Я не могу претендовать на то, чтобы беспристрастно судить о цветах. Я радуюсь сверкающим оттенкам и искренне сожалею о скудных коричневых цветах. (Сэр Уинстон Черчилль ).

Происхождение фотонных кристаллов

Смотря на крылья бабочки или перламутровое покрытие раковин (Рисунок 1), удивляешься тому, как Природа - пусть даже за многие сотни тысяч или миллионы лет - смогла создать столь удивительные биоструктуры. Однако не только в биомире существуют подобные структуры с переливчатой окраской, являющиеся примером практически безграничных созидательных возможностей Природы. Например, полудрагоценный камень опал очаровывал людей с самых древних времён своим блеском (Рисунок 2).

Сегодня каждый девятиклассник знает, что не только процессы поглощения и отражения света приводят к тому, что мы называем цветовой окраской мира, но также процессы дифракции и интерференции. Дифракционные решётки, которые мы можем встретить в природе, представляют собой структуры с периодически изменяющейся диэлектрической проницаемостью, при этом их период соизмерим с длинной волны света (Рисунок 3). Это могут быть 1Dрешётки, как в перламутровом покрытии раковин моллюсков таких, как галиотисы, 2D решётки, подобные усикам морской мыши, многощетинкового червя, и 3D решётки, которые придают радужную голубую окраску бабочкам из Перу, равно как и опалу.

В данном случае Природа, как, несомненно, самый опытный химик-материаловед, подталкивает нас к следующему выходу: трёхмерные оптические дифракционные решётки могут быть синтезированы путём создания диэлектрических решёток, которые геометрически комплементарны друг другу, т.е. одна является инверсионной по отношению к другой. А с тех пор как Жан-Мари Лен произнёс известную фразу: «Если что-то существует, то это может быть синтезировано», - мы просто обязаны реализовать данный вывод на практике.

Фотонные полупроводники и фотонная запрещённая зона

Итак, в простой формулировке фотонным кристаллом называется материал, структура которого характеризуется периодическим изменением показателя преломления в пространственных направлениях , что приводит к образованию фотонной запрещённой зоны. Обычно, чтобы понять смысл терминов «фотонный кристалл» и «фотонная запрещённая зона», такой материал рассматривают в качестве оптической аналогии полупроводникам. Решение уравнений Максвелла для распространения света в диэлектрической решётке показывает, что из-за Брегговской дифракции распределение фотонов по частотам ω(k) в зависимости от волнового вектора k (2π/λ) будет иметь области разрыва. Данное утверждение графически представлено на Рисунке 4, где приведена аналогия между распространением электрона в 1D кристаллической решётке и фотоном в 1D фотонной решётке. Непрерывная плотность состояний, как свободного электрона, так и фотона в вакууме, претерпевают разрыв внутри, соответственно, кристаллической и фотонной решёток в так называемых «стоп-зонах» при значении волнового вектора k (т.е. импульса), который соответствует стоячей волне. Это и является условием Брэгговской дифракции электрона и фотона.

Фотонная запрещенная зона представляет собой диапазон частот ω(k) в обратном пространстве волновых векторов k, где распространение света определённой частоты (или длины волны) запрещено в фотонном кристалле во всех направлениях, при этом падающий на фотонный кристалл свет полностью отражается от него. Если же свет «возникнет» внутри фотонного кристалла, то он окажется «вмороженным» в него. Сама зона может быть неполной, так называемой стоп-зоной. На рисунке 5 представлены 1D, 2D и 3D фотонные кристаллы в реальном пространстве и плотность состояний фотонов в обратном пространстве.

Фотонная запрещённая зона трёхмерного фотонного кристалла является некоторой аналогией электронной запрещённой зоны в кристалле кремния. Следовательно, фотонная запрещённая зона «управляет» потоком света в кремниевом фотонном кристалле аналогично тому, как происходит транспорт носителей заряда в кристалле кремния. В этих двух случаях образование запрещённой зоны обуславливается стоячими волнами фотонов или электронов, соответственно.

Сделай фотонный кристалл сам

Как ни странно, но Максвелловские уравнения для фотонных кристаллов не чувствительны к масштабированию, в отличие от уравнения Шрёдингера в случае электронных кристаллов. Это возникает вследствие того, что длина волны электрона в «нормальном» кристалле более-менее зафиксирована на уровне в несколько ангстрем, тогда как размерная шкала длины волны света в фотонных кристаллах может быть варьироваться от ультрафиолета до микроволнового излучения, исключительно за счёт изменения размерности компонент фотонной решётки. Это приводит к поистине неисчерпаемым возможностям для тонкой настройки свойств фотонного кристалла.

В настоящее время существует множество методов изготовления фотонных кристаллов Некоторые из них больше подходят для формирования одномерных фотонных кристаллов, другие удобны в отношении двумерных, третьи применимы чаще к трёхмерным фотонным кристаллам, четвёртые используются при изготовлении фотонных кристаллов на других оптических устройствах и т. д. Однако не всё ограничивается только варьированием размерности структурных элементов. Фотонные кристаллы можно также создавать за счёт оптической нелинейности, перехода метал-неметалл, жидкокристаллического состояния, ферроэлектрического двойного лучепреломления, набухания и сжатия полимерных гелей и так далее, главное, чтобы изменился показатель преломления.

Куда же без дефектов?!

В мире практически не существует материалов, в которых не было бы дефектов, и это хорошо. Именно дефекты в твердофазных материалах в бо льшей степени, чем сама кристаллическая структура, влияют на различные свойства материалов и, в конечном счёте, их функциональные характеристики, а также возможные области применения. Аналогичное утверждение верно и в случае фотонных кристаллов. Из теоретического рассмотрения следует, что введение дефектов (точечных, протяженных - дислокаций - или изгиба) на микроуровне в идеальную фотонную решётку, позволяет создать внутри фотонной запрещённой зоны определённые состояния, на которых может быть локализован свет, а распространение света может быть ограничено или наоборот усилено вдоль и вокруг очень маленького волновода (Рисунок 6). Если проводить аналогию с полупроводниками, то эти состояния напоминают примесные уровни в полупроводниках. Фотонные кристаллы с такой «управляемой дефектностью» могут применяться при создании полностью оптических устройств и схем нового поколения оптических телекоммуникационных технологий.

Светоинформатика

На рисунке 7 представлено одно из футуристических изображений полностью светового чипа будущего, что, несомненно, уже целое десятилетие будоражит воображение химиков, физиков и материаловедов. Полностью оптический чип состоит из интегрированных микроразмерных фотонных кристаллов с 1D, 2D и 3D периодичностью, которые могут играть роль переключателей, фильтров, низкопороговых лазеров и т.д., тогда как свет передаётся между ними по волноводам исключительно за счёт дефектности структуры. И хотя тема фотонных кристаллов существует в «дорожных картах» развития фотонных технологий, исследования и практическое применение этих материалов всё ещё остаются на самых ранних стадиях своего развития. Это тема будущих открытий, которые могут привести к созданию полностью световых сверхбыстрых компьютеров, а также квантовых компьютеров. Однако для того, чтобы мечты фантастов и многих учёных, посвятивших свою жизнь изучению столь интересных и практически значимых материалов, как фотонные кристаллы, стали явью требуется ответить на ряд вопросов. Например, таких как: что необходимо изменить в самих материалах, чтобы решить проблему, связанную с уменьшением таких интегрированных чипов из микроразмерных фотонных кристаллов для широкого применения на практике? Возможно ли с помощью микроконструирования («сверху-вниз»), или самосброки («снизу-вверх»), или же какого-либо сплава этих двух методов (например, направленной самосборки) реализовать в промышленных масштабах производство чипов из микроразмерных фотонных кристаллов? Является ли наука о компьютерах на основе световых чипов из микрофотонных кристаллов реальностью или всё же это вымысел футуристов?

) — материал, структура которого характеризуется периодическим изменением показателя преломления в 1, 2 или 3 пространственных направлениях.

Описание

Отличительная особенность фотонных кристаллов (ФК) - наличие пространственно периодического изменения показателя преломления. В зависимости от числа пространственных направлений, вдоль которых показатель преломления периодически изменяется, фотонные кристаллы называются одномерными, двумерными и трехмерными, или сокращенно 1D ФК, 2D ФК и 3D ФК (D - от английского dimension) соответственно. Условно структура 2D ФК и 3D ФК показана на рис.

Наиболее яркой чертой фотонных кристаллов является существование в 3D ФК с достаточно большим контрастом показателей преломления компонентов определенных областей спектра, получивших название полных фотонных запрещенных зон (ФЗЗ): существование излучения с энергией фотонов, принадлежащей ФЗЗ в таких кристаллах, невозможно. В частности, излучение, спектр которого принадлежит ФЗЗ, извне в ФК не проникает, существовать в нем не может и полностью отражается от границы. Запрет нарушается только при наличии дефектов структуры или при ограниченных размерах ФК. При этом целенаправленно созданные линейные дефекты являются с малыми изгибными потерями (до микронных радиусов кривизны), точечные дефекты - миниатюрными резонаторами. Практическая реализация потенциальных возможностей 3D ФК, основанных на широких возможностях управления характеристиками световых (фотонных) пучков только начинается. Она затруднена отсутствием эффективных методов создания 3D ФК высокого качества, способов целенаправленного формирования в них локальных неоднородностей, линейных и точечных дефектов, а также методов сопряжения с другими фотонными и электронными устройствами.

Существенно больший прогресс достигнут на пути практического применения 2D ФК, которые используются, как правило, в виде планарных (пленочных) фотонных кристаллов или в виде (ФКВ) (см. подробнее в соответствующих статьях).

ФКВ представляют собой двумерную структуру с дефектом в центральной части, вытянутую в перпендикулярном направлении. Являясь принципиально новым типом оптических волокон, ФКВ предоставляют недоступные другим типам возможности по транспортировке световых волн и управлению световыми сигналами.

Одномерные ФК (1D ФК) представляют собой многослойную структуру из чередующихся слоев с разными показателями преломления. В классической оптике задолго до появления термина «фотонный кристалл» было хорошо известно, что в таких периодических структурах характер распространения световых волн существенно изменяется из-за явлений интерференции и дифракции. Например, многослойные отражающие покрытия давно и широко используются для изготовления зеркал и пленочных интерференционных фильтров, а объемные брэгговские решетки в качестве спектральных селекторов и фильтров. После того, как стал широко употребляться термин ФК, такие слоистые среды, в которых показатель преломления периодически изменяется вдоль одного направления, стали относить к классу одномерных фотонных кристаллов. При перпендикулярном падении света спектральная зависимость коэффициента отражения от многослойных покрытий представляет собой так называемый «брэгговский столик» - на определенных длинах волн коэффициент отражения быстро приближается к единице при увеличении числа слоев. Световые волны, попадающие в спектральный диапазон, показанный на рис. б стрелкой, практически полностью отражаются от периодической структуры. По терминологии ФК эта область длин волн и соответствующая ей область значений энергий фотона (или энергетическая зона) является запрещенной для световых волн, распространяющихся перпендикулярно слоям.

Потенциал практических применений ФК огромен благодаря уникальным возможностям управления фотонами и еще не до конца раскрыт. Нет сомнения, что в ближайшие годы будут предложены новые устройства и конструктивные элементы, возможно принципиально отличающиеся от тех, которые используются или разрабатываются сегодня.

Огромные перспективы применения ФК в фотонике были осознаны после выхода статьи Э. Яблоновича, в которой было предложено использовать ФК с полными ФЗЗ для управления спектром спонтанного излучения.

Среди фотонных устройств, появление которых можно ожидать в ближайшем будущем, следующие:

  • низкопороговые ФК лазеры сверхмалых размеров;
  • сверхяркие ФК с управляемым спектром излучения;
  • сверхминиатюрные ФК волноводы с микронным радиусом изгиба;
  • фотонные интегральные схемы с высокой степенью интеграции на основе планарных ФК;
  • миниатюрные ФК спектральные фильтры, в том числе перестраиваемые;
  • ФК устройства оперативной оптической памяти;
  • ФК устройства обработки оптических сигналов;
  • средства доставки мощного лазерного излучения на основе ФКВ с полой сердцевиной.

Наиболее заманчивое, но и наиболее трудное в реализации применение трехмерных ФК - создание сверхбольших объемно интегрированных комплексов фотонных и электронных устройств для обработки информации.

Среди других возможных применений трехмерных фотонных кристаллов - изготовление ювелирных украшений на основе искусственных опалов.

Фотонные кристаллы встречаются и в природе, придавая дополнительные оттенки цветовой окраске окружающего нас мира. Так, перламутровое покрытие раковин моллюсков, таких, как галиотисы, имеет структуру 1D ФК, усики морской мыши и щетинки многощетинкового червя представляют собой 2D ФК, а природные полудрагоценные камни опалы и крылья африканских бабочек-парусников (Papilio ulysses) являются природными трехмерными фотонными кристаллами.

Иллюстрации

а – структура двумерного (сверху) и трехмерного (снизу) ФК;

б – запрещенная зона одномерного ФК, образованного четвертьволновыми слоями GaAs/AlxOy (величина запрещенной зоны показана стрелкой);

в – инвертированный ФК никеля, полученный сотрудниками ФНМ МГУ им. М.В. Ломоносова Н.А. Саполотовой, К.С. Напольским и А.А. Елисеевым

Классификация методов изготовления фотонных кристаллов. Фотонные кристаллы в природе – большая редкость. Они отличаются особой радужной игрой света – оптическим явлением, которое получило название иризация (в переводе с греческого – радуга). К таким минералам относятся кальцит, лабрадор и опал SiO 2 ×n∙H 2 O с разнообразными включениями. Наиболее известным среди них является опал – полудрагоценный минерал, представляющий собой коллоидный кристалл, состоящий из монодисперсных сферических глобул оксида кремния. От игры света в последнем происходит термин опалесценция, обозначающий особый, характерный только для этого кристалла тип рассеяния излучения.

К основным методам изготовления фотонных кристаллов относят методы, которые можно разделить на три группы:

1. Методы, использующие самопроизвольное формирование фотонных кристаллов. В данной группе методов используются коллоидные частицы, такие как монодисперсные силиконовые или полистирольные частицы, а также другие материалы. Такие частицы, находясь в парах жидкости во время испарения, осаждаются в некотором объеме. По мере осаждения частиц друг на друга, они формируют трехмерный фотонный кристалл, и упорядочиваются преимущественно в гранецентрированную или гексагональную кристаллические решетки. Также возможен сотовый метод, в основу которого входит фильтрование жидкости, в которой находятся частицы через маленькие споры. Хотя сотовый метод и позволяет формировать кристалл с относительно высокой скоростью, определяемой скоростью течения жидкости через поры, однако, в таких кристаллах при высыхании образуются дефекты. Существуют и другие методы, использующие самопроизвольное формирование фотонных кристаллов, но в каждом методе существуют как свои преимущества, так и недостатки. Чаще всего данные методы применяют для осаждения сферических коллоидальных частиц силикона, однако, при этом получаемый контраст коэффициентов преломления относительно невелик.

2. Методы, использующие травление объектов. В данной группе методов применяется маска из фоторезиста, сформированная на поверхности полупроводника, которая задает геометрию области травления. С помощью такой маски формируется простейший фотонный кристалл путем травления поверхности полупроводника, непокрытой фоторезистом. Недостатком данного метода является необходимость применения фотолитографии с высоким разрешением на уровне десятков и сотен нанометров. Также для изготовления фотонных кристаллов методом травления применяют пучки сфокусированных ионов, таких как Ga. Такие пучки ионов позволяют удалять часть материала без использования фотолитографии и дополнительных травлений. Для увеличения скорости травления и повышения его качества, а также для осаждения материалов внутри вытравленных областей используют дополнительную обработку нужными газами.



3. Голографические методы. Такие методы основаны на применении принципов голографии. С помощью голографии формируются периодические изменения коэффициента преломления в пространственных направлениях. Для этого используют интерференцию двух или более когерентных волн, которая создает периодическое распределение интенсивности электромагнитного излучения. Одномерные фотонные кристаллы создаются интерференцией двух волн. Двухмерные и трехмерные фотонные кристаллы создаются интерференцией трех и более волн.

Выбор конкретного методы изготовления фотонных кристаллов во многом определяется тем обстоятельством, какой размерности структуру требуется изготовить – одномерную, двухмерную или трехмерную.

Одномерные периодические структуры. Наиболее простым и распространенным способом получения одномерных периодических структур является вакуумное послойное напыление поликристаллических пленок из диэлектрических или полупроводниковых материалов. Этот метод получил большое распространение в связи с использованием периодических структур при производстве лазерных зеркал и интерференционных фильтров. В таких структурах при использовании материалов с показателями преломления, различающимися примерно в 2 раза (например, ZnSe и Na 3 AlF 6) возможно создание спектральных полос отражения (фотонных запрещенных зон) шириной до 300 нм, перекрывающих практически всю видимую область спектра.

Достижения в области синтеза полупроводниковых гетероструктур в последние десятилетия позволяют создавать полностью монокристаллические структуры с периодическим изменением показателя преломления вдоль направления роста, используя методы молекулярно-лучевой эпитаксии или осаждение из газовой фазы с использованием металлорганических соединений. В настоящее время такие структуры входят в состав полупроводниковых лазеров с вертикальными резонаторами. Максимально достижимое в настоящее время отношение показателей преломления материалов, по-видимому, соответствует паре GaAs/Al 2 O 3 и составляет около 2. Следует отметить высокое совершенство кристаллической структуры таких зеркал и точность формирования толщины слоев на уровне одного периода решетки (около 0,5 нм).

В последнее время продемонстрирована возможность создания периодических одномерных полупроводниковых структур с использованием фотолитографической маски и селективного травления. При травлении кремния возможно создание структур с периодом порядка 1 мкм и более, при этом отношение показателей преломления кремния и воздуха составляет в ближней инфракрасной области 3,4 – беспрецедентно большое значение, недостижимое другими методами синтеза. Пример подобной структуры, полученной в Физико-техническом институте им. А. Ф. Иоффе РАН (г. Санкт-Петербург), показан на рис. 3.96.

Рис. 3.96. Периодическая структура кремний – воздух, полученная методом анизотропного травления с использованием фотолитографической маски (период структуры 8 мкм)

Двумерные периодические структуры. Двумерные периодические структуры можно изготавливать, используя селективное травление полупроводников, металлов и диэлектриков. Технология селективного травления отработана для кремния и алюминия в связи с широким использованием этих материалов в микроэлектронике. Пористый кремний, например, рассматривается как перспективный оптический материал, который позволит создавать интегрированные оптоэлектронные системы высокой степени интеграции. Сочетание развитых кремниевых технологий с квантово-размерными эффектами и принципами формирования фотонных запрещенных зон привело к развитию нового направления – кремниевой фотоники.

Использование субмикронной литографии для формирования масок позволяет создавать кремниевые структуры с периодом 300 нм и менее. Из-за сильного поглощения излучения видимого диапазона кремниевые фотонные кристаллы могут использоваться только в ближней и средней инфракрасных областях спектра. Сочетание травления и окисления, в принципе, позволяет перейти к периодическим структурам оксид кремния – воздух, но при этом невысокое отношение показателей преломления (составляющее 1,45) не позволяет сформировать полноценной запрещенной зоны в двух измерениях.

Перспективными представляются двумерные периодические структуры из полупроводниковых соединений A 3 B 5 , получаемые также методом селективного травления с использованием литографических масок или шаблонов. Соединения A 3 B 5 являются основными материалами современной оптоэлектроники. Соединения InP и GaAs имеют большее по сравнению с кремнием значения ширины запрещенной зоны и столь же высокие, как и у кремния, значения показателя преломления, равные 3,55 и 3,6 соответственно.

Весьма интересными представляются периодические структуры на основе оксида алюминия (рис. 3.97а). Они получаются электрохимическим травлением металлического алюминия, на поверхности которого с помощью литографии сформирована маска. С использованием электронно-литографических шаблонов получены совершенные двумерные периодические структуры, напоминающие пчелиные соты с диаметром пор менее 100 нм. Следует отметить, что селективное травление алюминия при определенном сочетании условий травления позволяет получать регулярные структуры даже без использования каких-либо масок или шаблонов (рис. 3.97б). Диаметр пор при этом может составлять всего несколько нанометров, что недостижимо для современных литографических методов. Периодичность пор связана с саморегуляцией процесса окисления алюминия при электрохимической реакции. Исходный проводящий материал (алюминий) в ходе реакции окисляется до Al 2 O 3 . Пленка оксида алюминия, являющаяся диэлектриком, уменьшает ток и тормозит реакцию. Сочетание этих процессов позволяет достичь режима самоподдерживающейся реакции, в которой непрерывное травление становится возможным благодаря прохождению тока сквозь поры, а продукт реакции образует регулярную сотовую структуру. Некоторая нерегулярность пор (рис. 3.97б) обусловлена зернистой структурой исходной поликристаллической пленки алюминия.

Рис. 3.97. Двумерный фотонный кристалл из Al 2 O 3: а) изготовленный с помощью литографической маски; б) изготовленный с помощью саморегуляции процесса окисления

Исследование оптических свойств нанопористого оксида алюминия показало необычайно высокую прозрачность этого материала вдоль направления пор. Отсутствие френелевского отражения, неизбежно существующего на границе раздела двух сплошных сред, приводит к значениям коэффициента пропускания, достигающим 98 %. В направлениях, перпендикулярных к порам, наблюдается высокое отражение с коэффициентом отражения, зависящим от угла падения.

Относительно невысокие значения диэлектрической проницаемости оксида алюминия в отличие от кремния, арсенида галлия и фосфида индия не позволяют сформировать полноценной запрещенной зоны в двух измерениях. Однако, несмотря на это, оптические свойства пористого оксида алюминия оказываются достаточно интересными. Например, он обладает выраженным анизотропным рассеянием света, а также двулучепреломлением, что позволяет использовать его для вращения плоскости поляризации. Используя различные химические методы, можно заполнять поры различными оксидами, а также оптически активными материалами, например нелинейно-оптическими средами, органическими и неорганическими люминофорами, электролюминесцентными соединениями.

Трехмерные периодические структуры. Трехмерные периодические структуры представляют собой объекты, которым присущи наибольшие технологические трудности для экспериментальной реализации. Исторически первым способом создания трехмерного фотонного кристалла принято считать метод на основе механического высверливания цилиндрических отверстий в объеме материала, предложенный Э. Яблоновичем. Изготовление такой трехмерной периодической структуры – задача довольно трудоемкая, поэтому многими исследователями предпринимались попытки создания фотонного кристалла другими методами. Так, в методе Лина – Флеминга на кремниевую подложку наносят слой диоксида кремния, в котором затем формируют параллельные полосы, заполняемые поликристаллическим кремнием. Далее процесс нанесения диоксида кремния повторяется, но полосы формируют в перпендикулярном направлении. После создания необходимого числа слоев оксид кремния удаляется травлением. В результате образуется «поленница» из поликремниевых стержней (рис. 3.98). Следует отметить, что использование современных методов субмикронной электронной литографии и анизотропного ионного травления позволяет получать фотонные кристаллы с толщиной менее 10 структурных ячеек.

Рис. 3.98. Трехмерная фотонная структура из поликремниевых стержней

Широкое распространение получили методы создания фотонных кристаллов для видимого диапазона, основанные на использовании самоорганизующихся структур. Сама идея «сборки» фотонных кристаллов из глобул (шаров) заимствована у природы. Известно, например, что природные опалы обладают свойствами фотонных кристаллов. Природный минерал опал по химическому составу представляет собой гидрогель двуокиси кремния SiO 2 × H 2 O с переменным содержанием воды: SiO 2 – 65 – 90 масс. %; H 2 O – 4,5–20 %; Al 2 O 3 – до 9 %; Fe 2 O 3 – до 3 %; TiO 2 – до 5 %. Методами электронной микроскопии было установлено, что природные опалы образованы плотноупакованными однородными по размеру сферическими частицами α-SiO 2 диаметром 150 – 450 нм. Каждая частица состоит из более мелких глобулярных образований диаметром 5 – 50 нм. Пустоты упаковки глобул заполнены аморфным оксидом кремния. На интенсивность дифрагированного света влияют два фактора: первый – «идеальность» плотнейшей упаковки глобул, второй – различие в показателях преломления аморфного и кристаллического оксида SiO 2 . Лучшей игрой света обладают благородные черные опалы (для них различие в значениях показателей преломления составляет ~ 0,02).

Создавать глобулярные фотонные кристаллы из коллоидных частиц возможно различными способами: естественной седиментацией (осаждением дисперсной фазы в жидкости или газе под действием гравитационного поля или центробежных сил), центрифугированием, фильтрованием с использованием мембран, электрофорезом и т. д. В качестве коллоидных частиц выступают сферические частицы полистирола, полиметилметакрилата, частицы диоксида кремния α-SiO 2 .

Метод естественного осаждения – очень медленный процесс, требующий нескольких недель или даже месяцев. В значительной степени ускоряет процесс формирования коллоидных кристаллов центрифугирование, но полученные таким способом материалы хуже упорядочены, так как при высокой скорости осаждения разделение частиц по размерам не успевает произойти. Для ускорения процесса седиментации используют электрофорез: создают вертикальное электрическое поле, которое «изменяет» силу тяжести частиц в зависимости от их размера. Также применяют методы, основанные на использовании капиллярных сил. Основная идея заключается в том, что под действием капиллярных сил кристаллизация происходит на границе мениска между вертикальной подложкой и суспензией, и по мере испарения растворителя происходит образование тонкой упорядоченной структуры. Дополнительно используют вертикальный градиент температур, позволяющий лучше оптимизировать скорость процесса и качество создаваемого кристалла за счет конвекционных потоков. В целом, выбор методики определяется требованиями к качеству получаемых кристаллов и временными затратами на их изготовление.

Технологический процесс выращивания синтетических опалов методом естественной седиментации можно разделить на несколько стадий. Изначально изготавливается монодисперсная (~ 5 % отклонения по диаметру) суспензия сферических глобул из оксида кремния. Средний диаметр частиц может варьироваться в широком диапазоне: от 200 до 1000 нм. Наиболее известный метод получения монодисперсных коллоидных микрочастиц диоксида кремния основан на гидролизе тетраэтоксисилана Si(C 2 H 4 OH) 4 в водноспиртовой среде в присутствии гидроксида аммония в качестве катализатора. Данным методом можно получать частицы с гладкой поверхностью практически идеальной сферической формы с высокой степенью монодисперсности (менее 3 % отклонения по диаметру), а также создавать частицы с размерами менее 200 нм с узким распределением по размеру. Внутренняя структура таких частиц фрактальная: частицы состоят из плотноупакованных сфер меньшего размера (диаметр несколько десятков нанометров), а каждая такая сфера образована полигидроксокомплексами кремния, состоящими из 10 – 100 атомов.

Следующий этап – осаждение частиц (рис. 3.99). Он может длиться несколько месяцев. По завершении этапа осаждения образуется плотноупакованная периодическая структура. Далее осадок высушивают и отжигают при температуре порядка 600 ºС. В процессе отжига происходит размягчение и деформация сфер в точках соприкосновения. В результате этого пористость синтетических опалов меньше, чем для идеальной плотной шаровой упаковки. Перпендикулярно направлению оси роста фотонного кристалла глобулы образуют высокоупорядоченные гексагональные плотноупакованные слои.

Рис. 3.99. Этапы выращивания синтетических опалов: а) осаждение частиц;

б) высушивание осадка; в) отжиг образца

На рис. 3.100а представлена микрофотография синтетического опала, полученная методом сканирующей электронной микроскопии. Размеры сфер 855 нм. Наличие открытой пористости в синтетических опалах позволяет заполнять пустоты различными материалами. Опаловые матрицы представляют собой трехмерные подрешетки взаимосвязанных наноразмерных пор. Размеры пор порядка сотен нанометров, размеры каналов, связывающих поры, достигают десятков нанометров. Таким образом получают нанокомпозиты на основе фотонных кристаллов. Основное требование, выдвигаемое при создании качественных нанокомпозитов – полнота заполнения нанопористого пространства. Заполнение проводят различными методами: внедрением из раствора в расплаве; пропиткой концентрированными растворами с последующим выпариванием растворителя; электрохимическими методами, химическим осаждением из газовой фазы и т. д.

Рис. 3.100. Микрофотографии фотонных кристаллов: а) из синтетического опала;

б) из полистирольных микросфер

При селективном вытравливании оксида кремния из таких композитов образуются пространственно-упорядоченные наноструктуры с высокой пористостью (более 74 % объема), называемые обращенными или инвертированными опалами. Данный способ получения фотонных кристаллов получил название темплатный метод. В качестве упорядоченных монодисперсных коллоидных частиц, образующих фотонный кристалл могут выступать не только частицы из оксида кремния, но и, например, полимерные. Пример фотонного кристалла на основе микросфер полистирола представлен на рис. 3.100б

(crystal superlattice), в котором искусственно создано дополнительное поле с периодом, на порядки превышающим период основной решетки. Другими словами, это такая пространственно упорядоченная система со строгим периодическим изменением коэффициента преломления в масштабах, сопоставимых с длинами волн излучения в видимом и ближнем инфракрасном диапазонах. Благодаря этому такие решетки позволяют получать разрешенные и запрещенные зоны для энергии фотонов.

В целом энергетический спектр фотона, движущийся в фотонном кристалле, аналогичен спектру электронов в реальном кристалле, например в полупроводнике. Здесь так же образуются запрещенные зоны, в определенной области частот, в которой запрещено свободное распространение фотонов. Период модуляции диэлектрической проницаемости определяет энергетическое положение запрещенной зоны, длину волны отражаемого излучения. А ширина запрещенных зон определяется контрастом диэлектрической проницаемости.

Исследование фотонных кристаллов началось с 1987 года и очень быстро стало модным для многих ведущих лабораторий мира. Первый фотонный кристалл был создан в начале 1990-х годов сотрудником Bell Labs Эли Яблоновичем, который ныне работает в Университете Калифорния. Для получения 3хмерной периодической решетки в электрическом материале через маску Эли Яблонович высверливал цилиндрические отверстия таким образом, чтобы их сеть в объеме материала формировала гранецентрированную кубическую решетку пустот, при этом диэлектрическая проницаемость была модулирована с периодом в 1 сантиметр во всех 3х измерениях.

Рассмотрим фотон, падающий на фотонный кристалл. Если этот фотон обладает энергией, которая соответствует запрещенной зоне фотонного кристалла, то он не сможет распространяться в кристалле и отразится от него. И наоборот, если фотон будет обладать энергией, соответствующей энергии разрешенной зоны кристалла, то он сможет распространяться в кристалле. Таким образом, фотонный кристалл имеет функцию оптического фильтра, пропускающие или отражающие фотоны с определенными энергиями.

В природе таким свойством обладают крылья африканской бабочки-парусника, павлины и полудрагоценные камни, такие как опал и перламутр (рис. 1).

Фотонные кристаллы классифицируют по направлениям периодического изменения коэффициента преломления в измерении:

1. Одномерные фотонные кристаллы. В таких кристаллах коэффициент преломления изменяется в одном пространственном направлении (рис. 1).
Одномерные фотонные кристаллы состоят из параллельных друг другу слоев материалов с разными коэффициентами преломления. Такие кристаллы проявляют свойства только в одном пространственном направлении перпендикулярном слоям.
2. Двумерные фотонные кристаллы. В таких кристаллах коэффициент преломления изменяется в двух пространственных направлениях (рис. 2). В таком кристалле области с одним коэффициентом преломления (n1) находятся в среде другого коэффициента преломления (n2). Форма областей с коэффициентом преломления может быть любой, как и сама кристаллическая решетка. Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях.
3. Трехмерные фотонные кристаллы. В таких кристаллах коэффициент преломления изменяется в трех пространственных направлениях (рис. 3). Такие кристаллы могут проявлять свои свойства в трех пространственных направлениях.

Показано, что в зависимости от полярности включения фотодиодов в состав резонатора происходит частотный сдвиг отклика вверх или вниз по частоте при увеличении освещенности. Предложено использовать систему связанных кольцевых резонаторов для увеличения чувствительности исследуемых резонаторов к величине освещенности. Продемонстрировано, что для фиксированного расстояния между связанными резонаторами происходит частотное расщепление отклика системы на четную (яркую) и нечетную (темную) моды при помощи света. Мы уверены, что предложенный метод создания перестраиваемых кольцевых резонаторов позволит создать новый класс метаматериалов, управляемых светом.

Работа поддержана Министерством образования Российской Федерации (соглашения № 14.В37.21.1176 и № 14.В37.21.1283), Фондом «Династия», Фондом РФФИ (проект № 13-02-00411), стипендией Президента Российской Федерации молодым ученым и аспирантам 2012.

Литература

1. Linden S., Enkrich C., Wegener M., Zhou J., Koschny T., Soukoulis C.M. Magnetic Response of Metamaterials at 100 Terahertz // Science. - 2004. - V. 306. - P. 1351-1353.

2. Shelby R., Smith D.R. and Schultz S. Experimental Verification of a Negative Index of Refraction // Science. - 2001. - V. 292. - P. 77-79.

3. Gansel J.K., Thiel M., Rill M.S., Decker M., Bade K., Saile V., von Freymann G., Linden S., Wegener M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer // Science. - 2009. - V. 325. - P. 15131515.

4. Belov P.A., Hao Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime // Physical Review B. - 2006. - V. 73. - P. 113110.

5. Leonhardti U. Optical conformal mapping // Science. - 2006. - V. 312. - P. 1777-1780.

6. Кившарь Ю.С., Орлов А.А. Перестраиваемые и нелинейные метаматериалы // Научно-технический вестник информационных технологий, механики и оптики. - 2012. - № 3 (79). - C. 1-10.

7. Shadrivov I.V., Morrison S.K. and Kivshar Yu.S. Tunable split-ring resonators for nonlinear negative-index metamaterials // Opt. Express. - 2006. - V. 14. - P. 9344-9349.

8. Kapitanova P.V., Maslovski S.I., Shadrivov I.V., Voroshilov P.M., Filonov D.S., Belov P.A. and Kivshar Y.S. Controlling split-ring resonators with light // Applied Physics Letters. - V. 99. - P. 251914 (1-3).

9. Marques R., Martin F. and Sorolla M. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications. - NJ: Wiley&Sons, Inc., Hoboken, 2008. - 315 p.

Капитонова Полина Вячеславовна - Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики, кандидат технических наук, научный сотрудник, [email protected], [email protected]

Белов Павел Александрович - Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики, доктор физ.-мат. наук, главный научный сотрудник, [email protected]

АНАЛИЗ ЗОННОЙ СТРУКТУРЫ ФОТОННОГО КРИСТАЛЛА С КРАТНЫМИ ОПТИЧЕСКИМИ ДЛИНАМИ СЛОЕВ ДЛЯ ТЕРАГЕРЦОВОГО ДИАПАЗОНА

А.Х. Денисултанов, М.К. Ходзицкий

Из дисперсионного уравнения для бесконечного фотонного кристалла выведены формулы для точного расчета границ запрещенных зон, ширины запрещенных зон и точного положения центров запрещенных зон фотонных кристаллов с кратными оптическими длинами слоев в двухслойной ячейке для терагерцового диапазона частот от 0,1 до 1 ТГц. Формулы проверены при численном моделировании фотонных кристаллов методом матриц передачи и методом конечных разностей временной области для первой, второй и третьей кратностей оптических длин в двухслойной ячейке фотонного кристалла. Формулы для второй кратности подтверждены экспериментально. Ключевые слова: фотонный кристалл, запрещенная зона, граничные частоты, кратные оптические длины, матрица передачи, метаматериал.

Введение

В последние годы исследование искусственных сред с необычными свойствами («метаматериа-лов») привлекает интерес достаточно большого круга ученых и инженеров, что обусловливается перспективным использованием этих сред в промышленной и военной индустрии при разработке новых типов фильтров, фазосдвигателей, суперлинз, маскирующих покрытий и т.д. . Одним из видов мета-материалов является фотонный кристалл, который представляет собой слоистую структуру с периодиче-

ски изменяющимся показателем преломления . Фотонные кристаллы (ФК) активно используются в лазерных технологиях, средствах коммуникации, фильтрации, благодаря таким уникальным свойствам, как наличие зонной структуры в спектре, сверхразрешение, эффект суперпризмы и т.д. . Особый интерес проявляется к исследованию фотонных кристаллов в терагерцовом (ТГц) диапазоне для спектроскопических, томографических исследований новых типов материалов и биообъектов . Исследователями уже разработаны двумерные и трехмерные ФК для ТГц диапазона частот и изучены их характеристики , но, к сожалению, на данный момент нет точных формул для расчета характеристик зонной структуры фотонного кристалла, таких как ширина запрещенной зоны, центр запрещенной зоны, границы запрещенной зоны . Целью настоящей работы является получение формул для расчета характеристик одномерного фотонного кристалла для первой, второй и третьей кратностей оптических длин в двухслойной ячейке ФК и проверка этих формул с помощью численного моделирования методом матриц передачи и методом конечных разностей во временной области, а также эксперимента в ТГц диапазоне частот.

Аналитическое и численное моделирование

Рассмотрим бесконечный фотонный кристалл с показателями преломления слоев в двухслойной ячейке п1 и п2 и толщинами слоев й1 и й2 соответственно. Данная структура возбуждается линейно-поляризованной поперечной электрической волной (ТЕ-волной). Волновой вектор к направлен перпендикулярно слоям ФК (рис. 1). Дисперсионное уравнение для такого ФК, полученное с использованием теоремы Флоке и условия непрерывности тангенциальных компонент поля на границе слоев, имеет следующий вид :

С08[кв(йх + й2)] = со8[кг й^]х со$[к2 й2]-0,5)

с бт[кг ё1] х бт[кг й2

где кв - блоховское волновое число; к^ =

ли преломления; й1, й2 - толщины слоев.

2 л х / х п1

; / - частота; пг, п2 - показате-

Рис. 1. Рассматриваемая слоисто-периодическая структура

Л. и Л 1 ! I х. ] л!/ л Пил! л «

и " и | Г ¡4 1 ! 1) 1 1 N V и | 1 У " 11

0,1 0,2 0,3 0,4 0,5 0,6

Частота/ ТГц

Рис. 2. Частотная дисперсия комплексного блоховского волнового числа

Дисперсия комплексного блоховского волнового числа, полученная с использованием уравнения (1), показана на рис. 2. Как видно из рис. 2, на границах запрещенных зон аргумент косинуса кв (й1 + й2) будет принимать значения либо 0, либо п . Следовательно, исходя из этого условия, можно рассчи-

тать значения граничных частот, ширины запрещенных зон и центры запрещенных зон фотонного кристалла. Однако для фотонного кристалла с некратными оптическими длинами слоев внутри двухслойной ячейки данные формулы могут быть получены только в неявном виде. Для получения формул в явном виде нужно использовать кратные оптические длины: пхёх = п2ё2; пхёх = 2хп2ё2; пхёх = 3хп2ё2... . В работе были рассмотрены формулы для 1-й, 2-й и 3-й кратности.

Для фотонного кристалла первой кратности (пхёх = п2ё2) формулы граничных частот, ширины

запрещенной зоны и центра запрещенной зоны имеют следующий вид:

(/п 1 Л (/п «и 1 Л

0,256-1,5 . „ агссо81---I + 2лт

а/ = /1 -/2; /33 = /+/2-; /рз =

/ 2а; /2 = я(т +1)

0,256-1, 5 . „, 1Ч -агссо81 ----- | + 2л(т +1)

где /1 и /2 - низкочастотная и высокочастотная границы запрещенной зоны соответственно; А/ - ширина запрещенной зоны; /зз - центр запрещенной зоны; с - скорость света; / - центр разрешенной

о пх п2 зоны 6 = - +-;

Для ФК с параметрами слоев пх = 2,9; п2 = 1,445; ёх = 540 мкм; ё2 = 1084 мкм для второй запрещенной зоны в диапазоне 0,1-1 ТГц имеют место следующие параметры зонной структуры: /1 = 0,1332 ТГц; /2 = 0,1541 ТГц; А/ = 0,0209 ТГц; /зз = 0,1437 ТГц.

Для ФК, оптические длины слоев которого связаны равенством пхёх = 2п2ё2, получены следующие формулы для параметров зонной структуры:

4+в+У в2-4 6 + 3в-4в2 -4

4 + в-V в2 - 4 6 + 3в + ^в2 - 4

2 + в -V в2 - 4

2ят х с агссоБ

В-#^4 2 + в + 4 в2 - 4

В-#^4 2 + в + л/в2 - 4

4 + в-Vв2 -4 6 + 3в + 4в2 - 4

4 + в + Ув2 - 4 6 + 3в-4в2 -4

где (/1 и /11), (/2 и /21), (/3 и /31), (/4 и /41) - низкочастотная и высокочастотная границы запрещен-

ных зон с номерами (4т+1), (4т+2), (4т+3), (4т+4) соответственно; с - скорость света; Р= - + -;

т = 0,1,2,.... Ширина запрещенной зоны рассчитывается как А/ = /-/х; центр запрещенной зоны

, / + /х. й /зз = ^ ; /рз - центр разрешенной зоны.

Для ФК с параметрами пх = 2,9; п2 = 1,445; ёх = 540 мкм; ё2 = 541,87 мкм для второй запрещенной зоны в диапазоне 0,1-1 ТГц имеем

/2 = 0,116 ТГц; /2х = 0,14 ТГц; А/ = 0,024 ТГц; /зз = 0,128 ТГц.

Для фотонного кристалла, оптические длины которого связаны равенством пхёх = 3п2ё2, получены следующие формулы для параметров зонной структуры:

1 -0,5ß + ^/2,25ß2 -ß-7 3 + 2,5ß-^/ 2,25ß2-ß-7

1 -0,5ß-^2,25ß2 -ß-7 3 + 2,5ß + V 2,25ß2-ß-7

1 -0,5ß-J2,25ß2 -ß-7 3 + 2,5ß + yl2,25ß2 - ß - 7

1 - 0,5ß + 72,25ß2 - ß - 7 3 + 2,5ß-sj2,25ß2 -ß-7

где (/1 и /11), (/2 и /2), (/3 и /) - низкочастотная и высокочастотная границы запрещенных зон с

номерами (3т+1), (3т+2), (3т+3) соответственно; с - скорость света; р = - + -; т = 0,1,2,.... Ширина

запрещенной зоны рассчитывается как Д/ = / - /1; центр запрещенной зоны /зз =

разрешенной зоны.

Для ФК с параметрами п1 = 2,9; п2 = 1,445; = 540 мкм; й2 = 361,24 мкм для второй запрещенной зоны в диапазоне 0,1-1 ТГц имеем

/2 = 0,1283 ТГц; = 0,1591 ТГц; Д/ = 0,0308 ТГц; /зз = 0,1437 ТГц.

Для моделирования ФК конечной длины нужно использовать метод матриц передачи , который позволяет рассчитать значение электромагнитного поля волны, проходящей через фотонный кристалл, в произвольной точке 2 слоя. Матрица передачи для одного слоя имеет следующий вид:

cos(k0 x n x p x sin(k0

: z x cos 0) x n x z x cos 0)

(-i / p) x sin(k0 x n x z x cos 0)

где k0 = -; p = - cos 0 ; n = ; z - координата на оси Oz; 0 - угол падения волны на первый слой.

Используя метод матриц передачи, в математическом пакете MATLAB была построена зонная структура фотонного кристалла для оптических длин слоев в двухслойной ячейке 1-й, 2-й и 3-й кратно-стей), в ТГц диапазоне частот (для 0=0) с 10 элементарными ячейками с параметрами слоев, указанными выше (рис. 3).

Как видно из рис. 3, в спектре пропускания ФК 1-й, 2-й и 3-й кратности выпадают запрещенные зоны, кратные двум, трем, четырем соответственно, по сравнению с зонной структурой ФК с некратными оптическими длинами слоев внутри элементарной ячейки. Для всех трех случаев кратности относительная погрешность вычислений параметров зонной структуры конечного ФК не превышает 1% по сравнению с формулами для бесконечного ФК (ширина запрещенной зоны рассчитывалась на уровне 0,5 коэффициента пропускания для конечного ФК).

Также структура одномерного ФК была рассчитана методом конечных разностей во временной области с помощью программного пакета трехмерного моделирования CST Microwave Studio (рис. 4). Видно такое же поведение зонной структуры конечного ФК, что и для спектров пропускания, полученного методом матриц передачи. Относительная погрешность вычислений параметров зонной структуры конечного ФК в данном пакете моделирования не превышает 3% по сравнению с формулами для бесконечного ФК.

Цж.М"."ш ЩШШ Ш Щ"ДЦ Щ

пШшиЩШ) щщм

пхёх=3п2ё2 Частота / ТГц

Рис. 3. Зонная структура фотонного кристалла для трех кратностей, оптических длин слоев в двухслойной ячейке в ТГц диапазоне частот (цифры указывают номер запрещенной зоны, стрелки - выпадающие

запрещенные зоны)

Я -е -е т о

пхёх=2п2ё2 -ДА/ ут1

пхёх=3п2ё2 Частота, ТГц

Рис. 4. Трехмерная модель ФК в ОЭТ (а) и коэффициент пропускания ФК для трех кратностей (б)

Экспериментальная часть

Случай 2-й кратности был проверен экспериментально методом непрерывной ТГц спектроскопии в диапазоне 0,1-1 ТГц . Был использован метод смешения частот инфракрасного излучения на фото-проводящей (ФП) антенне для генерации ТГц излучения. Вторая ФП антенна была использована в качестве приемника. Между излучающей и принимающей ФП антенной устанавливался собранный ФК (рис. 5).

Исследованный фотонный кристалл имеет следующие параметры: количество бислойных ячеек -3; показатели преломления слоев - пх = 2,9 и п2 = 1,445 ; толщины слоев - ёх = 540 мкм и ё2 = 520 мкм (ё2 на 21 мкм меньше, чем для случая идеальной 2-й кратности). На рис. 5 показано сравнение экспериментального и теоретического спектра для 4 и 5 запрещенных зон. Как видно из экспериментального графика, так же как и для моделирования, наблюдается выпадение запрещенной зоны, кратной трем, по сравнению с зонной структурой ФК с некратными оптическими длинами слоев внутри элементарной ячейки. Небольшое несоответствие положения центров запрещенных зон в экспериментальном и теоре-

тическом спектре связано с отличием толщины слоев тефлона в эксперименте от идеальной 2-й кратности.

1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3

0,3 0,35 0,4 0,45 0,5 Частота, ТГц

Эксперимент

Моделирование

Рис. 5. Фотография установки, фотография макета фотонного кристалла (а) и сравнительный график экспериментального и теоретического коэффициента пропускания ФК с тремя элементарными

ячейками (б)

Заключение

Таким образом, были получены точные формулы для расчета параметров зонной структуры (ширина запрещенной зоны, границы запрещенной зоны и центр запрещенной зоны) одномерных фотонных кристаллов с кратными оптическими длинами слоев внутри двухслойной элементарной ячейки для случая TE-волны с волновым вектором, перпендикулярным плоскостям слоев фотонного кристалла. Было продемонстрировано для фотонного кристалла 1-й, 2-й и 3-й кратности исчезновение запрещенных зон, кратным двум, трем, четырем соответственно, по сравнению с зонной структурой фотонных кристаллов с некратными оптическими длинами слоев внутри элементарной ячейки. Формулы для 1-й, 2-й и 3-й кратностей были проверены с помощью метода матриц передачи и трехмерного численного моделирования методом конечных разностей во временной области. Случай 2-й кратности был проверен в эксперименте в ТГц диапазоне частот от 0,1 до 1 ТГц. Полученные формулы могут быть использованы для разработки широкополосных фильтров на основе фотонных кристаллов для промышленного, военного и медицинского применения без необходимости моделирования зонной структуры фотонного кристалла в различных математических пакетах.

Работа была частично поддержана грантом № 14.132.21.1421 в рамках реализации Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг.

Литература

1. Вендик И.Б., Вендик О.Г. Метаматериалы и их применение в технике сверхвысоких частот (Обзор) // Журнал технической физики. - СПбГЭТУ «ЛЭТИ». - 2013. - Т. 83. - Вып. 1. - С. 3-26.

2. Возианова А.В., Ходзицкий М.К. Маскирующее покрытие на основе спиральных резонаторов // Научно-технический вестник информационных технологий, механики и оптики. - 2012. - № 4 (80). -С. 28-34.

3. Терехов Ю.Е., Ходзицкий М.К., Белокопытов Г.В. Характеристики метапленок для терагерцового диапазона частот при масштабировании геометрических параметров // Научно-технический вестник информационных технологий, механики и оптики. - 2013. - № 1 (83). - С. 55-60.

4. Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics // Physical Review Letters. - 1987. - V. 58. - № 20. - P. 2059-2062.

5. Figotin A., Kuchment P. Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals // SIAM Journal on Applied Mathematics. - 1996. - V. 56. - № 6. - P. 1561-1620.

6. Smolyaninov Igor I., Davis Christopher C. Super-resolution optical microscopy based on photonic crystal materials // Physical review B. - 2005. - V. 72. - P. 085442.

7. Kosaka Hideo, Kawashima Takayuki, Tomita Akihisa. Superprism phenomena in photonic crystals // Physical review B. - 1998. - V. 58. - № 16. - P. 10096-10099.

8. Kurt Hamza, Erim Muhammed Necip, Erim Nur. Various photonic crystal bio-sensor configurations based on optical surface modes // Department of Electrical and Electronics Engineering. - 2012. - V. 165. - № 1. - P. 68-75.

9. Ozbay E., Michel E., Tuttle G., Biswas R., Sigalas M., and Ho K.M. Micromachined millimeter-wave photonic band-gap crystals // Appl. Phys. Lett. - 1994. - V. 64. - № 16. - P. 2059-2061.

10. Jin C., Cheng B., Li Z., Zhang D., Li L.M., Zhang Z.Q. Two dimensional metallic photonic crystal in the THz range // Opt. Commun. - 1999. - V. 166. - № 9. - P. 9-13.

11. Nusinsky Inna and Hardy Amos A. Band-gap analysis of one-dimensional photonic crystals and conditions for gap closing // Physical review B. - 2006. - V. 73. - P. 125104.

12. Басс Ф.Г., Булгаков А.А., Тетервов А.П. Высокочастотные свойства полупроводников со сверхрешетками. - М.: Наука. Гл. ред. физ.-мат. лит., 1989. - 288 с.

13. Борн М., Вольф Э. Основы оптики. - М.: Наука. Гл. ред. физ.-мат. лит., 1973. - 733 c.

14. Gregory I.S., Tribe W.R., Baker C. Continuous-wave terahertz system with a 60 dB dynamic range // Applied Phisics Letters. - 2005. - V. 86. - P. 204104.

Денисултанов Алауди Хожбаудиевич

Ходзицкий Михаил Константинович

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, студент, [email protected]

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кандидат физ.-мат. наук, ассистент, [email protected]