Статья рассказывает о понятии прямой на плоскости. Рассмотрим основные термины и их обозначения. Поработаем со взаимным расположением прямой и точки и двух прямых на плоскости. Поговорим об аксиомах. В итоге обсудим методы и способы задания прямой на плоскости.

Прямая на плоскости – понятие

Для начала необходимо иметь четкое представление о том, что такое плоскость. Любую поверхность чего-либо можно отнести к плоскости, только от предметов она отличается своей безграничностью. Если представить, что плоскость – это стол, то в нашем случае он не будет иметь границ, а будет бесконечно огромен.

Если карандашом дотронуться до стола, останется отметина, которую можно называть «точкой». Таким образом, получим представление о точке на плоскости.

Рассмотрим понятие прямой линии на плоскости. Если провести прямую на листе, то она отобразится на нем с ограниченной длиной. Мы получили не всю прямую, а только ее часть, так как на самом деле она не имеет конца, как и плоскость. Поэтому изображение прямых и плоскостей в тетради формальное.

Имеем аксиому:

Определение 1

На каждой прямой и в каждой плоскости могут быть отмечены точки.

Точки обозначают как большими, так и маленькими латинскими буквами. Например, А и D или a и d .

Для точки и прямой известны только два варианта расположения: точка на прямой, иначе говоря, что прямая проходит через нее, или точка не на прямой, то есть прямая не проходит через нее.

Чтобы обозначить, принадлежит точка плоскости или точка прямой, используют знак « ∈ ». Если в условии дано, что точка A лежит на прямой a , тогда это имеет такую форму записи A ∈ a . В случае, когда точка А не принадлежит, тогда другая запись A ∉ a .

Справедливо суждение:

Определение 2

Через любые две точки, находящиеся в любых плоскостях, существует единственная прямая, которая проходит через них.

Данное высказывание считается акисомой, поэтому не требует доказательств. Если рассмотреть это самостоятельно, видно, что при существующих двух точках имеется только один вариант их соединения. Если имеем две заданные точки А и В, то прямую, проходящую через них можно назвать данными буквами, например, прямая А В. Рассмотрим рисунок, приведенный ниже.

Прямая, расположенная на плоскости, имеет большое количество точек. Отсюда исходит аксиома:

Определение 3

Если две точки прямой лежат в плоскости, то и все остальные точки данной прямой принадлежат плоскости.

Множество точек, находящееся между двумя заданными, называют отрезком прямой. Он имеет начало и конец. Введено обозначение двумя буквами.

Если дано, что точки А и Р – концы отрезка, значит, его обозначение примет вид Р А или А Р. Так как обозначения отрезка и прямой совпадают, рекомендовано дописывать или договаривать слова «отрезок», «прямая».

Краткая запись принадлежности включает в себя использование знаков ∈ и ∉ . Для того, чтобы зафиксировать расположение отрезка относительно заданной прямой, применяют ⊂ . Если в условии дано, что отрезок А Р принадлежит прямой b , значит, и запись будет выглядеть следующим образом: А Р ⊂ b .

Случай принадлежности одновременно трех точек одной прямой имеет место быть. Это верно, когда одна точка лежит между двумя другими. Данное утверждение принято считать аксиомой. Если даны точки А, В, С, которые принадлежат одной прямой, а точка В лежит между А и С, следует, что все заданные точки лежат на одной прямой, так как лежат по обе стороны относительно точки B .

Точка делит прямую на две части, называемые лучами.Имеем аксиому:

Определение 4

Любая точка O , находящаяся на прямой, делит ее на два луча, причем две любые точки одного луча лежат по одну сторону луча относительно точки O , а другие – по другую сторону луча.

Расположение прямых на плоскости может принимать вид двух состояний.

Определение 5

совпадать .

Такая возможность появляется, когда прямые имеют общие точки. Исходя из аксиомы, написанной выше, имеем, что через две точки проходит прямая и только одна. Значит, что при прохождении 2 прямых через заданные 2 точки, они совпадают.

Определение 6

Две прямые на плоскости могут пересекаться .

Данный случай показывает, что имеется одна общая точка, которую называют пересечением прямых. Вводится обозначение пересечение знаком ∩ . Если имеется форма записи a ∩ b = M , то отсюда следует, что заданные прямые a и b пересекаются в точке M .

При пересечении прямых имеем дело образовавшимся углом. Отдельному рассмотрению подвергается раздел пересечения прямых на плоскости с образованием угла в 90 градусов, то есть прямого угла. Тогда прямые называют перпендикулярными.Форма записи двух перпендикулярных прямых такая: a ⊥ b , а это значит, что прямая a перпендикулярна прямой b .

Определение 7

Две прямые на плоскости могут быть параллельны .

Только в том случае, если две заданные прямые не имеют общих пересечений, а, значит, и точек, они параллельны. Используется обозначение, которое можно записать при заданной параллельности прямых a и b: a ∥ b .

Прямая на плоскости рассматривается вместе с векторами. Особое значение придается нулевым векторам, которые лежат на данной прямой или на любой из параллельных прямых, имеют название направляющие векторы прямой. Рассмотрим рисунок, расположенный ниже.

Ненулевые векторы, расположенные на прямых, перпендикулярных данной, иначе называют нормальными векторами прямой. Подробно имеется описание в статье нормальный вектор прямой на плоскости. Рассмотрим рисунок ниже.

Если на плоскости даны 3 линии, их расположение может быть самое разное. Есть несколько вариантов их расположения: пересечение всех, параллельность или наличие разных точек пересечения. На рисунке показано перпендикулярное пересечение двух прямых относительно одной.

Для этого приводим необходимы факторы, доказывающие их взаимное расположение:

  • если две прямые параллельны третьей, тогда они все параллельны;
  • если две прямые перпендикулярны третьей, тогда эти две прямые параллельны;
  • если на плоскости прямая пересекла одну параллельную прямую, тогда пересечет и другую.

Рассмотрим это на рисунках.

Прямая на плоскости может быть задана несколькими способами. Все зависит от условия задачи и на чем будет основано ее решение. Эти знания способны помочь для практического расположения прямых.

Определение 8

Прямая задается при помощи указанных двух точек, расположенных в плоскости.

Из рассмотренной аксиомы следует, что через две точки можно провести прямую и притом только одну единственную. Когда прямоугольная система координат указывает координаты двух несовпадающих точек, тогда можно зафиксировать уравнение прямой, проходящей через две заданные точки. Рассмотрим рисунок, где имеем прямую, проходящую через две точки.

Определение 9

Прямая может быть задана через точку и прямую, которой она параллельна.

Данный способ имеет место на существование, так как через точку можно провести прямую, параллельную заданной, причем, только одну. Доказательство известно еще из школьного курса по геометрии.

Если прямая задана относительно декартовой системы координат, тогда возможно составление уравнения прямой, проходящей через заданную точку параллельно заданной прямой. Рассмотрим принцип задания прямой на плоскости.

Определение 10

Прямая задается через указанную точку и направляющий вектор.

Когда прямая задается в прямоугольной системе координат, есть возможность составления канонического и параметрического уравнений на плоскости. Рассмотрим на рисунке расположение прямой при наличии направляющего вектора.

Четвертым пунктом задания прямой имеет смысл, когда указана точка, через которую ее следует начертить, и прямая, перпендикулярная ей. Из аксиомы имеем:

Определение 11

Через заданную точку, расположенную на плоскости, пройдет только одна прямая, перпендикулярная заданной.

И последний пункт, относящийся к заданию прямой на плоскости, это при указанной точке, через которую проходит прямая, и при наличии нормального вектора прямой. При известных координатах точки, которая расположена на заданной прямой, и координатах нормального вектора есть возможность записывания общего уравнения прямой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


В планиметрии плоскость является одной из основных фигур, поэтому, очень важно иметь ясное представление о ней. Эта статья создана с целью раскрытия этой темы. Сначала дано понятие плоскости, ее графическое представление и показаны обозначения плоскостей. Далее плоскость рассматривается вместе с точкой, прямой или другой плоскостью, при этом возникают варианты из взаимного расположения в пространстве. Во втором и третьем и четвертом пункте статьи как раз разобраны все варианты взаимного расположения двух плоскостей, прямой и плоскости, а также точки и плоскости, приведены основные аксиомы и графические иллюстрации. В заключении даны основные способы задания плоскости в пространстве.

Навигация по странице.

Плоскость – основные понятия, обозначения и изображение.

Простейшими и основными геометрическими фигурами в трехмерном пространстве являются точка, прямая и плоскость. Мы уже имеем представление о точке и прямой на плоскости . Если поместить плоскость, на которой изображены точки и прямые, в трехмерное пространство, то мы получим точки и прямые в пространстве. Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Точки и прямые в пространстве обозначаются также как и на плоскости – большими и маленькими латинскими буквами соответственно. Например, точки А и Q , прямые а и d . Если заданы две точки, лежащие на прямой, то прямую можно обозначить двумя буквами, соответствующими этим точкам. К примеру, прямая АВ или ВА проходит через точки А и В . Плоскости принято обозначать маленькими греческими буквами, например, плоскости , или .

При решении задач возникает необходимость изображать плоскости на чертеже. Плоскость обычно изображают в виде параллелограмма или произвольной простой замкнутой области.

Плоскость обычно рассматривается вместе с точками, прямыми или другими плоскостями, при этом возникают различные варианты их взаимного расположения. Переходим к их описанию.

Взаимное расположение плоскости и точки.

Начнем с аксиомы: в каждой плоскости имеются точки. Из нее следует первый вариант взаимного расположения плоскости и точки – точка может принадлежать плоскости. Другими словами, плоскость может проходить через точку. Для обозначения принадлежности какой-либо точки какой-либо плоскости используют символ «». Например, если плоскость проходит через точку А , то можно кратко записать .

Следует понимать, что на заданной плоскости в пространстве имеется бесконечно много точек.

Следующая аксиома показывает, сколько точек в пространстве необходимо отметить, чтобы они определяли конкретную плоскость: через три точки, не лежащие на одной прямой, проходит плоскость, причем только одна. Если известны три точки, лежащие в плоскости, то плоскость можно обозначить тремя буквами, соответствующими этим точкам. Например, если плоскость проходит через точки А , В и С , то ее можно обозначить АВС .

Сформулируем еще одну аксиому, которая дает второй вариант взаимного расположения плоскости и точки: имеются по крайней мере четыре точки, не лежащие в одной плоскости. Итак, точка пространства может не принадлежать плоскости. Действительно, в силу предыдущей аксиомы через три точки пространства проходит плоскость, а четвертая точка может как лежать на этой плоскости, так и не лежать. При краткой записи используют символ «», который равносилен фразе «не принадлежит».

К примеру, если точка А не лежит в плоскости , то используют краткую запись .

Прямая и плоскость в пространстве.

Во-первых, прямая может лежать в плоскости. В этом случае, в плоскости лежат хотя бы две точки этой прямой. Это устанавливается аксиомой: если две точки прямой лежат в плоскости, то все точки этой прямой лежат в плоскости. Для краткой записи принадлежности некоторой прямой данной плоскости пользуются символом «». Например, запись означает, что прямая а лежит в плоскости .

Во-вторых, прямая может пересекать плоскость. При этом прямая и плоскость имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости. При краткой записи пересечение обозначаю символом «». К примеру, запись означает, что прямая а пересекает плоскость в точке М . При пересечении плоскости некоторой прямой возникает понятие угла между прямой и плоскостью .

Отдельно стоит остановиться на прямой, которая пересекает плоскость и перпендикулярна любой прямой, лежащей в этой плоскости. Такую прямую называют перпендикулярной к плоскости. Для краткой записи перпендикулярности используют симовл «». Для более глубокого изучения материала можете обратиться к статье перпендикулярность прямой и плоскости .

Особую значимость при решении задач, связанных с плоскостью, имеет так называемый нормальный вектор плоскости . Нормальным вектором плоскости является любой ненулевой вектор, лежащий на прямой, перпендикулярной этой плоскости.

В-третьих, прямая может быть параллельна плоскости, то есть, не иметь в ней общих точек. При краткой записи параллельности используют символ «». Например, если прямая а параллельна плоскости , то можно записать . Рекомендуем подробнее изучить этот случай, обратившись к статье параллельность прямой и плоскости .

Следует сказать, что прямая, лежащая в плоскости, делит эту плоскость на две полуплоскости. Прямая в этом случае называется границей полуплоскостей. Любые две точки одной полуплоскости лежат по одну сторону от прямой, а две точки разных полуплоскостей лежат по разные стороны от граничной прямой.

Взаимное расположение плоскостей.

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями . Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными. О них мы поговорили в статье перпендикулярность плоскостей .

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек. Рекомендуем ознакомиться со статьей параллельность плоскостей , чтобы получить полное представление об этом варианте взаимного расположения плоскостей.

Способы задания плоскости.

Сейчас мы перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки .

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

  • через прямую и не лежащую на ней точку проходит плоскость, притом только одна (смотрите также статью уравнение плоскости, проходящей через прямую и точку);
  • через две пересекающиеся прямые проходит единственная плоскость (рекомендуем ознакомиться с материалом статьи уравнение плоскости, проходящей через две пересекающиеся прямые).

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых . Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые .


В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой .

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать

Прямая может принадлежать плоскости , быть ей параллельной или пересекать плоскость. Прямая принадлежит плоскости, если две точки, принадлежащие прямой и плоскости, имеют одинаковые отметки . Следствие, вытекающее из сказанного: точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Прямая параллельна плоскости, если она параллельна прямой, лежащей в этой плоскости.

Прямая, пересекающая плоскость. Чтобы найти точку пересечения прямой с плоскостью, необходимо (рис. 3.28):

1) через заданную прямую m провести вспомогательную плоскость Т ;

2) построить линию n пересечения заданной плоскости Σ с вспомогательной плоскостью Т;

3) отметить точку пересечения R, заданной прямой m с линией пересечения n.

Рассмотрим задачу (рис. 3.29).Прямая m задана на плане точкой А 6 и углом наклона 35°. Через эту прямую проведена вспомогательная вертикальная плоскость Т, которая пересекает плоскость Σ по линии n (В 2 С 3 ). Таким образом, переходят от взаимного положения прямой и плоскости к взаимному положению двух прямых, лежащих в одной вертикальной плоскости. Такая задача решается построением профилей этих прямых. Пересечение прямых m и n на профиле определяет искомую точку R . Высотную отметку точки R определяют по шкале вертикальных масштабов.

Прямая, перпендикулярная плоскости. Прямая линия перпендикулярна к плоскости, если она перпендикулярна к любым двум пересекающимся прямым этой плоскости. На рис 3.30 изображена прямая m , перпендикулярная к плоскости Σ и пересекающая ее в точке А. На плане проекции прямой m и горизонтали плоскости взаимно перпендикулярны (прямой угол, одна сторона которого параллельна плоскости проекций, проецируется без искажения. Обе прямые лежат в одной вертикальной плоскости, следовательно заложения у таких прямых обратны по величине друг другу: l m = l /l u . Но l uΣ = l Σ , тогда l m = l / l Σ , то есть заложение прямой m обратно пропорционально заложению плоскости. Падения у прямой и плоскости направлены в разные стороны.

3.4. Проекции с числовыми отметками. Поверхности

3.4.1.Многогранники и кривые поверхности. Топографическая поверхность

В природе многие вещества имеют кристаллическое строение в виде многогранников. Многогранником называют совокупность плоских многоугольников, не лежащих в одной и той же плоскости, где каждая сторона одного из них является одновременно стороной другого. При изображении многогранника достаточно указать проекции его вершин, соединив их в определенном порядке прямыми линиями - проекциями ребер. При этом на чертеже необходимо указывать видимые и невидимые ребра. На рис. 3.31 изображены призма и пирамида, а также нахождение отметок точек, принадлежащих данным поверхностям.



Особой группой выпуклых многоугольников является группа правильных многоугольников, у которых все грани - равные между собой правильные многоугольники и все многоугольные углы равны. Существует пять видов правильных многоугольников.

Тетраэдр - правильный четырехугольник, ограниченный равносторонними треугольниками, имеет 4 вершины и 6 ребер (рис. 3.32 а).

Гексаэдр - правильный шестигранник (куб) - 8 вершин, 12 ребер (рис. 3.32б).

Октаэдр - правильный восьмигранник, ограниченный восемью равносторонними треугольниками - 6 вершин, 12 ребер (рис. 3.32в).

Додекаэдр - правильный двенадцатигранник, ограниченный двенадцатью правильными пятиугольниками, соединенными по три около каждой вершины.

Имеет 20 вершин и 30 ребер (рис.3.32 г).

Икосаэдр - правильный двадцатигранник, ограниченный двадцатью равносторонними треугольниками, соединенными по пяти около каждой вершины.12 вершин и 30 ребер (рис. 3.32 д).

При построении точки, лежащей на грани многогранника, необходимо провести прямую, принадлежащую этой грани и на ее проекции отметить проекцию точки.

Конические поверхности образуются перемещением прямолинейной образующей по криволинейной направляющей так, что во всех положениях образующая проходит через неподвижную точку -вершину поверхности. Конические поверхности общего вида на плане изображают направляющей горизонталью и вершиной. На рис. 3.33 показано нахождение отметки точки на поверхности конической поверхности.



Прямой круговой конус изображается серией концентрических окружностей, проведенных через равные интервалы (рис.3.34а). Эллиптический конус с круговым основанием - серией эксцентрических окружностей (рис. 3.34 б)

Сферические поверхности. Сферическую поверхность относят к поверхностям вращения. Она образуется вращением окружности вокруг ее диаметра. На плане сферическая поверхность определена центром К и проекцией одной из ее горизонталей (экватором сферы) (рис. 3.35).

Топографическая поверхность. Топографическую поверхность относят к геометрически неправильным поверхностям, так как она не имеет геометрического закона образования. Для характеристики поверхности определяют положение ее характерных точек относительно плоскости проекций. На рис. 3.3 б а дан пример участка топографической поверхности, на котором показаны проекции ее отдельных точек. Такой план хотя и дает возможность составить представление о форме изображаемой поверхности, однако отличается малой наглядностью. Чтобы придать чертежу большую наглядность и облегчить тем самым его чтение, проекции точек с одинаковыми отметками соединяют плавными кривыми линиями, которые называют горизонталями (изолиниями) (рис. 3.36 б).

Горизонтали топографической поверхности иногда определяют и как линии пересечения этой поверхности с горизонтальными плоскостями, отстоящими друг от друга на одно и то же расстояние (рис. 3.37). Разность отметок у двух смежных горизонталей называют высотой сечения.

Изображение топографической поверхности тем точнее, чем меньше разность отметок у двух смежных горизонталей. На планах горизонтали замыкаются в пределах чертежа или вне его. На более крутых склонах поверхности проекции горизонталей сближаются, на пологих – их проекции расходятся.

Кратчайшее расстояние между проекциями двух смежных горизонталей на плане называют заложением. На рис. 3.38 через точку А топографической поверхности проведено несколько отрезков прямых АВ, АС и АD . Все они имеют разные углы падения. Наибольший угол падения имеет отрезок АС , заложение которого имеет минимальное значение. Поэтому он и будет являться проекцией линии падения поверхности в данном месте.

На рис. 3.39 приводится пример построения проекции линии падения через заданную точку А . Из точки А 100 , как из центра, проводят дугу окружности, касающуюся ближайшей горизонтали в точке В 90 . Точка В 90 , лежащая на горизонтали h 90 , будет принадлежать линии падения. Из точки В 90 проводят дугу, касающуюся следующей горизонтали в точке С 80 , и т. д. Из чертежа видно, что линией падения топографической поверхности является ломаная линия, каждое звено которой перпендикулярно к горизонтали, проходящей через нижний, имеющий меньшую отметку, конец звена.

3.4.2.Пересечение конической поверхности плоскостью

Если секущая плоскость проходит через вершину конической поверхности, то она пересекает ее по прямым линиям-образующим поверхности. Во всех остальных случаях линия сечения будет плоской кривой: окружностью, эллипсом и т.д. Рассмотрим случай пересечения конической поверхности плоскостью.

Пример 1. Построить проекцию линии пересечения кругового конуса Φ(h о , S 5 ) с плоскостью Ω, параллельной образующей конической поверхности.

Коническая поверхность при заданном расположении плоскости пересекается по параболе. Проинтерполировав образующую t строим горизонтали кругового конуса - концентрические окружности с центром S 5 . Затем определяем точки пересечения одноименных горизонталей плоскости и конуса (рис. 3.40).

3.4.3. Пересечение топографической поверхности с плоскостью и прямой линией

Случай пересечения топографической поверхности с плоскостью наиболее часто встречается в решении геологических задач. На рис. 3.41 дан пример построения пересечения топографической поверхности с плоскостью Σ. Искомую кривую m определяют точками пересечения одноименных горизонталей плоскости и топографической поверхности.

На рис. 3.42 дан пример построения истинного вида топографической поверхности с вертикальной плоскостью Σ. Искомую линию m определяют точками А, В, С … пересечения горизонталей топографической поверхности с секущей плоскостью Σ. На плане проекция кривой вырождается в прямую линию, совпадающую с проекцией плоскости: m ≡ Σ. Профиль кривой m построен с учетом расположения на плане проекций ее точек, а также их высотных отметок.

3.4.4. Поверхность равного уклона

Поверхность равного уклона представляет собой линейчатую поверхность, все прямолинейные образующие которой составляют с горизонтальной плоскостью постоянный угол. Получить такую поверхность можно перемещением прямого кругового конуса с осью, перпендикулярной плоскости плана, так, что бы его вершина скользила по некоторой направляющей, а ось в любом положении оставалась вертикальной.

На рис. 3.43 изображена поверхность равного уклона (i=1/2), направляющей которой служит пространственная кривая A, B, C, D.

Градуирования плоскости. В качестве примеров рассмотрим плоскости откосов дорожного полотна.

Пример 1. Продольный уклон дорожного полотна i=0, уклон откоса насыпи i н =1:1,5, (рис. 3.44а). Требуется провести горизонтали через 1м. Решение сводится к следующему. Проводим масштаб уклона плоскости перпендикулярно бровке дорожного полотна, отмечаем точки на расстоянии, равном интервалу 1,5м, взятом с линейного масштаба, и определяем отметки 49, 48 и 47. Через полученные точки проводим горизонтали откоса параллельно бровке дороги.

Пример 2. Продольный уклон дороги i≠0, уклон откоса насыпи i н =1:1,5, (рис.3.44б). Плоскость дорожного полотна градуируется. Откос дорожного полотна градуируется следующим образом. В точке с вершиной 50,00 (или другой точке) помещаем вершину конуса, описываем окружность радиусом, равным интервалу откоса насыпи (в нашем примере l = 1,5м). Отметка этой горизонтали конуса будет на единицу меньше отметки вершины, т.е. 49м. Проводим ряд окружностей, получаем отметки горизонталей 48, 47, касательно к которым из точек бровки с отметками 49, 48, 47 проводим горизонтали откоса насыпи.

Градуирование поверхностей.

Пример 3. Если продольный уклон дороги i=0 и уклон откоса насыпи i н =1:1,5, то горизонтали откосов проводят через точки масштаба уклона, интервал которого равен интервалу откосов насыпи, (рис.3.45а). Расстояние между двумя проекциями смежных горизонталей в направлении общей нормы (масштаб уклона) всюду одинаково.

Пример 4. Если продольный уклон дороги i≠0,а уклон откоса насыпи i н =1:1,5, (рис.3.45б) то горизонтали строят аналогично, за исключением того, что горизонтали откоса проводят не прямыми линиями, а кривыми.

3.4.5. Определение линии пределов земляных работ

Так как большинство грунтов неспособно сохранять вертикальные стенки, приходится строить откосы (искусственные сооружения). Уклон, придаваемый откосом, зависит от грунта.

Чтобы участку поверхности земли придать вид плоскости с определённым уклоном, нужно знать линию пределов земляных и нулевых работ. Эта линия, ограничивающая планируемый участок, представляется линиями пересечения откосов насыпей и выемок с заданной топографической поверхностью.

Так как каждая поверхность (в том числе и плоская) изображается при помощи горизонталей, то линию пересечения поверхностей строят как множество точек пересечения горизонталей с одинаковыми отметками. Рассмотрим примеры.

Пример 1. На рис. 3.46 дано земляное сооружение, имеющее форму усеченной четырехугольной пирамиды, стоящее на плоскости Н . Верхнее основание АВСD пирамиды имеет отметку и размеры сторон 2×2,5 м . Боковые грани (откосы насыпи) имеет уклон 2:1 и 1:1, направление которых показано стрелками.

Нужно построить линию пересечения откосов сооружения с плоскостью Н и между собой, а также построить, продольный профиль по оси симметрии.

Вначале строят диаграмму уклонов, интервалов и масштабов заложений, заданных откосов. Перпендикулярно каждой стороне площадки вычерчиваются масштабы уклонов откосов с заданными интервалами, после чего проекции горизонталей с одинаковыми отметками смежных граней находятся линии пересечения откосов, которые являются проекциями боковых ребер данной пирамиды.

Нижнее основание пирамиды совпадает с нулевыми горизонталями откосов. Если данное земляное сооружение пересечь вертикальной плоскостью Q , в сечении получится ломаная линия – продольный профиль сооружения.

Пример 2 . Построить линию пересечения откосов котлована с плоским косогором и между собой. Дно (АВСD ) котлована представляет собой прямоугольную площадку с отметкой 10м и размерами 3×4м. Ось площадки составляет с линией юг – север угол 5°. Откосы выемок имеют одинаковые уклоны 2:1 (рис. 3.47).

Линия нулевых работ устанавливается по плану местности. Её строят по точкам пересечения между собой одноименных проекций горизонталей рассматриваемых поверхностей. По точкам пересечения горизонталей откосов и топографической поверхности с одинаковыми отметками находят линию пересечения откосов, которые являются проекциями боковых ребер данного котлована.

В данном случае к дну котлована примыкают боковые откосы выемок. Линия abcd – искомая линия пересечения. Aa, Bb, Сс, Dd – ребра котлована, линии пересечения откосов между собой.

4. Вопросы для самоконтроля и задачи для самостоятельной работы по теме «Прямоугольные проекции»

Точка

4.1.1. Сущность метода проекций.

4.1.2. Что такое проекция точки?

4.1.3. Как называются и обозначаются плоскости проекций?

4.1.4. Что такое линии проекционной связи на чертеже и как они располагаются на чертеже по отношению к осям проекций?

4.1.5. Как построить третью (профильную) проекцию точки?

4.1.6. Построить на трехкартинном чертеже три проекции точек А, В, С, записать их координаты и заполнить таблицу.

4.1.7. Построить недостающие оси проекций, х А =25, y A =20. Построить профильную проекцию точки А.

4.1.8. Построить три проекции точек по их координатам: А(25,20,15), В(20,25,0) и С(35,0,10). Указать положение точек по отношению к плоскостям и осям проекций. Какая из точек ближе к плоскости П 3 ?

4.1.9. Материальные точки А и В начинают одновременно падать. В каком положении окажется точка В, когда точка А коснется земли? Определить видимость точек. Построить точки в новом положении.

4.1.10. Построить три проекции точки А, если точка лежит в плоскости П 3 , а расстояние от нее до плоскости П 1 равно 20 мм, до плоскости П 2 – 30 мм. Записать координаты точки.

Прямая

4.2.1. Чем может быть задана прямая линия на чертеже?

4.2.2. Какая прямая называется прямой общего положения?

4.2.3. Какое положение может занимать прямая относительно плоскостей проекций?

4.2.4. В каком случае проекция прямой обращается в точку?

4.2.5. Что характерно для комплексного чертежа прямой уровня?

4.2.6. Определить взаимное положение данных прямых.

a … b a … b a … b

4.2.7. Построить проекции отрезка прямой АВ длиной 20 мм, параллельного плоскостям: а) П 2 ; б) П 1 ; в) оси Ох. Обозначить углы наклона отрезка к плоскостям проекций.

4.2.8. Построить проекции отрезка АВ по координатам его концов: А(30,10,10), В(10,15,30). Построить проекции точки С, делящей отрезок в отношении АС:СВ = 1:2.

4.2.9. Определить и записать количество ребер данного многогранника и положение их относительно плоскостей проекций.

4.2.10. Через точку А провести горизонталь и фронталь, пересекающие прямую m.

4.2.11. Определить расстояние между прямой b и точкой А

4.2.12. Построить проекции отрезка АВ длиной 20 мм, проходящего через точку А и перпендикулярного плоскости а) П 2 ; б) П 1 ; в) П 3 .

Взаимное расположение двух прямых

Следующие утверждения выражают необходимые и достаточные признаки взаимного расположения двух прямых в пространстве, заданных каноническими уравнениями

а ) Прямые скрещиваются, т.е. не лежат на одной плоскости.

б ) Прямые пересекаются.

Но векторы и неколлинеарны (иначе их координаты пропорциональны).

в ) Прямые параллельны.

Векторы и коллинеарны, но вектор им неколлинеарен.

г ) Прямые совпадают.

Все три вектора: , коллинеарны.

Доказательство. Докажем достаточность указанных признаков

а ) Рассмотрим вектор и направляющие векторы данных прямых

то эти векторы некомпланарны, следовательно, данные прямые не лежат на одной плоскости.

б ) Если, то векторы компланарны, следовательно, данные прямые лежат в одной плоскости, а так как в случае (б ) направляющие векторы и этих прямых предполагаются неколлинеарными, то прямые пересекаются.

в ) Если направляющие векторы и данных прямых коллинеарны, то прямые или параллельные, или совпадают. В случае (в ) прямые параллельны, т.к. по условию вектор, начало которого находится в точке первой прямой, а конец – в точке второй прямой не коллинеарен и.

г) Если все векторы и коллинеарны, то прямые совпадают.

Необходимость признаков доказывается методом от противного.

Клетеник № 1007

Следующие утверждения дают необходимые и достаточные условия взаимного расположения прямой, заданной каноническими уравнениями

и плоскости, заданной общим уравнением

относительно общей декартовой системы координат.

Плоскость и прямая пересекаются:

Плоскость и прямая параллельны:

Прямая лежит на плоскости:

Докажем сначала достаточность указанных признаков. Запишем уравнения данной прямой в параметрическом виде:

Подставляя в уравнение (2 (плоскости)) координаты произвольной точки данной прямой, взятые из формул (3), будем иметь:

1. Если, то уравнение (4) имеет относительно t единственное решение:

а значит, данная прямая и данная плоскость имеют только одну общую точку, т.е. пересекаются.

2. Если, то уравнение (4) не удовлетворяется ни при каком значение t , т.е. на данной прямой нет ни одной точки, лежащей на данной плоскости, следовательно, данные прямая и плоскость параллельны.

3. Если, то уравнение (4) удовлетворяется при любом значении t , т.е. все точки данной прямой лежат на данной плоскости, значит, данная прямая лежит на данной плоскости.

Выведенные нами достаточные условия взаимного расположения прямой и плоскости являются и необходимыми и доказываются сразу методом от противного.

Из доказанного следует необходимое и достаточное условие того, что вектор компланарен плоскости, заданной общим уравнением относительно общей декартовой системы координат.

БИЛЕТ 16.

Свойства пирамиды, у которой двугранные углы равны.

А)Если боковые грани пирамиды с её основанием образуют равные двугранные углы, то все высоты боковых граней пирамиды равны (у правильной пирамиды это апофемы), и вершина пирамиды проектируется в центр окружности, вписанной в многоугольник основания.

Б) У пирамиды могут быть равные двугранные углы при основании тогда, когда в многоугольник основания можно вписать окружность.

Призма. Определение. Элементы. Виды призм.

Призма- это многогранник, две грани которого являются равными многоугольниками, находящимися в параллельных плоскостях, а остальные грани - параллелограммами.

Грани, которые находятся в параллельных плоскостях, называются основаниями призмы, а остальные грани - боковыми гранями призмы.

В зависимости от основания призмы бывают:

1) треугольными

2) четырёхугольными

3) шестиугольными

Призма с боковыми рёбрами, перпендикулярными её основаниям, называется прямой призмой.

Прямая призма называется правильной, если её основания - правильные многоугольники.

БИЛЕТ 17.

Свойство диагоналей прямоугольного параллелепипеда.

Все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

В прямоугольном параллелепипеде все диагонали равны.

В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трёх его измерений.

Проведя диагональ основания АС, получим треугольники АС 1 С и АСВ. Оба они прямоугольные: первый потому, что параллелепипед прямой и, следовательно, ребро СС 1 перпендикулярно к основанию; второй потому, что параллелепипед прямоугольный и, значит, в основании его лежит прямоугольник. Из этих треугольников находим:

АС 1 2 = АС 2 + СС 1 2 и АС 2 = АВ 2 + ВС 2

Следовательно, AC 1 2 = АВ 2 + ВС 2 + СС 1 2 = АВ 2 + AD 2 + АА 1 2 .

Случаи взаимного расположения двух плоскостей.

СВОЙСТВО 1 :

Линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.

СВОЙСТВО 2:

Отрезки параллельных прямых, заключённых между двумя параллельными плоскостями, равны по длине.

СВОЙСТВО 3

Через каждую точку пространства, не лежащую в данной плоскости, можно провести плоскость, параллельную этой плоскости, и притом только одну.

БИЛЕТ 18.

Свойство противоположных граней параллелепипеда.

Противоположные грани параллелепипеда параллельны и равны.

Например, плоскости параллелограммов АА 1 В 1 В и DD 1 C 1 C параллельны, так как пересекающиеся прямые АВ и АА 1 плоскости АА 1 В 1 соответственно параллельны двум пересекающимся прямым DC и DD 1 плоскости DD 1 C 1 . Параллелограммы АА 1 В 1 В и DD 1 C 1 C равны (т. е. их можно совместить наложением), так как равны стороны АВ и DС, АА 1 и DD 1 , и равны углы А­ 1 АВ и D 1 DC.

Площади поверхностей призмы, пирамиды, правильной пирамиды.

Правильная пирамида: Sполн.пов. =3SASB+Sосн.