В. МОСТЕПАНЕНКО
Доктор физико-математических наук (г. Ленинград)

С точки зрения современной физики вакуум вовсе не пустота. Квантовая теория показала, что вакуум представляет собой чрезвычайно динамичную, непрерывно меняющуюся субстанцию, нечто вроде кипящей жидкости из виртуальных – рождающихся и тут же умирающих – элементарных частиц. Иначе говоря, вакуум с точки зрения квантовой теории не просто «ничто», а может рассматриваться как море так называемых нулевых колебаний, и, даже если в пространстве нет ни одной реальной частицы и ни одного реального кванта – фотона, электрические и магнитные поля совершают нулевые колебания (то же самое можно сказать и относительно других квантованных полей). И вот оказывается, что нулевые колебания вакуума весьма отчетливо себя проявляют в целом ряде замечательных физических эффектов, один из которых был предсказан в 1948 году голландским физиком Хендриком Казимиром и носит его имя. В последние годы область приложений эффекта Казимира необычайно расширилась и охватила практически всю физику – от теории межмолекулярных взаимодействий до физики элементарных частиц и космологии. Мы расскажем о наиболее впечатляющих проблемах, где этот эффект стал играть особенно заметную роль.

В 1948 году Казимир рассмотрел две плоские металлические нейтральные – незаряженные – пластины, расположенные в вакууме параллельно друг другу на некотором расстоянии. Поскольку электрическое поле не проникает в глубь металла, электрическая составляющая нулевых колебаний, направленная вдоль пластин, должна обращаться в нуль. А значит, рассуждал Казимир, вакуумное море обязано претерпеть определенные искажения, хотя его энергия как была бесконечной, так и останется такой. И все же, как первым заметил Казимир, если вычесть эту бесконечность из исходной (до внесения пластин), то получится некоторая конечная энергия, заключенная между пластинами. Эта энергия отрицательна и, следовательно (по правилам механики), должна привести к тому, что пластины будут притягиваться друг к другу. Необычность такой силы притяжения, называемой вакуумной или казимировской, состоит в том, что она не зависит ни от масс, ни от зарядов, ни от других аналогичных постоянных, называемых физиками константами связи, а определяется только расстоянием между пластинами. Подобная сила, с точки зрения многих теоретиков того времени, выглядела какой-то неправдоподобной экзотикой, однако через 10 лет, в 1958 году, казимировское притяжение было обнаружено экспериментально, причем в полном соответствии с предсказаниями теории.

Поначалу у Казимира возникла сумасшедшая идея попытаться объяснить действием вакуумных сил загадочную стабильность электрона. Ведь электрон несет электрический заряд, и его разные части отталкиваются друг от друга. Не вакуумные ли силы препятствуют его развалу? Привлекательная идея, однако, «не прошла» – казимировская энергия сферы оказалась положительной, что соответствует силам отталкивания, а не притяжения. (Впоследствии выяснилось, что роль эффекта Казимира в физике элементарных частиц оказалась куда более изощренной.)

Вакуумные энергии и силы возникают не только в ограниченных объемах, но и в топологически неевклидовых пространствах, то есть таких, которые нельзя перевести в евклидовы взаимно однозначным и непрерывным преобразованием. Например, на неограниченной плоскости эффекта Казимира нет, а на поверхности сферы есть. Именно поэтому эффект Казимира, как оказалось, имеет прямое отношение к вопросу, конечна или бесконечна Вселенная, – одному из самых интригующих в истории человечества. Наука о Вселенной в целом – современная космология – основана на общей теории относительности Эйнштейна и допускает три возможности (см. «Наука и жизнь» №№2...4, 1987 г.).

Если средняя плотность материи во Вселенной меньше критического значения 10 –92 г/см 3 , то пространство нашего мира подобно поверхности гиперболоида вращения, если средняя плотность равна критической, то мы живем в обычном плоском пространстве. Кстати, именно эта возможность представляется наиболее предпочтительной с точки зрения популярных в настоящее время инфляционных моделей Вселенной (см. «Наука и жизнь» №8, 1985 г.). Если же средняя плотность превосходит критическую, то пространство Вселенной уподобляется поверхности сферы и объем его конечен. Казалось бы, сакраментальный вопрос о конечности Вселенной наконец-то получает ясный ответ. Однако ситуация оказывается не такой простой.

Действительно, средняя плотность материи известна лишь очень приближенно, и ее значения ненамного отличаются от критического, причем неясно даже, в сторону увеличения или уменьшения. Кроме того, как подчеркивают некоторые философы, занимающиеся проблемой бесконечности, наблюдательные данные о средней плотности всегда поневоле относятся к конечному объему, и поэтому, опираясь только на них, в принципе нельзя сделать вывод о бесконечности Вселенной. Таким образом, утверждают эти философы, сам вопрос выпадает из сферы физики и должен решаться на основе философских соображений.

Вот тут-то в защиту космологической компетенции физики и выступил эффект Казимира. В самом деле, если мы живем в гиперболическом или плоском мире, то эффекта Казимира нет, а если в сферическом, то он должен проявляться. Соответствующая положительная плотность энергии вакуума очень мала, однако в принципе ее можно зафиксировать в локальных измерениях и по их результатам реконструировать структуру Вселенной в целом – в частности, решить проблему конечности – бесконечности. Эффект Казимира, как недавно выяснилось, играет важную роль и в других проблемах космологии, например, при обсуждении механизмов инфляции или, скажем, в космологической «машине времени» И.Д. Новикова и К. Торна (см. «Наука и жизнь» №12, 1988 г.).

Уже более десяти лет теоретики обсуждают эффект Казимира в связи с проблемой строения адронов, то есть сильно взаимодействующих частиц. В рамках теории сильных взаимодействий – квантовой хромодинамики – адроны можно упрощенно представлять как пузырьки в вакууме (так называемые «мешки»), внутри которых заключены кварки и глюоны (см. «Наука и жизнь» №10, 1987 г.). Нулевые колебания квантованных полей кварков и глюонов приводят к появлению казимировской энергии мешка, которая, как оказалось, составляет около десяти процентов его полной энергии. Вклад энергии Казимира необходимо также учитывать при определении радиуса мешка, массы адрона и других его характеристик, измеряемых в эксперименте.

Еще одно интереснейшее приложение эффекта Казимира относится к многомерным моделям типа Калуцы – Клейна. Согласно таким моделям, «истинная» размерность нашего пространства-времени больше четырех, скажем, 10, 11 или 26. Однако лишние измерения (кроме наших четырех-трех пространственных и времени) замыкаются или, как говорят, компактифицируются на очень малых расстояниях – порядка 10 –33 сантиметра, в связи с чем мы их просто не замечаем. Вот эту-то замкнутость лишних измерений и гарантирует эффект Казимира.

Наконец, силы Казимира оказались чрезвычайно чувствительными к параметрам гипотетических легких или вообще безмассовых частиц, предсказываемых сегодня в рамках единых калибровочных теорий, суперсимметрии и супергравитации (скалярный аксион, дилатон, арион, антигравитон со спином единица и многие другие). Такие частицы невозможно обнаружить с помощью даже самых мощных ускорителей, поскольку они нейтральны и способны пронизывать огромные толщи вещества, почти не взаимодействуя с ним. Но именно эти частицы приводят к появлению новых медленно убывающих с расстоянием – дальнодействующих – сил (см. статью Е.Б. Александрова «В поисках пятой силы»), которые можно зафиксировать на фоне сил Казимира. Подобные работы ведутся в Московском государственном университете под руководством доктора физико-математических наук В.И. Панова с помощью атомного силового микроскопа (см. «Наука и жизнь» №8, 1989 г.). Не исключено поэтому, что в недалеком будущем эффект Казимира станет новым тестом для предсказаний фундаментальных физических теорий.

Источники информации:

  1. Мостепаненко В.М., Трунов Н.Н. Эффект Казимира и его приложения. «Успехи физических наук» т. 156, вып. 3, с. 385...426. 1988.
  2. Мостепаненко Л.М., Мостепаненко В.М. Концепция вакуума в физике и философии. «Природа», №3, с. 88...95, 1985.
  3. Гриб А.А., Мамаев С.Г., Мостепаненко В.М. Вакуумные квантовые эффекты в сильных полях. М., «Энергоатомиздат», 1988.

Наука и жизнь. 1989. №12.

См. также:

  1. Эткин В.А. Об ориентационном взаимодействии спиновых систем . , 2002.
  2. Рыков А.В.
Относится к «Флуктуации вакуума»

Эффект Казимира

Эффект Казимира: сила "из ничего"

Астрид Ламбрехт (Astrid Lambrecht)

перевод Павлюченко С.

Сила притяжения между двумя поверхностями в вакууме, впервые предсказанная Генрихом Казимиром (Hendrik Casimir) более 50 лет назад, может повлиять практически на все - от микроприборов до теор ий Мироздания.

Однако, очень не во многих экспериментах, измеряющих силу Казимира, использовалась оригинальная конфигурация плоскостей как параллельных зеркал. Связано это с тем, что их необходимо сохранять параллельными в течение всего эксперимента, что очень тяжело. Значительно проще поднести сферу достаточно близко к зеркалу, так как расстояние между объектами, используемое в формуле для вычисления силы, в данном случае - просто расстояние между ближайшими точками. Единственный недостаток использования сферы и плоского зеркала состоит в том, что вычисления силы Казимира в этом случае не так точны, как в случае двух параллельных зеркал. В частности, предполагается, что вклады силы между сферой и пластиной полностью независимы в каждой точке. А это верно только если радиус сферы много больше расстояния между сферой и пластиной.

И лишь совсем недавно был проведен эксперимент, полностью повторяюший Казимировскую систему из двух плоских, параллельных зеркал. Он был проведен Джанни Каругно (Gianni Carugno), Роберто Онофрио (Roberto Onofrio) с сотрудниками из Университета Падовы в Италии. Они измерили силу между жесткой хромированной пластинкой и плоской поверхностью кронштейна, сделанного из такого же материала, которые были разнесены на 0.5-3 микрона (G Bressi et al. 2002 Phys. Rev. Lett. 88 041804). По их измерениям, сила Казимира согласуется с теор етическим предсказанием на 75 % . Такая относительно большая погрешность связана с техническими трудностями при осуществлении эксперимента.

Более точные вычисления

Проблема в изучении эффекта Казимира состоит в том, что обычные зеркала - не идеально гладкие и плоские, как рассматривал Генрих Казимир. В частности, обычные зеркала не отражают идеально на всех длинах волн. На некоторых они отражают хорошо - даже почти идеально, в то же время как на других - плохо. Кроме того, все зеркала становятся прозрачными на очень высоких частотах. Таким образом, при вычислении силы Казимира необходимо принимать во внимание зависящие от частот коэффициенты отражения от зеркал. Эту проблему рассматривал Евгений Лифшиц в 1950-е годы, потом Джулиан Швингер (Julian Schwinge) и многие другие.

Оказалось, что измеряемая сила Казимира между обычными металлическими зеркалами, находящимися на расстоянии 0.1 микрон, составляет только половину от предсказываемой теор ией для идеальных зеркал. Если не принимать во внимание это разногласие при сравнении экспериментальных данных с теор ией, можно сделать неверное заключение о том, что это несогласие вызвано существованием новой силы. Астрид Ламбрехт (Astrid Lambrecht) и его коллега Серж Рейнод (Serge Reynaud) проводили свои вычисления для реального поведения зеркал, принимая во внимание физические свойства металлов. Они заключили, что в случае простейшей модели зеркала ведут себя "нормально" на расстояниях, превышающих 0.5 микрон.

Другой прблемой, возникающей при вычислении теор етического значения силы Казимира, является тот факт, что эксперимент в принципе не может быть проведен при абсолютном нуле - что предполагалось в вычислениях Казимира - а проводится при комнатной температуре. Из-за этого приходится учитывать еще и тепловые флуктуации. Они могут создать собственное давление излучения и этим увеличить эффект силы Казимира. Например, сила Казимира, действующая между плоскими зеркалами, разнесенными на 7 микрон, при комнатной температуре оказывается в два раза больше, чем при абсолютном нуле. К счастью, тепловые флуктуации при комнатной температуре важны лишь на дистанциях больше одного микрона, при меньших расстояниях длина волны флуктуации слишком велика, чтобы хотя бы один раз полностью уложиться в потенциал ьную яму.

Хотя влияние температуры на силу Казимира еще не исследовано в деталях, ее необходимо учитывать при расстояниях, превышающих один микрон. Многие исследователи бились над этой проблемой, в том числе Лифшиц и Швингер в 1950-х. Не так давно ее рассматривали Майкл Бордаг (Michael Bordag) из Университета Лейпцига, Бо Сернелиус (Bo Sernelius) из Университета Линкопинг (Linköping University) в Швеции, Галина Климчитская и Владимир Мостапенко из Университета Парайбы (University of Paraiba) а Бразилии, а также группа Астрида Ламбрехта в Париже. Зависимость силы Казимира от температуры была некоторое время назад темой горячих обсуждений в научной среде. Правда, многие противоречия уже разрешены, но они стимулировали эксперименты по определению зависимости силы Казимира от температуры.

Третьей и последней проблемой при вычислении силы Казимира является тот факт, что настоящие зеркала не идеально гладкие. Подавляющее большинство зеркал сделаны путем покрытия основы тонкой металлической пленкой; при этом используется технология "напыления". В этом случае толщина пленки колеблется на 50 нм. Такая точность незаметна для невооруженного глаза, но оказывает влияние на измеряемое значение силы Казимира, которая очень чуствительна к расстоянию.

Мохиден (Mohideen) и его группа (Калифорния), используя деформированные поверхности, недавно показали, что такие поверхности также испытывают "боковую" силу Казимира, которая действует не в перпендикулярном, а в параллельном направлении по отношению к зеркалу. Для экспериментов они приготовили специальные зеркала, поверхности которых были синусоидально искривлены. Затем они двигали зеркала таким образом, чтобы пик одного из зеркал проходил последовательно через пики и "минимумы" второго зеркала. Было обнаружено, что боковая сила Казимира меняется синусоидально с разностью фаз между двумя "волнами". Величина силы оказалась в 10 раз меньше, чем она была бы в случае "нормальных" зеркал, разнесенных на такое же расстояние. Боковая сила своей природой также обязана флуктуациям вакуума.

Мехран Кадар (Mehran Kadar) с сотрудниками из Массачусетского Технологического Института вычислили теор етическое значение силы между двумя идеально отражаюшими волнистыми зеркалами, в то время как Мохиден с коллегами пересчитали ее для металлических зеркал и нашли хорошее согласие теор ии с экспериментом. Боковая сила Казимира может иметь и другие последствия для микроприборов.

Новая физика?

Эффект Казимира может также играть роль при точных измерениях силы в микромире на микро- и нанометровых шкалах. Ньютоновский закон много раз проверялся в макромире, например, при исследовании движения планет. Но еще никому не удавалось проверить его на микронных расстояниях с хорошей точностью. Такие тесты очень важны, так как существует множество теор ий, в которых происходит объединение всех четырех взаимодействий, и эти теор ии предсказывают существование новых сил, действующих на этих шкалах. Таким образом, любое расхождение между экспериментом и теор ией может интерпретироваться как существование новых сил. В любом случае, измерения положат новые ограничения на существуюшие теор ии.

Джинс Гандблах (Jens Gundlach) с коллегами из Вашингтона, например, использовали крутильный маятник для определения гравитационной силы между двумя тестовыми массами, разделенными от 10 мм до 220 микрон. Их измерения подтвердили, что ньютоновская гравитация действует на этих шкалах, а сила Казимира доминирует на значительно меньших расстояниях. Тем временем Джошуа Лонг (Joshua Long), Джонн Прайс (John Price) с коллегами из Университета Колорадо вместе с Эфрамом Фишбахом (Ephraim Fischbach) и его сотрудниками из Университета Парду (Purdue University) попытались устранить действие эффекта Казимира на субмиллиметровые тесты гравитации путем более тщательного выбора материалов, используемых в эксперименте.

Эта статья дает только краткий обзор многих экспериментальных и теор етических исследований эффекта Казимира. Конечно, существует множество не менее захватывающих экспериментов. Многие научные группы, например, изучают, что будет, если во взаимодействии между зеркалами участвует не электромагнитное поле, переносчиком которого являются безмассовые бозоны, а поля массивных фермионов, таких, как кварки или нейтрино. Другие команды, тем временем, изучают эффект Казимира для случаев с другими топологиями, такими, как лист Мебиуса и торообразные объекты.

Но, несмотря на все прилагаемые исследователями усилия, все еще остается много неразрешенных проблем, связанных с эффектом Казимира. В частности, кажущийся простым вопрос о силе Казимира в одиночной полой сфере все еще остается животрепещущим. Даже нет уверенности, будет ли эта сила притягивающей или отталкивающей. Сам Генрих Казимир размышлял над этой проблемой в 1953, когда искал стабильную модель электрона.

M Bordag, U Mohideen and V M Mostepanenko 2001 New developments in the Casimir effect Phys. Rep. 353 1

H B Chan et al. 2001 Nonlinear micromechanical Casimir oscillator Phys. Rev. Lett. 87 211801

F Chen and U Mohideen 2002 Demonstration of the lateral Casimir force Phys. Rev. Lett. 88 101801

C Genet, A Lambrecht and S Reynaud 2000 Temperature dependence of the Casimir force between metallic mirrors Phys. Rev. A 62 012110

S K Lamoreaux 1997 Demonstration of the Casimir force in the 0.6 to 6 micrometer range Phys. Rev. Lett. 78 5

K A Milton 2001 The Casimir Effect: Physical Manifestations of Zero-point Energy (World Scientific, Singapore)

Сила из пустого пространства: эффект Казимира

Авторы: Umar Mohideen (U. California at Riverside)

Пояснение: Этот маленький шарик дает основания предполагать, что Вселенная будет вечно расширяться. Шарик, имеющий размер немного больше одной десятой миллиметра, движется к гладкой пластинке в результате действия флуктуаций энерги и в вакууме. Это притяжение известно как эффект Казимира, названный по имени его первооткрывателя. 50 лет назад он пытался понять, почему жидкости, подобные майонезу, текут так медленно.
Сейчас появляется все больше свидетельств того, что большая часть энерги и Вселенной находится в неизвестной форме, называемой темной энерги ей. Форма и происхождение темной энерги и практически неизвестны, однако утверждается, что она связана с флуктуациями вакуума, похожими на эффект Казимира, но каким-то образом возникающими в самом пространстве. Эта огромная и загадочная темная энерги я должна отталкивать все вещество и поэтому, вероятно, может быть причиной бесконечного расширения Вселенной. Изучение флуктуаций вакуума находится на переднем крае исследований не только потому, что оно служит для лучшего понимания нашей Вселенной, оно важно также для предотвращения слипания деталей миниатюрных механизмов.

Около 50 лет назад Генрих Казимир обнаружил, что в вакууме между двумя поверхностями существует определённая Эта сила может создать настоящую революцию в науке.

Если взять два зеркала и установить их в пустом пространстве, между ними начинается притяжение, поскольку между ними есть вакуум. Этот феномен был открыт Казимиром в 1948 г., когда он занимался в научном центре в Эйндховене. Данный феномен был назван эффектом Казимира, а сила, которая возникает между двумя зеркалами - силой Казимира.

Долгое время считалось, что эффект Казимира - это не более чем занятная теория. Однако за последнее время наблюдается повышенный интерес к данному явлению. Было установлено, что сила Казимира напрямую влияет на микроскопические механизмы, а благодаря прогрессу в техническом оснащении эту силу можно измерить с повышенной точностью.

Данный эффект может представлять определённый интерес для фундаментальной физики. Существует много теорий, в соответствии с которыми есть протяженные дополнительные измерения в десятимерных и одиннадцатимерных теориях. В соответствии с данными теориями, наблюдается определённое отклонение от стандартной гравитации Ньютона на расстояниях в мельчайшие доли миллиметра. Следовательно, измеряя действие эффекта Казимира, можно проверить данные гипотезы.

Изучение Казимиром коллоидных растворов

Работая в научном центре в Эйндховене, Казимир исследовал свойства, характерные для Это вещества с высоким показателем вязкости, в которых есть частицы размером с микрон. Их свойства определяют Ван-дер-Ваальсовы силы - это дальнодействующие силы притяжения, которые возникают между молекулами и атомами, являющимися нейтральными.

Тео Овербек, коллега Казимира, отметил, что теория Фрица Лондона для описания сил Ван-дер-Ваальса не может дать корректную оценку данным экспериментов. Он попросил Казимира, чтобы тот поработал над данной проблемой. Казимиром было обнаружено, что невозможно правильно описать взаимодействие, наблюдающееся между 2-мя нейтральными молекулами, исходя из того, что постоянна.

После этого ученый отметил, что данный результат можно описать, если учесть флуктуации атома. Флуктуация - это термин, которым характеризуется все виды колебаний и периодических изменений. Тогда учёный подумал, что вместо двух молекул можно установить два зеркала, которые были бы повёрнуты друг к другу отражающими сторонами. Так он и предсказал силу притяжения, которая существует между отражающими пластинами.

Динамический эффект Казимира

В соответствии с квантовой теорией, вакуум не является обычной пустотой. В нём регулярно наблюдаются энергетические флуктуации - виртуальные частицы и античастицы рождаются и погибают. Они способны оказывать давление. Данное явление получило название "статический эффект Казимира". Оно было доказано экспериментами. Однако теоретически есть ещё динамический эффект Казимира - трансформация вакуумных флуктуаций в реальные частицы (например, фотоны). Именно этот эффект наблюдался учёными.

При динамическом эффекте Казимира должно было происходить колебание зеркал, при этом их скорость должна была сопоставимой со скоростью света. Для этого физикам пришлось установить в сильном магнитном поле металлические поверхности. Скорость колебания этого поля составляла одиннадцать миллиардов раз за секунду. Поверхности начали деформироваться со скоростью, которая составила 5 % от световой, и на выходе было зарегистрировано появление фотонов. Судя по свойствам фотонов, можно было утверждать, что они возникали парами.

КАЗИМИРА ЭФФЕКТ, общее название широкого круга явлений, обусловленных флуктуациями вакуумного состояния поля (в частности, электромагнитного) при наличии границ или изменении геометрии (топологии) пространства. Диапазон областей физики, в которых проявляется Казимира эффект, очень широк - от статистической физики до физики элементарных частиц и космологии.

Впервые влияние квантовых флуктуаций электромагнитного поля на взаимодействие электрически нейтральных макроскопических тел предсказал нидерландский физик-теоретик Х. Казимир (1948). Он рассчитал, что вследствие квантовых флуктуаций поля в основном (вакуумном) состоянии две плоскопараллельные, идеально проводящие незаряженные пластины, разделённые в вакууме зазором шириной L, при абсолютном нуле температуры должны притягиваться с силой F на единицу площади:

F = - 0,0065hc/L 4 , (*)

где h - постоянная Планка, с - скорость света в вакууме. Более общая формула для силы притяжения двух диэлектрических слоёв, учитывающая зависимость диэлектрической проницаемости от частоты поля, была получена Е. М. Лифшицем в 1954 году. Сила Казимира F очень мала для расстояний, превышающих несколько микрометров, однако с уменьшением расстояния она быстро растёт и для L = 0,01 мкм (порядка ста атомных размеров) эффективное отрицательное давление F достигает почти 1,3·10 6 Па (13 атмосфер). Поэтому учёт сил Казимира важен при конструировании различных электромеханических устройств микро- и наноразмеров. Иногда силы Казимира рассматривают как проявление ван-дер-ваальсовых сил притяжения на «больших» (в атомной шкале) расстояниях, когда нельзя пренебречь запаздыванием электромагнитного взаимодействия.

Первые эксперименты по проверке формул Казимира и Лифшица, поставленные в 1950-х годах, качественно подтвердили наличие силы притяжения между плоской и сферической поверхностями из кварца (И. И. Абрикосов, Б. В. Дерягин) и между металлическими плоскими пластинами (М. Спарнай, Нидерланды). Существенно повысить точность и надёжность измерений малых сил (вплоть до 10-12 Н) и расстояний (в диапазоне 0,1-6 мкм) удалось лишь в конце 1990-х годов благодаря появлению новых инструментов и технологий, таких как атомный силовой микроскоп и микроэлектромеханические системы. Наилучшая достигнутая точность составляет около 1%. Получено удовлетворительное согласие между теорией и экспериментом, хотя некоторые детали (например, зависимость сил от температуры на расстояниях, превышающих несколько мкм) требуют уточнения. Реальная сила взаимодействия существенно зависит от материала и свойств поверхностей, так что даже для хороших проводников (золото, медь) её величина может отличаться от значения, вычисленного по формуле (*), на десятки процентов.

В 1959 году И. Е. Дзялошинский, Е. М. Лифшиц и Л. П. Питаевский предсказали возможность появления отталкивающей силы в слоистых структурах с разными диэлектрическими проницаемостями. Впоследствии было найдено много других моделей и геометрических конфигураций, допускающих такую силу, например, при комбинации идеальных проводника и магнетика или различных структур из метаматериалов (искусственных сред с отрицательным коэффициентом преломления). Однако экспериментальных подтверждений теоретических результатов пока нет, хотя этот вопрос актуален в связи с разработкой микро- и наноэлектромеханических устройств.

Казимира эффект играет важную роль в космологии в связи с тем, что в рамках квантовой теории поля при нулевой температуре возникает ненулевая вакуумная плотность энергии. Это имеет большое значение для решения проблемы космологической постоянной и связано с инфляционной моделью Вселенной. Казимира эффект весьма существен в физике адронов: при расчёте их свойств должна учитываться казимировская энергия кварковых и глюонных полей. Казимира эффект учитывается в суперсимметричных теориях поля и моделях типа Калуцы - Клейна теории при анализе механизмов спонтанной компактификации дополнительных пространственных измерений.

Если поверхности, ограничивающие поле, движутся или их свойства зависят от времени, то говорят о нестационарном (или динамическом) Казимира эффекте, ярким проявлением которого могло бы быть рождение фотонов из вакуума вследствие движения границ электрически нейтральных макроскопических тел. Этот эффект ещё не обнаружен, поскольку предсказываемое количество рождённых фотонов пропорционально квадрату отношения характерной скорости движения к скорости света, то есть очень мало. Однако это число можно увеличить на много порядков благодаря квантовой интерференции, если заставить границу колебаться с достаточной амплитудой и периодом, близким к половине периода колебаний выбранной моды электромагнитного поля, используя эффект параметрического резонанса. Такой эксперимент реален для частот в области нескольких гигагерц.

Лит.: Бараш Ю. С. Силы Ван-дер-Ваальса. М., 1988; Мостепаненко В. М., Трунов Н. Н. Эффект Казимира и его приложения. М., 1990; Bordag М., Mohideen U., Mostepanenko V. М. New developments in the Casimir effect // Physics Reports. 2001. Vol. 353. №1-3.

Эффект Казимира.

В 1999 году одни мои знакомые занимались производством металлических порошков нанометрового размера. Для чего это надо с коммерческой точки зрения - здесь неважно. Технологии применялись различные, одна из них - это конденсация паров металла в различных условиях. Потом этот порошок транспортировался в другой реактор для использования. Как понимаете, материал весьма необычный с точки зрения свойств. Ребята были в основном по образованию материаловеды и химики. И вот они наткнулись на то, что перетекание этого порошка происходило не так, как должно было происходить с точки зрения классической физики. Вид течения сильно зависел от проводимости порошка, хотя это всё были проводники, легко при соприкосновении обменивающиеся зарядами. Начали «ковырять», с их точки зрения эффект был непонятен. Начали «высвистывать» всех друзей, дошла очередь и до меня. Я тоже не смог сообразить, что это такой за эффект вмешивается, но по «цепочке» передал их дальше уже физикам.

Ларчик открывался просто – эффект Казимира. Не буду переписывать объяснение этого эффекта, данного в википедии. Просто его приведу.

Http://ru.wikipedia.org/wiki/Эффект_Казимира

«Эффект Казимира - эффект, заключающийся во взаимном притяжении проводящих незаряженных тел под действием квантовых флуктуаций в вакууме. Чаще всего речь идёт о двух параллельных незаряженных зеркальных поверхностях, размещённых на близком расстоянии, однако эффект Казимира существует и при более сложных геометриях. Причиной эффекта Казимира являются энергетические колебания физического вакуума из-за постоянного рождения и исчезновения в нём виртуальных частиц. Эффект был предсказан голландским физиком Хендриком Казимиром (Hendrik Casimir, 1909-2000) в 1948 году, а позднее подтверждён экспериментально.

Суть эффекта

Согласно квантовой теории поля, физический вакуум представляет собой не абсолютную пустоту. В нём постоянно рождаются и исчезают пары виртуальных частиц и античастиц - происходят постоянные колебания (флуктуации) связанных с этими частицами полей. В частности, происходят колебания связанного с фотонами электромагнитного поля. В вакууме рождаются и исчезают виртуальные фотоны, соответствующие всем длинам волн электромагнитного спектра. Однако в пространстве между близко расположенными зеркальными поверхностями ситуация меняется. На определённых резонансных длинах (целое или полуцелое число раз укладывающихся между поверхностями), электромагнитные волны усиливаются. На всех остальных же длинах, которых больше, напротив, подавляются (то есть, подавляется рождение соответствующих виртуальных фотонов). В результате, давление виртуальных фотонов изнутри на две поверхности оказывается меньше, чем давление на них извне, где рождение фотонов ничем не ограничено. Чем ближе друг к другу поверхности, тем меньше длин волн между ними оказывается в резонансе и больше - оказывается подавленными. Как следствие, растёт сила притяжения между поверхностями.

Явление можно образно описать как «отрицательное давление», когда вакуум лишён не только обычных, но и части виртуальных частиц, т. е. «откачали всё и ещё чуть-чуть».

В случае более сложной геометрии (например, взаимодействия сферы и плоскости или взаимодействие более сложных объектов) численное значение и знак коэффициента меняется, таким образом, сила Казимира может быть как силой притяжения, так и силой отталкивания.»

Конец цитаты.

Этот случай примечателен тем, что поведение, казалось бы, сугубо механической системы – металлического порошка, оказалась завязана на квантовые эффекты и их одно из наименее понятных для многих, как мне кажется, следствий – Виртуальные частицы.