Основные оптические законы были установлены очень давно. Уже в первые периоды оптических исследований экспериментально были открыты четыре основных закона относящихся к оптическим явлениям:

  1. закон прямолинейного распространения света;
  2. закон независимости пучков света;
  3. закон отражения света от зеркальной поверхности;
  4. закон преломление света на границе двух прозрачных веществ.

Закон отражения упоминается в сочинениях Евклида.

Открытие закона отражения связывают с применением полированных металлических поверхностей (зеркал), которые были известны в древние времена.

Формулировка закона отражения света

Падающий луч света, преломленный луч и перпендикуляр к границе раздела двух прозрачных сред лежат в одной плоскости (рис.1). При этом угол падения () и угол отражения () равны:

Явление полного отражения света

В том случае, если световая волна распространяется из вещества с большим показателем преломления в среде с меньшим показателем преломления, то угол преломления () будет больше, чем угол падения.

При увеличении угла падения увеличивается и угол преломления. Это происходит до тех пор, пока при некотором угле падения, который называют предельным (), угол преломления не станет равен 900. Если угол падения больше предельного угла (), то весь падающий свет отражается от границы раздела, явления преломления не происходит. Такое явление называют полным отражением. Угол падения, при котором происходит полное отражение, определено условием:

где — предельный угол полного отражения, — относительный показатель преломления вещества, в котором распространяется преломленный свет, относительно среды, в которой распространялась падающая волна света:

где — абсолютный показатель преломления второй среды, — абсолютный показатель преломления первого вещества; — фазовая скорость распространения света в первой среде; — фазовая скорость распространения света вовтором веществе.

Границы применения закона отражения

Если поверхность границы раздела веществ является не плоской, то ее можно разбить на маленькие площадки, которые в отдельности можно считать плоскими. Тогда ход лучей можно искать по законам преломления и отражения. Однако, кривизна поверхности не должна превышать некоторого предела, после которого наступает дифракция.

Шероховатые поверхности приводят к рассеянному (диффузному) отражению света. Абсолютно зеркальная поверхность становится невидимой. Видны только отраженные от нее лучи.

Примеры решения задач

ПРИМЕР 1

Задание Два плоских зеркала составляют двугранный угол (рис.2). Падающий луч распространяется в плоскости, которая перпендикулярна ребру двугранного угла. Он отражается от первого, затем второго зеркал. Каким будет угол (),на который отклоняется луч в результате двух отражений?


Решение Рассмотрим треугольник ABD. Видим, что:

Из рассмотрения треугольника ABCследует то, что:

Из полученных формул (1.1) и (1.2) имеем:

Ответ

ПРИМЕР 2

Задание Каким должен быть угол падения, при котором отраженный луч составляет угол 900 относительно преломленного луча?Абсолютные показатели преломления веществ равны: и .
Решение Сделаем рисунок.

Законы отражения и преломления света. Полное внутреннее отражение света

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1 Построение Гюйгенса.

А 1 А и В 1 В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА 2 и ВВ 2 .

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = α и DBA = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ.

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. Вследствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь.

Это явление называется диффузное отражение или рассеянное отражение . Диффузное отражение света (рис. 2.) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.



Рис. 2. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% - от белой бумаги, 0,5% - от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 3.). Отражающая поверхность в этом случае называется зеркалом (или зеркальная поверхность ). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 3. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 4.). Такой пучок лучей называется гомоцентрическим . Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 4. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S 1 пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S 1 называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 4 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO 1 .

Луч SO 1 падает на зеркало под углом α и отражается под углом γ (α = γ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S 1 , которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S 1 , хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S 1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 5.), согласно закону отражения света отражается под углом 1 = 2.

Рис. 5. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS 1 OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS 1 , то есть точка S 1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 6.). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 6. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым , если лучи отражаются от внутренней поверхности сферического сегмента.

Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим . Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым . Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим .

Преломление На границе раздела двух сред падающий световой поток делится на две части: одна часть отражается, другая – преломляется.
В. Снелл (Снеллиус) до X. Гюйгенса и И. Ньютона в 1621 г. экспериментально открыл закон преломления света, однако не получил формулу, а выразил его в виде таблиц, т.к. к этому времени в математике еще не были известны функции sin и cos.
Преломление света подчиняется закону: 1. Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром, восставленным в точке падения луча к поверхности раздела двух сред. 2. Отношение синуса угла падения к синусу угла преломле­ния для двух данных сред есть величина постоянная (для моно­хроматического света).
Причиной преломления является различие скоростей распространения волн в различных средах.
Величина, равная отношению скорости света в вакууме к скорости света в данной среде, называется абсолютным показателем преломления среды. Это табличная величина – характеристика данной среды.
Величина, равная отношению скорости света в одной среде к скорости света в другой, называется относительным показателем преломления второй среды относительно первой.
Доказательство закона преломления. Распространение падающих и преломленных лучей: ММ" - граница раздела двух сред. Лучи А 1 А и В 1 В - падающие лучи; α - угол падения;. АС – волновая поверхность в момент, когда луч А 1 А достигнет границы раздела сред. Воспользовавшись принципом Гюйгенса построим волновую поверхность в тот момент, когда луч В 1 Вдостигнет границы раздела сред. Построим преломленные лучи АА 2 и ВВ 2 . β - угол преломления. АВ – общая сторона треугольников АВС и АВD. Т.к. лучи и волновые поверхности взаимно перпендикулярны, то угол ABD= α и угол BAC=β. Тогда получим:
В призме или плоскопараллельной пластине преломление происходит на каждой грани в соответствие с законом преломления света. Не забудьте, что всегда существует отражение. Кроме того, реальный ход лучей зависит и от показателя преломления, и от преломляющего угла – угла при вершине призмы.)
Полное отражение Если свет падает из оптически более плотной среды в оптически менее плотную, то при определенном для каждой среды угле падения, преломленный луч исчезает. Наблюдается только преломление. Это явление называется полным внутренним отражением.
Угол падения, которому соответствует угол преломления 90°, называют предельным углом полного внутреннего отражения (a 0). Из закона преломления следует, что при переходе света из какой-либо среды в вакуум (или воздух)
Если мы пытаемся из-под воды взглянуть на то, что находится в воздухе, то при определенном значении угла, под которым мы смотрим, можно увидеть отраженное от поверхности воды дно. Это важно учитывать для того, чтобы не потерять ориентировку.
В ювелирном деле огранка камней подбирается так, чтобы на каждой грани наблюдалось полное отражение. Этим и объясняется "игра камней".
Полным внутренним отражением объясняется и явление миража.

Следует отметить, что изображение, которое мы видим по ту сторону зеркала, создано не самими лучами, а их мысленным продолжением. Такое изображение называется мнимым. Его глазом видно, но на экране его невозможно получить, так как оно создано не лучами, а их мысленным продолжением.

При отражении также соблюдается принцип наименьшего времени распространения света. Для того, чтобы попасть после отражения в глаз наблюдателя, свет должен прийти именно тот путь, который указывает ему закон отражения. Именно распространяясь по такому пути, свет на свой путь потратит наименьшее время из всех возможных вариантов.

3. Закон преломления света

Как нам уже известно, свет может распространяться не только в вакууме, но и в других прозрачных средах. В этом случае свет будет испытатьпреломление. При переходе из менее плотной среды в более плотную, луч света при преломлении прижимается к перпендикуляру, проведённому к точке падения, а при переходе из более плотной среды в менее плотную, он наоборот: отклоняется от перпендикуляра.

При этом имеются два закона преломления:

1. Падающий луч, преломлённый луч и перпендикуляр, проведённый к точке падения, лежат в одной плоскости.

2. Отношение синусов углов падения и преломления равно обратному отношению показателей преломления:

sin  n 2

sin  n 1

Представляет интерес прохождения луча света через трёхгранную призму. При этом, в любом случае наблюдается отклонение луча после прохождения через призму от первоначального направления:

У различных прозрачных тел показатель преломления различен. У газов он очень мало отличается от единицы. С повышением давления он возрастает, следовательно, показатель преломления газов зависит и от температуры. Вспомним, что если смотреть на отдалённые предметы сквозь горячий воздух, поднимающийся от костра, то видим, что всё, что вдали выглядит как колышащееся марево. У жидкостей показатель преломления зависит не только от самой жидкости, но и от концентрации растворённых в ней веществ. Ниже приводится небольшая таблица показателей преломления некоторых веществ.

4. Полное внутреннее отражение света.

Волоконная оптика

Следует отметить, что световой луч, распространяясь в пространстве, обладает свойством обратимости. Это значит, что по какому пути луч распространяется от источника в пространстве, по такому же пути он пойдёт обратно, если источник и точку наблюдения поменять местами.

Представим себе, что луч света распространяется из оптически более плотной среды в оптически менее плотную. Тогда, по закону преломления, он при преломлении должен выйти, отклонившись от перпендикуляра. Рассмотрим лучи, исходящие от точечного источника света, находящегося в оптически более плотной среде, например, в воде.

Из данного рисунка видно, что первый луч падает на поверхность раздела перпендикулярно. При этом луч от первоначального направления не отклоняется. Часто его энергии отражается от границы раздела и возвращается на источник. Остальная часть его энергии выходит наружу. Остальные лучи частично отражаются, частично выходят наружу. При увеличении угла падения растёт соответственно и угол преломления, что соответствует закону преломления. Но когда угол падения принимает такое значение, что, согласно закону преломления, угол выхода луча должен составить 90 градусов, то луч на поверхность вообще не выйдет: все 100% энергии луча отразятся от границы раздела. Все остальные лучи, падающие на поверхность раздела под углом, большим, чем этот, будут полностью отражены от поверхности раздела. Этот угол называется предельным углом , а явление называетсяполным внутренним отражением. То есть, поверхность раздела в данном случае выступает как идеальное зеркало. Значение предельного угла для границы с вакуумом или воздухом можно подсчитать по формуле:

Sin пр = 1/ n Здесьn – показатель преломления более плотной среды.

Явление полного внутреннего отражения широко используется в различных оптических приборах. В частности, используется в приборе для определения концентрации растворённых веществ в воде (рефрактометр). Там измеряется предельный угол полного внутреннего отражения, по которому определяется показатель преломления и потом по таблице определяют концентрацию растворённых веществ.

Особенно ярко проявляется явление полного внутреннего отражения в волоконной оптике. Ниже на рисунке изображено одно стекловолокно в разрезе:

Возьмём тонкое стеклянное волокно и в один из торцов запустим луч света. Поскольку волокно очень тонкое, то любой луч, вошедший в торец волокна, будет падать на его боковую поверхность под углом, значительно превышающий предельный угол и будет полностью отражён. Таким образом, вошедший луч будет многократно отражаться от боковой поверхности и выйдет из противоположного конца практически без потерь. Внешне это будет выглядеть так, как будто противоположный торец волокна ярко светится. К тому же совсем необязательно, чтобы стекловолокно было прямолинейным. Оно может изгибаться как угодно, причём, никакие изгибы не повлияют распространению света по волокну.

В связи с этим, учёным пришла идея: а что, если взять не одно волокно, а целый их пучок. Но при этом надо, чтобы все волокна в жгуте находились в строгом взаимном порядке и на обеих сторонах жгута торцы всех волокон находились в одной плоскости. И если при этом на один торец жгута с помощью линзы подать изображение, то каждое волокно в отдельности передаст на противоположный торец жгута одну маленькую частичку изображения. Все вместе волокна на противоположном торце жгута воспроизведут то же самое изображение, что было создано линзой. Причём, изображение будет в естественном свете. Таким образом, был создан прибор, названный позже фиброгастроскопом . Этим прибором можно осмотреть внутреннюю поверхность желудка, не производя оперативного вмешательства. Фиброгастроскоп вводят через пищевод в желудок и осматривают внутреннюю поверхность желудка. В принципе, данным прибором можно осмотреть не только желудок, но и другие органы изнутри. Данный прибор используется не только в медицине, но и в различных областях техники для осмотра недоступных областей. И при этом сам жгут может иметь всевозможные изгибы, которые при этом никак не влияют на качество изображения. Единственный недостаток данного прибора – это растровая структура изображения: то есть изображение состоит из отдельных точек. Для того, чтобы изображение было более чётким, нужно иметь ещё большее количество стекловолокон, причём они должны быть ещё более тонкими. А это значительно увеличивает стоимость прибора. Но с дальнейшим развитием технических возможностей данная проблема вскоре будет решена.

Одно из основных положений геометрической оптики гласит, что световые лучи – есть полупрямые исходящие из точки своего распространения – так называемого источника света. Физическая природа света в этом определении не обсуждается, а дается лишь некая математическая картина. При этом оговаривается, что луч света не меняет своего направления, если характеристики среды, в которой свет распространяется, остаются низменными. Что же произойдет, если эти свойства изменятся? Например, изменятся скачкообразно, что случается на границе пересечения двух сред?

Непосредственные наблюдения показывают, что часть световых лучей меняет свое направление так, словно они отражаются от границы. Можно провести аналогию с бильярдным шаром: столкнувшись со стенкой бильярдного стола, шар от нее отражается. Потом шар снова движется по прямой линии, до очередного столкновения. То же происходит и с лучами света, что дало повод ученым средневековья рассуждать о корпускулярной природе света. Корпускулярной модели света придерживался, например, Ньютон. Данное явление получило название «отражение света». На рисунке ниже оно показано схематически:

С отражением света мы сталкиваемся повсеместно. Красивые картины на поверхности водяной глади образуются именно благодаря отражению лучей света от водной поверхности:

Но самое главное: не будь в природе этого явления – мы бы вообще ничего не увидели, а не только этих высокохудожественных планов. Ведь видим мы не предметы, а лучи света отраженные от этих предметов и направленные на сетчатку нашего глаза.

Закон отражения света

Физикам мало знать о существовании того или иного явления природы – его нужно описать точно, то есть на языке математики. Как конкретно отражается световой луч от поверхности? Поскольку и до, и после отражения свет распространяется по прямой линии, то для точного описания этого явления нам достаточно знать соотношение между углом падения и углом отражения. Такое соотношение существует: «Угол падения равен углу отражения».

Если свет падает на очень гладкую поверхность, наподобие поверхности воды или на поверхность зеркала, то все падающие под одним и тем же углом лучи, отражаются от поверхности в одном и том же направлении – под углом, равным углу падения. Поэтому зеркало так точно передает форму отражающихся в нем предметов. Если же поверхность шероховата, то (как на первом рисунке) то такой закономерности не наблюдается – тогда говорят о диффузном отражении.



На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается , а часть проникает во вторую среду и при этом преломляется . Луч АО носит название падающий луч , а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света .

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения .

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения .

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения . Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света


Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А 1 А и В 1 В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА 2 и ВВ 2 .

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ .

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение . Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% - от белой бумаги, 0,5% - от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

– это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность ). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим . Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO 1 .

Луч SO 1 падает на зеркало под углом α и отражается под углом γ (α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S 1 , которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S 1 , хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S 1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS 1 OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS 1 , то есть точка S 1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым , если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим . Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым . Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим .