Геометрическая оптика - это раздел оптики, изучающий законы распространения света в прозрачных средах и отражения света от зеркальных или полупрозрачных поверхностей. Основные законы геометрической оптики перечислены ниже:

Закон прямолинейного распространения света.

В оптически однородной среде (в частности, в вакууме) лучи света распространяются прямолинейно. Прямолинейностью распространения света объясняется образование тени, т.е. области, куда не поступает световая энергия. При малых размерах источника (светящаяся точка) получается резко очерченная тень.

При больших размерах источника создаются нерезкие тени.

Дело в том, что от каждой точки источника свет распространяется прямолинейно и предмет, освещенный уже двумя светящимися точками, даст две несовпадающие тени, наложение которых образует тень неравномерной густоты. Полная тень при протяженном источнике образуется лишь в тех участках экрана, куда свет не попадает совсем. По краям полной тени располагается более светлая область. Это полутень.

Закон независимости световых пучков.

Энергия в каждом пучке распространяется независимо от других пучков; освещенность поверхности, на которую падает несколько пучков, равна сумме освещенностей, создаваемых каждым пучком в отдельности.

Закон отражения света.

Луч света в однородной среде прямолинеен до тех пор, пока он не дойдет до границы этой среды с другой средой. На границе двух сред луч меняет свое направление. Часть света (а в ряде случаев и весь свет) возвращается в первую среду. Это явление называется отражением света . Одновременно свет частично проходит во вторую среду, меняя при этом направление своего распространения -преломляется .

Зеркальное и диффузное отражение.

В зависимости от свойств границы раздела между двумя средами отражение может иметь различный характер. Если граница имеет вид поверхности, размеры неровностей которой меньше длины световой волны, то она называется зеркальной . Лучи света, падающие на такую поверхность узким параллельным пучком, идут после отражения также по близким направлениям. Такое направленное отражение называютзеркальным . Если же размеры неровностей больше длины волны света, то узкий пучок рассеивается на границе. После отражения лучи света идут по всевозможным направлениям. Такое отражение называютрассеянным илидиффузным . Именно благодаря диффузному отражению света мы можем видеть предметы, которые сами не излучают свет. В малой степени рассеяние света имеет место при его отражении даже от самой гладкой поверхности, например, от обычного зеркала. Иначе мы не могли бы увидеть поверхность зеркала.

Закон отражения света.

Закон отражения света определяет взаимное расположение падающего луча, отраженного луча и перпендикуляра к поверхности, восстановленного в точке падения.

Этот закон справедлив для волн любой природы и формулируется так: падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости; угол отражения  равен углу падения Очевидно, что этот закон будет выполняться и в том случае, если свет будет распространяться в обратном направлении.Обратимость хода световых лучей является их важным свойством.

Изображение в плоском зеркале.

Пусть светящаяся точка находится перед плоской отражающей свет поверхностью, т.е. плоским зеркалом. Поставим вопрос: где мы увидим изображение этой точки, если посмотрим в зеркало? Для ответа на этот вопрос рассмотрим несколько лучей,выходящих из точки S и

Человеку кажется, что лучи выходят из точки S1, которую можно найти, продолжив лучи в противоположную сторону до пересечения. Точка S1 поэтому будет являться изображением точки S в плоском зеркале. Это изображение называется мнимым , так как в точке S1 пересекаются не сами отраженные лучи, а их продолжения. Световая энергия в эту точку не поступает. Рассмотрим любые два луча расходящегося пучка, например крайние лучи пучка, попадающего в глаз, - лучи AB и CD. В треугольниках SAC и S1AC сторона AC общая. Используя закон отражения, можно доказать, что углы в треугольниках, прилегающие к этой стороне, соответственно конгруэнтны. Следовательно, треугольники конгруэнтны и совместятся друг с другом, если перегнуть рисунок по линии зеркала. Это означает, что точка S1расположена симметрично точке S относительно зеркала. Поэтому для нахождения изображения точки достаточно опустить из нее на зеркало или на его продолжение перпендикуляр и продолжить его на такое же расстояние за зеркало.

Закон преломления света.

На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т.е. происходит отражение света . Если вторая среда прозрачна, то часть света при определенных условиях может пройти через границу сред, также меняя при этом, как правило, направление своего распространения. Это явление называетсяпреломлением света . Вследствие преломления наблюдается кажущееся изменение размеров, формы и расположения предметов. В этом нас могут убедить простые наблюдения. Установим наклонно карандаш в стакане с водой. Часть карандаша, находящаяся в воде, кажется сдвинутой в сторону и увеличенной в диаметре.

Подобные явления объясняются изменением напрвления лучей на границе двух сред. Луч, распространяющийся в первой среде и достигающий границы, называетсяпадающим лучом . Он составляет с перпендикуляром к границе, проведенным через точку падения, угол, называемыйуглом падения . Луч, прошедший во вторую среду, называютпреломленным лучом . Угол, который этот луч образует с тем же перпендикуляром, называютуглом преломления .

Закон преломления, установленный экспериментально в XVII веке, формулируется следующим образом: Падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.

Sin a / sin b = n

Показатель преломления.

Постоянная величина, входящая в закон преломления света, называетсяотносительным показателем преломления илипоказателем преломления одной среды относительно первой. Показатель преломления среды относительно вакуума называютабсолютным показателем преломления этой среды. Он равен отношению синусаугла падения к синусуугла преломления при переходе светового луча из вакуума в данную среду. Относительный показатель преломления n связан с абсолютными показателями n2и n1первой среды соотношением:

Поэтому закон преломления может быть записан следующим образом:

Sina/sinb=n2 /n1 Среду с меньшим абсолютным показателем преломления принято называтьоптически менее плотной средой Абсолютный показатель преломления среды имеет глубокий физический смысл. Он связан со скоростью распространения света в данной среде и зависит от физического состояния среды, в которой распространяется свет, т.е. от температуры, плотности вещества, наличия в нем упругих натяжений. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого меньше, чем для фиолетового.

Полное внутреннее отражение.

Если n - показатель преломления стекла относительно воздуха (n>1), то показатель преломления воздуха относительно стекла будет равен 1/n. В данном случае стекло является первой средой, а воздух - второй. Закон преломления запишется так:

sin / sin= 1/nПри этомугол преломления большеугла падения , т.к. sin= n*sin, а n>1; следовательно, sin> sinи следовательно, угол преломления больше угла падения (>). Значит, переходя воптически менее плотную среду, луч отклоняется в сторону от перпендикуляра к границе двух сред. Наибольшему возможному углу преломления= 90 соответствует угол падения0. При угле падения>0преломленный пучок исчезнет, и весь свет отражается от границы раздела, т.е. происходитполное отражение света .

Электромагнитная природа света. Скорость света. Геометрическая оптика

Видимый свет – электромагнитные волны в диапазоне от 3,8*10 -7 м до 7,6*10 -7 м. Скорость света с = 3*10 8 м/с. Принцип Гюйгенса. Волновой фронт - поверхность, соединяющая все точки волны, находящиеся в одной фазе (т.е. все точки волны, которые в одно и то же время находятся в одинаковом состоянии колебаний). Каждая точка, до которой дошло возмущение, сама становится источником вторичных сферических волн. Волновая поверхность – огибающая вторичных волн. У сферической волны волновой фронт представляет собой сферу, радиус которой R = vt , где v - скорость волны.

Геометрическая оптика - раздел оптики, изучающий законы распространения света в прозрачных средах и отражения света от зеркальных или полупрозрачных поверхностей.

Законы отражения света. 1.Падающий луч, отраженный луч и перпендикуляр, восстановленн ый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.

Угол отражения равен углу падения.

ПРЕЛОМЛЕНИЕ СВЕТА - изменение направления распространения световой волны (светового луча) при прохождении через границу раздела двух различных прозрачных сред. 1. Падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. 2.Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред: ,где α - угол падения, β - угол преломления, n - постоянная величина, не зависящая от угла падения.

– относительный показатель преломления света во второй среде относительно первой. Показывает, во сколько раз скорость распространения света в первой среде отличается от скорости света во второй

n - физическая величина, равная отношению скорости света в вакууме к скорости света в данной среде:


Абсолютный показатель преломления среды показывает, во сколько раз скорость распространения света в данной среде меньше, чем скорость света в вакууме. Полное внутреннее отражение наблюдается при переходе луча из оптически более плотной среды в оптически менее плотную (из воды в воздух). α0–предельный угол полного отражения, угол падения при котором угол преломления равен 90 0 . Полное внутреннее отражение используется в световодах.

Впервые закон отражения упоминается в «Катоптрике» Евклида , датируемой примерно 300 до н. э.

Законы отражения. Формулы Френеля

Закон отражения света - устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики . Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света , он ничего не утверждает об интенсивности отражённого света.

Механизм отражения

При попадании электромагнитной волны на проводящую поверхность возникает ток, электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

Виды отражения

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля . Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

(n2 - n1)²/(n2 + n1)²

В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд " 1,0; nст = 1,5) он составляет " 4 %.

Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 < n1 - остаётся неизменной. Сдвиг фазы при О. с. в случае j ¹ 0 может быть различен для р- и s-составляющих падающего света в зависимости от того, больше или меньше j угла Брюстера, а также от соотношения n2 и n1. О. с. от поверхности оптически менее плотной среды (n2 < n1) при sin j ³ n2 / n1 является полным внутренним отражением, при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное О. с. от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2 становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света.

Поглощение в отражающей среде приводит к отсутствию угла Брюстера и более высоким (в сравнении с диэлектриками) значениям коэффициента отражения - даже при нормальном падении он может превышать 90% (именно этим объясняется широкое применение гладких металлических и металлизированных поверхностей в зеркалах).Отличаются и поляризационные характеристики отражённых от поглощающей среды световых волн (вследствие иных сдвигов фаз р- и s-составляющих падающих волн). Характер поляризации отражённого света настолько чувствителен к параметрам отражающей среды, что на этом явлении основаны многочисленные оптические методы исследования металлов (см. Магнитооптика, Металлооптика).

Диффузное О. с. - его рассеивание неровной поверхностью 2-й среды по всем возможным направлениям. Пространственное распределение отражённого потока излучения и его интенсивность различны в разных конкретных случаях и определяются соотношением между l и размерами неровностей, распределением неровностей по поверхности, условиями освещения, свойствами отражающей среды. Предельный, строго не выполняющийся в природе случай пространственного распределения диффузно отражённого света описывается Ламберта законом. Диффузное О. с. наблюдается также от сред, внутренняя структура которых неоднородна, что приводит к рассеянию света в объёме среды и возвращению части его в 1-ю среду. Закономерности диффузного О. с. от таких сред определяются характером процессов однократного и многократного рассеяния света в них. И поглощение, и рассеяние света могут обнаруживать сильную зависимость от l. Результатом этого является изменение спектрального состава диффузно отражённого света, что (при освещении белым светом)визуально воспринимается как окраска тел.

Полное внутреннее отражение

При увеличении угла падения i , угол преломления тоже увеличивается, при этом интенсивность отраженного луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При каком-то значении i = i k угол r = π / 2 , интенсивность преломленного луча станет равной нулю, весь свет отразится. При дальнейшем увеличении угла i > i k преломленного луча не будет, происходит полное отражение света.

Значение критического угла падения, при котором начинается полное отражение найдем, положим в законе преломления r = π / 2 , тогда sinr = 1 , значит:

sini k = n 2 / n 1

Диффузное рассеяние света

θ i = θ r .
Угол падения равен углу отражения

Принцип действия уголкового отражателя


Wikimedia Foundation . 2010 .

Смотреть что такое "Закон отражения света" в других словарях:

    закон отражения света - šviesos atspindžio dėsnis statusas T sritis fizika atitikmenys: angl. light reflexion law vok. Reflexionsgesetz des Lichtes, n rus. закон отражения света, m pranc. loi de réflexion de la lumière, f … Fizikos terminų žodynas

    ЗАКОНЫ ОТРАЖЕНИЯ СВЕТА - два закона, по которым происходит процесс частичного или полного возвращения световых лучей, достигающих границы раздела двух сред, в ту среду, из которой падающие лучи подходят к этой границе. Первый закон: падающий луч, отражённый луч и… … Большая политехническая энциклопедия

    закон Снеллиуса - закон синусов Закон, определяющий соотношение углов падения, отражения и преломления волн на границе раздела сред в зависимости от фазовых скоростей волн в этих средах. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего… … Справочник технического переводчика

    Механика сплошных сред … Википедия

    Иллюстрация поляризации отражённого света, падающего на границу раздела сред под углом Брюстера Закон Брюстера закон оптики, выражающий связь показателя преломления диэлектрика с таким углом п … Википедия

    Отражение Отражение моста в Центральном канале, г. Индианаполис Отражение в трёх сферах Отражение физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными оптическими … Википедия

    Изменение направления распространения оптического излучения (с в е т а) при его прохождении через границу раздела двух сред. На протяжённой плоской границе раздела однородных изотропных прозрачных (непоглощающих) сред с преломления показателями… … Физическая энциклопедия

    1. Характерные свойства луча света. 2. Свет не есть движение упругого твердого тела механики. 3. Электромагнитные явления как механические процессы в эфире. 4. Первая Максвеллова теория света и электричества. 5. Вторая Максвеллова теория. 6.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Свет является важной составляющей нашей жизни. Без него невозможна жизнь на нашей планете. При этом многие явления, которые связаны со светом, сегодня активно используются в разнообразных сферах человеческой деятельности, начиная от производства электротехнических приборов до космических аппаратов. Одним из основополагающих явлений в физике является отражение света.

Отражение света

Закон отражения света изучается еще в школе. Что следует знать о нем, а также много еще полезной информации сможет рассказать вам наша статья.

Основы знаний о свете

Как правило, физические аксиомы являются одними из наиболее понятных, поскольку они имеют наглядное проявление, которые можно легко пронаблюдать в домашних условиях. Закон отражения света подразумевает ситуацию, когда у световых лучей происходит смена направления при столкновении с различными поверхностями.

Обратите внимание! Граница преломления значительно увеличивает такой параметр, как длина волны.

В ходе преломления лучей часть их энергии возвратятся обратно в первичную среду. При проникновении части лучей в иную среду наблюдается их преломление.
Чтобы разбираться во всех этих физических явлениях, необходимо знать соответствующую терминологию:

  • поток световой энергии в физике определяется как падающий при попадании на границу раздела двух веществ;
  • часть энергии света, которая в данной ситуации возвращается в первичную среду, называется отраженной;

Обратите внимание! Существует несколько формулировок правила отражения. Как вы его не сформулируйте, но он все равно будет описывать взаимное расположение отраженных и падающих лучей.

  • угол падения. Здесь подразумевается угол, который формируется между перпендикулярной линией границы сред и падающим на нее светом. Он определяется в точке падения луча;

Углы луча

  • угол отражения. Он формируется между отраженным лучом и перпендикулярной линией, которая была восстановлена в точке его падения.

Кроме этого необходимо знать, что свет может распространяться в однородной среде исключительно прямолинейно.

Обратите внимание! Различные среды могут по-разному отражать и поглощать излучение света.

Отсюда выходит коэффициент отражения. Это величина, которая характеризует отражательную способность предметов и веществ. Он означает, сколько излучения принесенного световым потоком на поверхность среды составит та энергия, которая будет отражена от нее. Данный коэффициент зависит от целого ряда факторов, среди которых наибольшее значение имеют состав излучения и угол падения.
Полное отражение светового потока наблюдается тогда, когда луч падает на вещества и предметы, обладающие отражающей поверхностью. К примеру, отражение луча можно наблюдать при попадании его на стекло, жидкую ртуть или серебро.

Небольшой исторический экскурс

Законы преломления и отражения света были сформированы и систематизированы еще в ІІІ в. до н. э. Их разработал Евклид.

Все законы (преломления и отражения), которые касаются данного физического явления, были установлены экспериментальным путем и легко могут подтвердиться геометрическим принципом Гюйгенса. По этому принципу любая точка среды, до которой может дойти возмущение, выступает в роли источника вторичных волн.
Рассмотрим существующие на сегодняшний день законы более детально.

Законы – основа всего

Закон отражения светового потока определяется как физическое явление, в ходе которого свет, направляющийся из одной среды в другую, на их разделе будет частично возвращен обратно.

Отражение света на границе раздела

Зрительный анализатор человека наблюдает свет в момент, когда луч, идущий от своего источника, попадает в глазное яблоко. В ситуации, когда тело не выступает в роли источника, зрительный анализатор может воспринимать лучи от иного источника, которые отражаются от тела. При этом световое излучение, падающее на поверхность объекта, может изменить направление своего дальнейшего распространения. В результате этого тело, которое отражает свет, будет выступать в роли его источника. При отражении часть потока будет возвращаться в первую среду, из которой он первоначально направлялся. Здесь тело, которое отразит его, станет источником уже отраженного потока.
Существует несколько законов для данного физического явления:

  • первый закон гласит: отражающий и падающий луч, вместе с перпендикулярной линией, возникающей на границе раздела сред, а также в восстановленной точке падения светового потока, должны располагаться в одной плоскости;

Обратите внимание! Здесь подразумевается, что на отражательную поверхность предмета или вещества падает плоская волна. Ее волновые поверхности являются полосками.

Первый и второй закон

  • второй закон. Его формулировка имеет следующий вид: угол отражения светового потока будет равен углу падения. Это связано с тем, что они обладают взаимно перпендикулярными сторонами. Беря во внимание принципы равенства треугольников, становится понятным, откуда берется это равенство. Используя данные принципы можно легко доказать то, что эти углы находятся в одной плоскости с проведенной перпендикулярной линией, которая была восстановлена на границе разделения двух веществ в точке падения светового луча.

Эти два закона в оптической физике являются основными. При этом они справедливы и для луча, имеющего обратный ход. В результате обратимости энергии луча, поток, распространяющийся по пути ранее отраженного, будет отражаться аналогично пути падающего.

Закон отражения на практике

Проверить исполнение данного закона можно на практике. Для этого необходимо направить тонкий луч на любую отражающую поверхность. В этих целях отлично подойдет лазерная указка и обычное зеркало.

Действие закона на практике

Направляем лазерную указку на зеркало. В результате этого лазерный луч отразится от зеркала и распространится дальше в заданном направлении. При этом углы падающего и отраженного луча будут равны даже при обычном взгляде на них.

Обратите внимание! Свет от таких поверхностей будет отражаться под тупым углом и дальше распространяться по низкой траектории, которая расположена достаточно близко к поверхности. А вот луч, который будет падать практически отвесно, отразится под острым углом. При этом его дальнейший путь будет практически аналогичным падающему.

Как видим, ключевым моментом данного правила является тот факт, что углы необходимо отчитывать от перпендикуляра к поверхности в месте падения светового потока.

Обратите внимание! Этому закону подчиняется не только свет, но и любые виды электромагнитных волн (СВЧ, радио-, рентгеновские волны и т.п).

Особенности диффузного отражения

Многие предметы могут только отражать падающее на их поверхность световое излучение. Отлично освещенные объекты хорошо видны с разных сторон, так как их поверхность отражает и рассеивает свет в разных направлениях.

Диффузное отражение

Такое явление называется рассеянным (диффузным) отражением. Это явление образуется при попадании излучения на различные шероховатые поверхности. Благодаря ему мы имеем возможность различать объекты, которые не имеют способности испускать свет. Если рассеивание светового излучения будет равно нулю, то мы не сможем увидеть эти предметы.

Обратите внимание! Диффузное отражение не вызывает у человека дискомфорта.

Отсутствие дискомфорта объясняется тем, что не весь свет, согласно вышеописанному правилу, возвращается в первичную среду. Причем этот параметр у разных поверхностей будет различным:

  • у снега – отражается примерно 85% излучения;
  • у белой бумаги — 75%;
  • у черного цвета и велюра - 0,5%.

Если же отражение идет от шероховатых поверхностей, то свет будет направляться по отношению друг к другу хаотично.

Особенности зеркального отображения

Зеркальное отражение светового излучения отличается от ранее описанных ситуаций. Это связано с тем, что в результате падения потока на гладкую поверхность при определенном угле они будут отражаться в одном направлении.

Зеркальное отражение

Это явление можно легко воспроизвести, используя обычное зеркало. При направлении зеркала на солнечные лучи, оно будет выступать в роли отличной отражающей поверхности.

Обратите внимание! К зеркальным поверхностям можно отнести целый ряд тел. К примеру, в эту группу всходят все гладкие оптические объекты. Но такой параметр, как размеры неровностей и неоднородностей у этих объектов будут составлять менее 1 мкм. Величина длины волны света составляет примерно 1 мкм.

Все такие зеркальные отражающие поверхности подчиняются ранее описанным законам.

Использование закона в технике

На сегодняшний день в технике достаточно часто применяются зеркала или зеркальные объекты, имеющие изогнутую отражающую поверхность. Это так называемые сферические зеркала.
Подобные объекты представляют собой тела, которые имеют форму сферического сегмента. Для таких поверхностей характерно нарушение параллельности лучей.
На данный момент существуют два типа сферических зеркал:

  • вогнутые. Они способны отражать световое излучение от внутренней поверхности своего сегмента сферы. При отражении лучи собираются здесь в одной точке. Поэтому их часто еще называют «собирающими»;

Вогнутое зеркало

  • выпуклые. Для таких зеркал характерно отражение излучения от наружной поверхности. В ходе этого происходит рассеивание в стороны. По этой причине такие объекты получили название «рассеивающие».

Выпуклое зеркало

При этом существует несколько вариантов поведения лучей:

  • паление почти параллельно поверхности. В данной ситуации он лишь немного касается поверхности, а отражается под очень тупым углом. Далее он идет по достаточно низкой траектории;
  • при ответном падении, лучи отбиваются под острым углом. При этом, как мы говорили выше, отраженный луч будет следовать по пути очень близкому падающему.

Как видим, закон исполняется во всех случаях.

Заключение

Законы отражения светового излучения очень важны для нас, поскольку они являются основополагающими физическими явлениями. Они нашли обширное применение в различных сферах человеческой деятельности. Изучение основ оптики происходит еще в средней школе, что лишний раз доказывает важность таких базовых знаний.


Как самому сделать ангельские глазки для ваза?

Свет распространяется прямолинейно только в однородной среде. Если свет подходит к границе раздела двух сред, он изменяет направление распространения.

Кроме того, часть света возвращается в первую среду. Это явление называется отражением света . Луч света, идущий к границе раздела сред в первой среде (рис. 16.5), называется падающим (а) . Луч. остающийся в первой среде после взаимодействия на границе раздела сред, называется отраженным (b) .  

Угол \(\alpha\) между падающим лучом и перпендикуляром, восставленным к отражающей поверхности в точке падения луча, называется углом падения .

Угол \(\gamma\) между отраженным лучом и тем же перпендикуляром называется углом отражения .

Еще в III в. до н.э. древнегреческим ученым Евклидом опытным путем были открыты законы отражения. В современных условиях проверку этого закона можно провести с помощью оптической шайбы (рис. 16.6), состоящей из диска, по окружности которого нанесены деления, и из источника света, который можно перемещать по краю диска. В центре диска закрепляют отражающую поверхность (плоское зеркало). Направляя свет на отражающую поверхность, измеряют углы падения и углы отражения.

Законы отражения:

1.Лучи падающий, отраженный и перпендикуляр, восставленный к границе двух сред в точке падения луча, лежат в одной плоскости.

2.Угол отражения равен углу падения:

\(~\alpha=\gamma\)

Законы отражения можно вывести теоретически, пользуясь принципом Ферма.

Пусть на зеркальную поверхность падает свет из точки А. В точке А 1 собираются лучи, отраженные от зеркала (рис. 16.7). Предположим, что свет может распространяться двумя путями, отражаясь от точек О и О". Время, которое потребуется свету, чтобы пройти путь АОА 1 , можно найти по формуле \(t=\frac{AO}{\upsilon}+\frac{AO_1}{\upsilon}\), где \(~\upsilon\) - скорость распространения света.

Кратчайшее расстояние от точки А до зеркальной поверхности обозначим через l, а от точки А 1 - через i 1 .

Из рисунка 16.7 найдем

\(AO=\sqrt{l^2+x^2}\); \(OA_1=\sqrt{(L-x)^2+l_1^2}\).

\(t=\frac{\sqrt{l^2+x^2}+\sqrt{(L-x)^2+l_1^2}}{\upsilon}\)

Найдем производную

\(t"_x=\frac{1}{\upsilon}\Bigr(\frac{2x}{2\sqrt{l^2+x^2}}+\frac{2(L-x)(-1)}{2\sqrt{(L-x)^2+l_1^2}}\Bigl)=\frac{1}{\upsilon}\Bigr(\frac{x}{\sqrt{l^2+x^2}}-\frac{L-x}{\sqrt{(L-x)^2+l_1^2}}\Bigl) =\frac{1}{\upsilon}\Bigr(\frac{x}{AO}-\frac{L-x}{OA_1}\Bigl) \).

Из рисунка видим, что \(\frac{x}{AO}=\sin \alpha\); \(\frac{L-x}{OA_1}=\sin \gamma\).

Следовательно, \(t"_x=\frac{1}{\upsilon}(\sin \alpha-\sin \gamma)\).

Для того чтобы время t было минимально, производная должна быть равна нулю. Таким образом, \(\frac{1}{\upsilon}(\sin \alpha-\sin \gamma)=0\). Отсюда \(~\sin \alpha = \sin \gamma\), а так как углы \(~\alpha\) и \(~\gamma\) - острые, то отсюда следует равенство углов\[~\gamma=\alpha\].

Мы получили соотношение, выражающее второй закон отражения. Из принципа Ферма вытекает и первый закон отражения: отраженный луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, так как если бы эти лучи лежали в разных плоскостях, то путь AOA 1 не был бы минимальным.

Падающий и отраженный лучи обратимы, т.е. если падающий луч направить по пути отраженного луча, то отраженный луч пойдет по пути падающего - закон обратимости световых лучей.

В зависимости от свойств границы раздела сред отражение света может быть зеркальным и диффузным (рассеянным).

Зеркальным называется отражение, при котором падающий на плоскую поверхность (рис. 16.8) параллельный пучок лучей после отражения остается параллельным.

Шероховатая поверхность отражает параллельный падающий на нее пучок света по всевозможным направлениям (рис. 16.9). Такое отражение света называют диффузным .

Соответственно различают зеркальные и матовые поверхности.

Следует отметить, что это относительные понятия. Поверхностей, отражающих только зеркально, не существует. В большинстве случаев имеется лишь максимум отражения в направлении угла зеркального отражения. Этим объясняется то, что мы видим зеркало и другие зеркально отражающие поверхности со всех сторон, а не только в одном направлении, в котором они отражают свет.

Одна и та же поверхность может быть зеркальной и матовой в зависимости от длины волны падающего света.

Если граница имеет вид поверхности, размеры d неровностей которой меньше длины волны света \(\lambda\), то отражение будет зеркальным (поверхность капли ртути, отполированная металлическая поверхность и т.д.), если \(d \gg \lambda\), отражение будет диффузным. Чем лучше обработана поверхность, тем большая доля падающего света отражается в направлении угла зеркального отражения, а меньшая - рассеивается.

Рассеянный свет возникает вследствие мелких дефектов полировки, царапин, мельчайших пылинок, имеющих величину порядка нескольких микронов.

Поверхность, которая равномерно рассеивает падающий свет во все стороны, называют абсолютно матовой . Абсолютно матовых поверхностей также не существует. К абсолютно матовым поверхностям близки поверхности неглазурованного фарфора, чертежной бумаги, снега.

Даже для одного и того же излучения матовая поверхность может стать зеркальной, если увеличить угол падения. Диффузно отражающие поверхности могут отличаться и по величине коэффициента отражения \(\rho=\frac{W_{OTP}}{W} \), показывающего, какую часть энергии W падающего на поверхность светового пучка составляет энергия W отр отраженного светового пучка.

Белая бумага для рисования имеет коэффициент отражения, равный 0,7-0,8. Очень высокий коэффициент отражения для поверхностей, покрытых окисью магния, - 0,95 и очень малый для черного бархата - 0,01-0,002.

Заметим, что зависимость отражения и поглощения от частоты колебаний чаще всего имеет избирательный характер.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 457-460.