$

Так как $u^{\frac{1}{2}}=\sqrt{u}$ и $u^{-\frac{1}{2}}=\frac{1}{u^{\frac{1}{2}}}=\frac{1}{\sqrt{u}}$, то равенство (4.2) можно переписать в таком виде:

$$ (\sqrt{u})"=\frac{1}{2}\cdot \frac{1}{\sqrt{u}}\cdot u"=\frac{1}{2\sqrt{u}}\cdot u" $$

Полученное равенство $(\sqrt{u})"=\frac{1}{2\sqrt{u}}\cdot u"$ и есть формула №4 таблицы производных. Как видите, формулы №3 и №4 таблицы производных получаются из формулы №2 подстановкой соответствующего значения $\alpha$.

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

А проверить решение задачи на производную можно на .

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Проверить решение задачи на производную можно на калькуляторе производных онлайн .

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f (x ) = x 2 + (2x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f (x ) = C , C R 0 (да-да, ноль!)
Степень с рациональным показателем f (x ) = x n n · x n − 1
Синус f (x ) = sin x cos x
Косинус f (x ) = cos x − sin x (минус синус)
Тангенс f (x ) = tg x 1/cos 2 x
Котангенс f (x ) = ctg x − 1/sin 2 x
Натуральный логарифм f (x ) = ln x 1/x
Произвольный логарифм f (x ) = log a x 1/(x · ln a )
Показательная функция f (x ) = e x e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f )’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f (x ) и g (x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

  1. (f + g )’ = f ’ + g
  2. (f g )’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

f (x ) = x 2 + sin x; g (x ) = x 4 + 2x 2 − 3.

Функция f (x ) — это сумма двух элементарных функций, поэтому:

f ’(x ) = (x 2 + sin x )’ = (x 2)’ + (sin x )’ = 2x + cos x;

Аналогично рассуждаем для функции g (x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x ) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).

Ответ:
f ’(x ) = 2x + cos x;
g ’(x ) = 4x · (x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike ">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

(f · g ) ’ = f ’ · g + f · g

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f (x ) = x 3 · cos x; g (x ) = (x 2 + 7x − 7) · e x .

Функция f (x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’(x ) = (x 3 · cos x )’ = (x 3)’ · cos x + x 3 · (cos x )’ = 3x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x x · sin x )

У функции g (x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g (x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’(x ) = ((x 2 + 7x − 7) · e x )’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x )’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x ) · e x = x (x + 9) · e x .

Ответ:
f ’(x ) = x 2 · (3cos x x · sin x );
g ’(x ) = x (x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Если есть две функции f (x ) и g (x ), причем g (x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h (x ) = f (x )/g (x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f (x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f (x ) = sin (x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’(x ) = f ’(t ) · t ’, если x заменяется на t (x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f (x ) = e 2x + 3 ; g (x ) = sin (x 2 + ln x )

Заметим, что если в функции f (x ) вместо выражения 2x + 3 будет просто x , то получится элементарная функция f (x ) = e x . Поэтому делаем замену: пусть 2x + 3 = t , f (x ) = f (t ) = e t . Ищем производную сложной функции по формуле:

f ’(x ) = f ’(t ) · t ’ = (e t )’ · t ’ = e t · t

А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

f ’(x ) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3

Теперь разберемся с функцией g (x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’(x ) = g ’(t ) · t ’ = (sin t )’ · t ’ = cos t · t

Обратная замена: t = x 2 + ln x . Тогда:

g ’(x ) = cos (x 2 + ln x ) · (x 2 + ln x )’ = cos (x 2 + ln x ) · (2x + 1/x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’(x ) = 2 · e 2x + 3 ;
g ’(x ) = (2x + 1/x ) · cos (x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

(x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f (x ) = (x 2 + 8x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8x − 7 = t . Находим производную по формуле:

f ’(x ) = f ’(t ) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8x − 7. Имеем:

f ’(x ) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .

Наконец, возвращаемся к корням:

Раз ты зашел сюда, то уже, наверное, успел увидеть в учебнике эту формулу

и сделать вот такое лицо:

Друг, не переживай! На самом деле все просто до безобразия. Ты обязательно все поймешь. Только одна просьба – прочитай статью не торопясь , старайся понять каждый шаг. Я писал максимально просто и наглядно, но вникнуть в идею всё равно надо. И обязательно реши задания из статьи.

Что такое сложная функция?

Представь, что ты переезжаешь в другую квартиру и поэтому собираешь вещи в большие коробки. Пусть надо собрать какие-нибудь мелкие предметы, например, школьные письменные принадлежности. Если просто скидать их в огромную коробку, то они затеряются среди других вещей. Чтобы этого избежать, ты сначала кладешь их, например, в пакет, который затем укладываешь в большую коробку, после чего ее запечатываешь. Этот "сложнейший" процесс представлен на схеме ниже:

Казалось бы, причем здесь математика? Да притом, что сложная функция формируется ТОЧНО ТАКИМ ЖЕ способом! Только «упаковываем» мы не тетради и ручки, а \(x\), при этом «пакетами» и «коробками» служат разные .

Например, возьмем x и «запакуем» его в функцию :


В результате получим, ясное дело, \(\cos⁡x\). Это наш «пакет с вещами». А теперь кладем его в «коробку» - запаковываем, например, в кубическую функцию.


Что получится в итоге? Да, верно, будет «пакет с вещами в коробке», то есть «косинус икса в кубе».

Получившаяся конструкция и есть сложная функция. Она отличается от простой тем, что к одному иксу применяется НЕСКОЛЬКО «воздействий» (упаковок) подряд и получается как бы «функция от функции» - «упаковка в упаковке».

В школьном курсе видов этих самых «упаковок» совсем мало, всего четыре:

Давай теперь «упакуем» икс сначала в показательную функцию с основанием 7, а потом в тригонометрическую функцию . Получим:

\(x → 7^x → tg⁡(7^x)\)

А теперь «упакуем» икс два раза в тригонометрические функции, сначала в , а потом в :

\(x → sin⁡x → ctg⁡ (sin⁡x)\)

Просто, правда?

Напиши теперь сам функции, где икс:
- сначала «упаковывается» в косинус, а потом в показательную функцию с основанием \(3\);
- сначала в пятую степень, а затем в тангенс;
- сначала в логарифм по основанию \(4\) , затем в степень \(-2\).

Ответы на это задание посмотри в конце статьи.

А можем ли мы «упаковать» икс не два, а три раза? Да, без проблем! И четыре, и пять, и двадцать пять раз. Вот, например, функция, в которой икс «упакован» \(4\) раза:

\(y=5^{\log_2⁡{\sin⁡(x^4)}}\)

Но такие формулы в школьной практике не встретятся (студентам повезло больше - у них может быть и посложнее☺).

«Распаковка» сложной функции

Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть - какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.

Теперь правильный ответ: сначала икс «упаковали» в \(4\)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию \(2\), и в конце концов всю эту конструкцию засунули в степень пятерки.

То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.

Например, вот такая функция: \(y=tg⁡(\log_2⁡x)\). Смотрим на икс – что с ним происходит сначала? Берется от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Еще пример: \(y=\cos⁡{(x^3)}\). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: \(x → x^3 → \cos⁡{(x^3)}\). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть \(\cos⁡{(x·x·x)})\), а там в кубе косинус \(x\) (то есть, \(\cos⁡x·\cos⁡x·\cos⁡x\)). Эта разница возникает из-за разных последовательностей «упаковки».

Последний пример (с важной информацией в нем): \(y=\sin⁡{(2x+5)}\). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: \(x → 2x+5 → \sin⁡{(2x+5)}\). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.

Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных - два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) - тоже простая функция. Например, \(x^7\) – простая функция и \(ctg x\) - тоже. Значит и все их комбинации являются простыми функциями:

\(x^7+ ctg x\) - простая,
\(x^7· ctg x\) – простая,
\(\frac{x^7}{ctg x}\) – простая и т.д.

Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:



Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций:
\(y=cos{⁡(sin⁡x)}\)
\(y=5^{x^7}\)
\(y=arctg⁡{11^x}\)
\(y=log_2⁡(1+x)\)
Ответы опять в конце статьи.

Внутренняя и внешняя функции

Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.

И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция - это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.

Вот в этом примере: \(y=tg⁡(log_2⁡x)\), функция \(\log_2⁡x\) – внутренняя, а
- внешняя.

А в этом: \(y=\cos⁡{(x^3+2x+1)}\), \(x^3+2x+1\) - внутренняя, а
- внешняя.

Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось - будем находить производные сложных функций:

Заполни пропуски в таблице:


Производная сложной функции

Браво нам, мы всё ж таки добрались до «босса» этой темы – собственно, производной сложной функции, а конкретно, до той самой ужасной формулы из начала статьи.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Формула эта читается так:

Производная сложной функции равна произведению производной внешней функции по неизменной внутренней на производную внутренней функции.

И сразу смотри схему разбора "по словам" чтобы понимать, что к чему относиться:

Надеюсь, термины «производная» и «произведение» затруднений не вызывают. «Сложную функцию» - мы уже разобрали. Загвоздка в «производной внешней функции по неизменной внутренней». Что это такое?

Ответ: это обычная производная внешней функции, при которой изменяется только внешняя функция, а внутренняя остается такой же. Все равно непонятно? Хорошо, давай на примере.

Пусть у нас есть функция \(y=\sin⁡(x^3)\). Понятно, что внутренняя функция здесь \(x^3\), а внешняя
. Найдем теперь производную внешней по неизменной внутренней.

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.