После тепловой обработки окраски пищевых продуктов может сохраняться или изменяться, причем чаще всего эти изменения нежелательны. Технология обработки продуктов предусматривает сохранение нативного цвета их или придание желаемого оттенка различными способами.

Примером образования желательной окраски кулинарной продукции может быть серо-коричневый цвет мяса, который оно приобретает при тепловой обработке.

Для колбасных изделий желательна розоватая окраска. Она получается вследствие того, что при предварительном посоле мяса добавляют нитраты и нитриты натрия (или калия), которые, вступая в связь с пигментами мяса, образуют нитрозомиоглобин, сообщающий колбасам стойкий розовато-красный цвет.

Розоватая окраска или отдельные красноватые пятна в готовом кулинарном изделии снижают его органолептическую оценку.

При анализе причин появления аномальной окраски в изделиях из мяса сначала надо исключить нарушение режима термической обработки изделия. Если же термическая обработка проведена тщательно, то аномальная окраска, не соответствующая традиционной, может быть вызвана двумя причинами: сомнительной свежестью мяса или бульона.

В мясе сомнительной свежести (особенно при хранении его упакованным с ограниченным доступом воздуха) накапливаются первичные, вторичные, третичные амины и аммиак. Эти соединения ведут себя подобно нитратам и нитритам при посоле мясопродуктов, так как при тепловой обработке образуют устойчивые розовато-красные гемохромогены.

Вторая причина аномальной окраски – несвежесть бульона, в котором разогревают доброкачественные мясопродукты. Известно, что при хранении бульонов рН среды изменяется в кислую (прокисание) или щелочную (действие гнилостной микрофлоры) сторону. В щелочной среде гем денатурированного миоглобина имеет красную окраску (это легко проверить, сварив кусочек мяса с добавлением питьевой соды).

Подробнее о способах обработки продуктов для сохранения или изменения цвета в желаемом направлении см. в разделах по обработке каждой группы сырья.

Следовательно, появление аномальной окраски как при накоплении аминов и аммиака, так и при изменении среды в щелочную сторону является своего рода «индикатором неблагополучия» и требует устранения вызвавших это причин.

Для придания продуктам желаемого оттенка часто используют кислоты. Например, при припускании филе кур добавляют лимонный сок или лимонную кислоту, которые осветляют изделие и придают ему кремовый оттенок. С этой же целью мозги варят в подкисленной уксусом воде.

Кислая среда улучшает и делает более интенсивным цвет антоцианов (обусловливающих окраску вишен, слив, малины и др.) и пигментов свеклы. В то же время хлорофилл зеленых овощей в кислой среде становится бурым, что нежелательно.

Металл, из которого изготовлена посуда, влияет на окраску готового продукта. Например, в алюминиевой посуде не следует обрабатывать зеленые овощи и свеклу, предпочтительнее использовать емкости из нержавеющей стали.

Изменение окраски может быть обусловлено гидролитическим расщеплением соединений и освобождением красящих веществ (например, флавонов при варке лука, картофеля, белокочанной капусты).

Большое значение для изменения окраски имеет контакт с кислородом воздуха очищенных от кожицы продуктов, содержащих полифенольные соединения (картофель, грибы, яблоки). В этом случае происходит ферментативное потемнение продукта.

1

Устойчивость окраски материалов для одежды является важным показателем сохранности эстетических свойств одежды. Существующие методы оценки устойчивости окраски материалов для одежды к различным воздействиям не позволяют дать количественную оценку и степень значимости изменения цвета материалов с точки зрения восприятия человека. В работе предложен метод оценки изменения цвета материалов для одежды, основанный на обработке сканированных фотоизображенийобразцов до и после воздействий. На основе полученных характеристик Lab цветового пространства CIE Lab рассчитывается показатель цветового различия ΔE. Проведенная оценка изменения цвета кожевой ткани овчинного полуфабриката показала, что предлагаемый метод позволяет количественно оценить изменения цветовых характеристик, является чувствительной и более точной оценкой, дает возможность оценить значимые для восприятия человеком изменения цвета. Выявлено, что различные воздействия (химчистка, светопогода, сухое и мокрое трение) приводят к различным изменениям цветовых характеристик (светлоты, насыщенности, тона), что оценивается величиной и знаком данных характеристик.

воздействия

овчинный полуфабрикат

светлота

насыщенность

цветовое различие

устойчивость

1. Барашкова Н.Н., Шаломин О.А., Гусев Б.Н., Матрохин А.Ю. Способ компьютерного определения изменения окраски текстильных полотен при оценке ее устойчивости к физико-химическим воздействиям:Патент России №2439560.2012.

2. Борисова Е.Н., Койтова Ж.Ю., Шапочка Н.Н. Оценка устойчивости окраски овчин при различных видах воздействия//Вестник Костромского государственного технологического университета. - 2012. - № 1. - С. 43-45.

3. Борисова Е.Н., Койтова Ж.Ю., Шапочка Н.Н. Влияние химчистки на потребительские свойства изделий из овчины//Вестник Костромского государственного технологического университета. - 2011. - № 2. - С. 37-38.

4. ГОСТ 9733.0-83. Материалы текстильные. Общие требования к методам испытаний устойчивости окрасок к физико-химическим воздействиям. - Введ. 01.01.1986//Изд-во стандартов. - М., 1992. - С. 10.

5. ГОСТ Р 53015-2008. Шкурки меховые и овчины выделанные крашеные. Метод определения устойчивости окраски к трению. – Введ. 27.11.2008//Изд-во стандартов. – М., 2009. – С. 7.

6. ГОСТ Р ИСО 105-J03-99. Материалы текстильные. Определение устойчивости окраски. Часть J03. Метод расчета цветовых различий. – Введ. 29.12.1999// Изд-во стандартов. – М., 2000. – С. 11.

7. Долгова Е.Ю., Койтова Ж.Ю., Борисова Е.Н. Разработка инструментального метода оценки устойчивости окраски одежных материалов//Известия вузов. Технология текстильной промышленности.- 2008. - № 6С. - С. 15-17.

8. Домасев М.В. Цвет, управление цветом, цветовые расчеты и измерения /М.В. Домасев, С.П. Гнатюк. - СПб.: Питер,2009. - С.224.

Устойчивость окраски материалов для одежды в процессе эксплуатации во многом определяет их качество, так как неизменность первоначальных цветовых характеристик обеспечивает сохранность эстетических показателей одежды, что входит в ряд основных потребительских предпочтений.

Устойчивость окраски материалов для одежды к различным видам воздействия определяется в соответствии со стандартами .Также разработаны новые способы и предложены новые показатели для оценки цветовых характеристик . Однако данные методы не позволяют оценить, насколько значимы изменения цвета при эксплуатационных воздействиях с точки зрения восприятия человека, т.к. отсутствует количественная оценка цветовых изменений, соответствующая особенностям восприятия цвета глазом человека.

Для количественной оценки изменения цвета предложено использовать метод расчета цветовых различий . Для получения цветовых характеристик испытуемых образцов используется их сканированное фотоизображение с последующей обработкой в графическом редакторе AdobePhotoshop (рис.1), в котором возможно получить цветовые характеристики Lab.

Рисунок 1 - Окно программыAdobePhotoshop с фотоизображением образцов до и после воздействия

Для оценки изменения окраски используется характеристика ΔE - цветовое различие -которая определяется как разница между двумя цветами в одном из равноконтрастных цветовых пространствах. Данная характеристика учитывает разницу цветовых координат L, a и b цветового пространства CIE Lab и разницу между координатами цветности H° и насыщенности C цветового пространства CIE LCH. Характеристика Lab является аппаратнонезависимой и соответствует особенностям восприятия цвета глазом человека, давая более точную оценку изменения цвета материала.

Расчет цветового различия ΔE выполняется по формуле (1):

∆Е = [()2 + ()2 + ()2]1/2 , (1)

где ∆L, ∆C, ∆Н - различие между образцом до и после воздействия по светлоте, насыщенности и цветовому тону соответственно, вычисленные по формулам (2), (4,5) и (6,7);

KL, KC, KH - взвешивающие коэффициенты, которые по умолчанию приравниваются к единице;

SL, SC, SH - длины полуосей эллипсоида, именуемые весовыми функциями, позволяющими регулировать их соответствующие составляющие, следуя местоположению образца цвета в цветовом пространстве Lab, определяемые по формулам (7,8), (9,10) и (11-13) соответственно.

Определение изменений светлоты (2)

∆L = L1 - L2, (2)

где L1 - светлота цвета образца до испытания;

L2 - светлота цвета образца после испытания.

Определение насыщенности цвета образца (3):

С = 1/2, (3)

где а - соотношение красного и зеленого цветов в данном цвете;

b - соотношение синего и желтого.

Определение изменений насыщенности (4)

∆C = C1 - C2, (4)

где C1 - насыщенность цвета образца до испытания;

C2 - насыщенность цвета образца после испытания.

Определение цветового тона (5):

H = arctg,(5)

Определение изменения цветового тона (6)

∆Н = 2sin , (6)

где H1 - цветовой тон образца до испытания;

H2 - цветовой тон образца после испытания (5).

Определение среднего значения светлоты образцов до и после испытания (7,8):

= (L1+ L2)/2 (7)

где К2 = 0,014 - весовой коэффициент.

Определение среднего значения насыщенности образцов до и после испытания (9,10):

С12 = (C1 + C2)/2 (9)

SC= 1 +K1C12, (10)

где К1 = 0,048 - весовой коэффициент.

Определение среднего значения цветового тона образцов до и после испытания (11-13):

Т= 1-0,17cos(Н12 - 30°)+0,24cos(2H12)+0,32cos(2H12 + 6°)-0,2cos(4H12 - 64°)(12)

SH= 1 + К2C12Т(13)

При расчете H12 следует принять во внимание, что если цветности образцов попадают в разные квадранты, то из значения цветности, которое является наибольшим, необходимо вычесть 360° и затем определить среднее.

По величине цветового различия можно судить о степени изменения окраски материалов после различных воздействий. Величина ΔE < 2 соответствует минимально различимому на глаз порогу цветоразличия, величина в пределах ΔE = 2—6 приемлемо различимая разница в цвете. Величина ΔE > 6 будет соответствовать заметной разнице между двумя цветами. По знаку изменения светлоты, насыщенности и цветового тона можно судить о степени изменения данных характеристик материала.

Выпускаемые в настоящее время изделия из овчинного полуфабриката отличаются большим цветовым разнообразием, видами отделки кожевой ткани и волосяного покрова. В процессе носки и ухода изделия испытывают сложный комплекс различных воздействий, которые приводят к ухудшению внешнего вида изделия. Поэтому для апробации предложенного метода выполнена оценка изменения цвета овчинного полуфабриката с различными цветовыми характеристиками кожевой ткани и при различных видах воздействия (химчистка, светопогода, сухое и мокрое трение) (табл.1).

Таблица 1 - Оценка устойчивости окраски кожевой ткани овчинного полуфабриката при различных видах воздействий

Вид воздействия

Образец полуфабриката

До воздействия

После воздействия

Химчистка

Меховая овчина, черная кожевая ткань

Светопогода

Шубная овчина, черная кожевая ткань

Меховая овчина с полимерным пленочным покрытием, светло-коричневая кожевая ткань

Меховой велюр, темно-зеленая кожевая ткань

Сухое трение

Шубная овчина, коричневая кожевая ткань

Меховой велюр, коричневаякожевая ткань

Меховая овчина, темно-серая кожевая ткань

Мокрое трение

Меховой велюр, коричневая кожевая ткань

Меховой велюр, коричневая кожевая ткань

Меховой велюр, светло-серая кожевая ткань

Анализ полученных данных показывает, что наибольшие цветовые изменения происходят при действии химчистки. Значения цветового различия достигают 12,7, что является значимым показателем цветового изменения. При этом цвет материала становится менее насыщенным и более светлым. При мокром трении происходит потемнение материала, о чем свидетельствуют положительные значения показателя ∆L - светлоты, тогда как при других видах воздействия данный показатель имеет отрицательные значения, что говорит о том, что материал при данном виде воздействия становится светлее.Внешние воздействия приводят к изменениям показателя ∆H - светового тона. При превышении данного показателя значения на 4 единицы тон материала изменяется значимо.

Таким образом, предлагаемая методика оценки изменения цветовых характеристик позволяет получить количественные показатели изменения цвета, является чувствительной и дает возможность оценить значимые для восприятия человеком изменения цвета, причем изучить кинетику изменений при действии определенного фактора эксплуатации.Она может быть использована для оценки устойчивости окраски на стадии окрашивания овчинного полуфабриката, на подготовительной стадии при подборе шкур на изделие с целью исключения разнооттеночности, при проведении химчистки для оценки ее степени влияния на изменения цвета.

Рецензенты:

Сокова Г.Г., д.т.н., профессор, и.о. заведующего кафедрой технологии и проектирования тканей и трикотажа ФГБОУ ВПО «Костромской государственный технологический университет», г. Кострома.

Галанин С.И., д.т.н., профессор, заведующий кафедройтехнологии, художественной обработки материалов, художественного проектирования, искусств и технического сервиса ФГБОУ ВПО «Костромской государственный технологический университет», г.Кострома.

Библиографическая ссылка

Борисова Е.Н., Койтова Ж.Ю. ИСПОЛЬЗОВАНИЕ МЕТОДА РАСЧЕТА ЦВЕТОВЫХ РАЗЛИЧИЙ ДЛЯ ОЦЕНКИ ИЗМЕНЕНИЯ ОКРАСКИ ОВЧИННОГО ПОЛУФАБРИКАТА // Современные проблемы науки и образования. – 2013. – № 5.;
URL: http://science-education.ru/ru/article/view?id=10468 (дата обращения: 15.06.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Наука о цвете – цветоведение изучает многие вопросы, которые интересны художникам. Например: правильное смешивание красок, как изменяется цвет при разном освещении, на разных расстояниях, влияния на цвет соседнего цвета и много других подобных вопросов. Вопросы цвета изучаются уже достаточно давно. Еще в 1810-ом году Гёте написал «Учение о цветах». Цветоведение выявляет закономерности цветовых явлений в природе, тем самым помогая художникам живописцам. Эта статья о самых главных аспектах в цветоведении.

ОСНОВНЫЕ СВОЙСТВА ЦВЕТА.

Если положить любых три одинаково белых предмета: один на хорошо освещенном месте, второй в менее освещенном, а третий в плохо освещенном месте – можно увидеть, что чем менее освещенное место – тем серее будет казаться этот предмет. Если же, тоже самое проделать с синим, зеленым или красным предметом – то он по-прежнему будет восприниматься как синий, зеленый или красный. Все дело в том, что все черные, серые и белые цвета только по светлоте отличаются друг от друга. Хотя в окружающем мире не существует чисто белых, серых и черных цветов. Они всегда имеют какой-нибудь оттенок. Белые, серые и черные краски так же бывают с разными оттенками. Даже обычная белая краска, у разных производителей может отличаться, поэтому если нужно подрисовать что-то уже начатое одной белой краской – лучше искать краску того же производителя, краска которого использовалась и вначале. Потому что разница двух белых цветов может быть слишком очевидна и абсолютно неуместна. Так же дело обстоит и с серыми и черными цветами.

Цвета, которые отличаются друг от друга только светлотой – называются ахроматическими (бесцветными). Это чисто черный, чисто белый и чисто серый цвет.


Ахроматические цвета . Положение на шкале от черного до белого цвета называется - светлота .

Эти цвета перестают быть ахроматическими, если присутствует хоть какой ни будь, незначительный цветовой оттенок. Все остальные цвета называются хроматическими (в переводе с греческого – цветными). Они отличаются не только светлотой, но и цветом (красный и синий), а также цветовым тоном (красный, оранжевый, желтый).


Хроматические цвета . Из хроматических цветов состоит цветовой спектр .

При смешивании краски, светлоту и темноту цвета можно регулировать, добавляя в нее черную или белую краску. К примеру, если в красный цвет добавить белый, то получится розовый, а если в тот же красный добавить черный, то получиться коричневый. Для того чтобы сделать цвет менее насыщенным, надо добавить в него серую краску такой же светлоты как и сам цвет, при этом цвет станет менее насыщенным, мутным, но не станет ни светлее, ни темнее чем был изначально. Насыщенность определяется степенью отличия ахроматического и хроматического цветов одинаковой светлоты.


Насыщенность цвета это степень удаленности хроматического цвета от ахроматического цвета той же светлоты.

Хотя очень часто насыщенность и светлоту или темноту регулируют, смешивая краски хроматических цветов. При этом, когда смешиваются более двух разных цветов – цвет становиться более ахроматическим и для того чтобы сделать его менее насыщенным, добавлять серую краску не обязательно.

Хроматические цвета бывают различными по насыщенности, светлоте, и цветовому тону, эти критерии и называют основными свойствами цветов, потому что они абсолютно точно характеризуют цвет. Даже незначительное изменение любой из этих характеристик приведет к изменению в цвете.

НЕИЗБИРАТЕЛЬНОЕ И ИЗБИРАТЕЛЬНОЕ ПОГЛОЩЕНИЕ СВЕТА.

Когда белый свет проходит через призму, он разделяется на цветные лучи, если перед ними поставить белый экран, то на нем отразится спектр - полоска со всеми цветами радуги. Если поставить перед этими лучами серый или черный экран, то на нем отразится тот же спектр, только все его цвета будут темнее, и чем темнее будет экран – тем темнее будут цвета спектра. А если поставить на пути лучей экран любого другого «цветного» цвета – спектр изменится. В нем может измениться распределение яркости, могут появиться бесцветные зоны или он станет короче, без красно-оранжевых или сине-фиолетовых цветов. Поверхности ахроматических цветов, отражают цветные лучи одинаково, а хроматических – по-разному: какие-то меньше, какие-то больше. Под цветным освещением, черные, белые и серые предметы, как бы слегка окрашиваются в цвет освещения. Поверхности остальных цветов визуально меняются иначе. Например: синий станет насыщеннее, если освещение синеватое, если освещение любого другого цвета, то он потемнеет, может даже до сине-черного и будет казаться менее насыщенным. Также будет с красным и зеленым цветами. Так происходит потому что объекты, которые не светятся, отражают часть света, который их освещает, а часть поглощают. Предметы всех цветов, часть света поглощают, преобразовывая энергию света, в другие энергии, в основном в тепловую. Именно поэтому, белые предметы нагреваются на солнце значительно меньше черных. Причем отражение и поглощение цветного света, одинаково для всех поверхностей ахроматических цветов. Именно такое поглощение света и называется неизбирательным. Предметы хроматической окраски, поглощают лучи одних цветов в большей степени, а других в меньшей. Красные объекты больше поглощают зеленые лучи, чем красные, а зеленые наоборот, больше поглощают красные, чем зеленые. Так и проявляется избирательное поглощение света.

Если взять зеленое стекло и направить на него зеленый свет, то свет пройдет через него, если, к примеру, направить на него синий свет – он частично поглотится стеклом и оно станет казаться темнее и бесцветней. Если сложить вместе красное и зеленое стекла, они будут пропускать мало света и будут казаться очень темными. А желтое и синее стекло, сложенные вместе, будут свободно пропускать зеленый свет. Лучи разного цвета, по-разному пропускаются (поглощаются) стеклами разных цветов.

ЦВЕТОВОЙ КРУГ.

Цветовой спектр начинается с темно- красных цветов, а заканчивается синим и фиолетовым цветами. Если смешать красный и фиолетовый цвета – получим пурпурный цвет. Самое начало спектра немного схоже по цвету с его концом. Если добавить в спектр пурпурный цвет, разместив его между красными и фиолетовыми цветами, можно замкнуть кольцо цветов. Пурпурный станет как бы промежуточным, получится то, что принято называть цветовым кругом. Такие круги бывают разными по количеству цветов, но человеческий глаз может различить не более 150-и из них.

Цветовой круг можно разделить на две части: теплые цвета, такие как красный, оранжевый, желтый и желто-зеленый; и холодные цвета: зелено-голубой, голубой, синий и фиолетовый. Их разделяют так потому, что теплые цвета схожи по цвету с огнем и солнцем, а холодные с водой и льдом. Хотя, это все относительно. В цветовом круге, противоположные по тону цвета, находятся друг напротив друга: красный противоположен зеленому, оранжевый – голубому, желтый – синему, зеленый – фиолетовому.

ИЗМЕНЕНИЕ ЦВЕТОВ ОТ ОСВЕЩЕНИЯ.

Искусственный свет (от лампы или свечки) кажется желтоватым, по сравнению с дневным. Все предметы при таком освещении приобретают желтоватый или даже немного оранжевый оттенок. Если неопытный, начинающий художник напишет пейзаж под таким освещением, то при дневном свете, он будет казаться желтоватым, потому что вечером желтизна не замечается. Если человек будет смотреть на определенную поверхность, он будет улавливать особенности освещения и восстанавливать характерный для этой поверхности цвет, отбрасывая оттенок навязанный освещением. Находясь в фотолаборатории, очень сложно будет найти бумажку красного цвета, при включенной красной фотографической лампе. Все бумажки в этой лаборатории будут казаться белыми.



Изменение цветов в зависимости от освещения . При дневном свете (сверху) и искусственном (внизу).

Одинаковые предметы, если их положить на свету или в тени, визуально будут немного менять цвет. На закате листья деревьев кажутся красноватыми, потому что хлорофилл отражает часть красных или красноватых солнечных лучей. При ярком освещении цвета будут, как бы выбеливаться. Когда начинает темнеть, тона перестают различаться. Первыми становятся плохо видны красные, потом оранжевые, дальше желтые и дальше все остальные по порядку расположения в спектре. Дольше всех остаются видимыми синие цвета. Утром все цвета становятся видимыми в противоположном порядке: первыми мы начинаем различать синие и голубые. Желтые цвета днем кажутся светлее всех остальных, а вечером голубые кажутся самыми светлыми. Все эти изменения цвета при разном освещении, нужно учитывать, рисуя живопись.

СВЕТОТЕНЬ.

Светотень это основное средство передачи объемности формы в изобразительном искусстве. Посредством светотени можно передать и освещение. При средней степени освещения, на средне-светлых предметах, можно увидеть наиболее богатые переходы от света к тени. В тенях иногда видны рефлексы (оттенки которые придает свет, отражающийся от разных объектов, находящихся рядом).


Рефлексы еще наблюдаются в бликах. Блики на неметаллических поверхностях всегда имеют цветность освещения, а на металлических – цветные блики. У серебристых или серебряных предметов – они голубоватые, а у медных и золотистых они оранжевые и желтые. Еще для передачи объемности, можно применять эффект отступающих и выступающих цветов. Теплые цвета являются выступающими, потому что большинству людей предметы таких цветов кажутся расположенными ближе, чем на самом деле. А предметы холодных цветов, отступающих, наоборот кажутся более далекими чем есть. Чем более светлый и насыщенный цвет, тем он, кажется, более выступает и наоборот – чем менее насыщенный и более темный, тем более отступает.

ИЗМЕНЕНИЕ ЦВЕТОВ НА РАССТОЯНИИ.

Атмосфера земли содержит мельчайшие частицы, такие как влага, молекулы воздуха, пыль. Создавая мутную среду, они препятствуют прохождению света. Красные, оранжевые и желтые лучи проходят сквозь атмосферу лучше, чем голубые, синие и фиолетовые, которые рассеиваясь в разные стороны, придают небу его голубой цвет. Чем больше пыли и влаги в воздухе, тем больше цвет света, рассеиваемого в воздухе, близится к белому, как при тумане.

Свет, который отражается от светлого, хорошо освещенного объекта, расположенного далеко, проходя через атмосферу, приобретает теплый оттенок и темнеет, теряет часть синих и голубых лучей. Свет, отраженный от темного, мало-освещенного объекта, который находится далеко, проходя через атмосферу, подбирает рассеянные в ней синие и голубые лучи, становясь при этом более светлым и приобретая голубоватый оттенок.

Цвет, на больших расстояниях, меняется не только под воздействием дымки. Оранжевый цвет на расстоянии 500 метров становится красноватым, а на расстоянии до 800 метров – почти красным. Желтые предметы, издалека тоже кажутся красноватыми, при условии, что они хорошо освещены. Зеленые – становятся больше похожи на голубые, а голубые наоборот зеленеют. На расстоянии почти все цвета светлеют, за исключением синего, фиолетового и пурпурного, которые темнеют при удалении.

СМЕШИВАНИЕ КРАСОК.

Для того чтобы легко смешивать краски – пригодится знание теории смешения красок.

Красная, желтая и синяя краски называются основными красками, потому что из них можно получить больше всего разнообразных цветов. Этих трех цветов, при рисовании, часто бывает не достаточно, нужны еще черный и белый.

Образование красочной смеси определенного цвета, во многом связано с особенностями поглощения частицами красок, при прохождении сквозь их смесь, разных спектральных лучей. Каждая частица поглощает, как бы вычитает, некоторую часть световой энергии, которая в нее проникает. Такой процесс называется вычитательным, вычитанием цвета. К примеру: когда свет падает на смесь желтой и синей красок, он частично отражается, но его большая часть проникает внутрь и проходит через частицы то одной, то другой краски. Через желтые частицы пройдут все лучи желтой и зеленой части спектра, а через синие – его синей и зеленой части. При этом синие частицы, в некоторой степени, поглотят: красные, оранжевые и желтые лучи, а желтые частицы поглотят голубые, синие и фиолетовые. Получается, что зеленые лучи остались не поглощенными, что и определило то, что из смеси желтой и синей красок, мы получили зеленую краску.


Механическое смешение цветов.

Если наносить полупрозрачные слои красок разных цветов друг на друга, то цвет, который нанесен самым последним, будет преобладать в цвете полученной смеси.

При высыхании, все краски на водной основе, светлеют и в разной степени теряют насыщенность. Если нарисованную такими красками картину поместить под стекло или вскрыть лаком – цвета на ней будут выглядеть более насыщенными и темными. Это объясняется тем, что поверхность картины без какого либо покрытия, отражает рассеянный белый свет.

ОПТИЧЕСКОЕ СМЕШЕНИЕ ЦВЕТОВ.

Для написания живописи, кроме механического смешивания цветом, можно еще использовать оптическое смешение.

Если к любому хроматическому цвету, подобрать и добавить, в определенном количестве, еще один хроматический – получим новый ахроматический цвет. Эти два хроматических цвета, которые были подобраны, будут называться взаимно-дополнительные цвета. Такие цвета четко определены: для малиново-красного дополнительным есть зелено-голубой для огненно-красного – зелено-голубой оранжевого – голубой желто-зеленому – пурпурно-фиолетовый лимонно-желтому – синий ультрамарин. Пары таких цветов найти не сложно, потому что в цветовом круге они лежат друг напротив друга.

При оптическом смешении не дополнительных цветов – мы получаем цвета промежуточных тонов (синий + красный = фиолетовый).


Если смешать оранжевый и голубой, мы получим такой же ахроматический цвет, как если бы сначала смешали красный с желтым, чтобы получить оранжевый, который потом в последствии смешали бы с голубым. Результат не будет зависеть от того, из каких лучей спектра составляются цвета, которые мы смешиваем. Этим и отличается оптическое смешение цветов (слагательное) от механического (основанного на вычитании световых лучей).

Если зарисовать лист разными по цвету, маленькими пятнышками или мелкими штрихами и мазками – то по законам оптического смешения, на расстоянии они сольются в один общий, однотонный цвет. Так выглядит оптическое смешение, которое называют пространственным. Его используют в живописи, когда нужно придать определенному участку прозрачность и легкость, по сравнению с другими участками.

КОНТРАСТНОСТЬ ЦВЕТОВ.

Не смотря на то, что краски сейчас в продаже представлены в широчайшем ассортименте, для рисования светящихся предметов и самых темных горных расщелин, идеально подходящих по яркости красок – нет. Художники справляются с передачей данных предметов и природных явлений, с помощью правильного использования взаимодействия цветов.

Один и тот же цвет, на фоне различных цветов, выглядит по-разному. Любой объект, на фоне более темного цвета, чем он сам, будет казаться более светлым и, наоборот, на фоне светлее – будет выглядеть более темным, чем является на самом деле. И чем больше разница между светлотой или темнотой фона и предмета, расположенного на нем – тем более темным или светлым он будет видеться, не зависимо от того хроматического или ахроматического он цвета. Изменение цвета в окружении других цветов, или при со-прикасании с другим цветом, называют одновременным контрастом цвета.

Контраст, при котором меняется светлота цвета, из-за воздействия соседних цветов или цветов которые его окружают, называется светлотным контрастом.

Ахроматические цвета на разных хроматических фонах приобретают окрашенность. Например: если серый предмет разместить на красном фоне, то он станет зеленоватым, на зеленом фоне – розоватым, на желтом – синеватым. Контраст, при котором меняется не светлота, а насыщенность или цветовой тон – называется хроматическим. А цвета, которые возникают на предмете, называются цветами одновременного контраста. Чтобы свести на нет действие хроматического контраста (чтобы не исказить серый цвет предмета на красном фоне), нужно предмету придать оттенок фона. Если придать серому предмету розоватый оттенок, то на красном фоне его цвет больше не исказится и он будет смотреться чисто серым.

Если нарисовать серый объект на красном фоне, и обвести его по контуру, то этот контур снизит влияние контраста или совсем сведет его на нет. Если разделить линиями несколько соседствующих цветов – тоже можно снизить их влияние друг на друга, частично или полностью убрать действие хроматического контраста.

Наиболее четко выраженный контраст, можно увидеть на границах, где соприкасаются цветовые пятна, на краях этих цветовых пятен. Если посмотреть на белый куб, у которого одна сторона затемненная, а вторая более освещена можно увидеть, что затемненная сторона, возле грани с освещенной, смотрится более темной, а освещенная, у грани с затемненной, выглядит более светлой. Такой контраст, который мы видим именно по краям цветовых пятен, называется краевым контрастом.

Все эти особенности контраста, нужно учитывать, так как, если не уделить им должного внимания при рисовании, не получится передать рельефность поверхностей на изображении, или предметы на нем будут выглядеть искаженными, не будет видно, что какие-то их части выступают, а какие-то уходят вглубь.

ЦВЕТ ГРУНТА И ЕГО РОЛЬ В ПРОЦЕССЕ РИСОВАНИЯ.

Если на грунт наносить краски полупрозрачными слоями (лессировочное письмо), то влияние цвета грунта, на цвета всех нанесенных красок и на общий вид картины, будет очевидным. Но и при корпусном письме (когда краски наносятся плотным, не полупрозрачным слоем) цвет грунта будет иметь значение, так как какое-то количество света, будет проникать через верхний, цветной слой красок и доходить до грунта, а потом, отражаясь от него, менять общий тон картины, но это будет практически не заметно.

Самое большое значение цвет грунта приобретает тогда, когда грунт не закрашивается полностью, когда его цвет участвует в композиции картины, с целью, например, повысить яркость остальных цветов на картине. Основываясь на законах контраста, выбирая темный грунт, к таким методам, не редко прибегали старые художники-мастера, итальянцы и испанцы.

Одинаковый этюд, написанный на грунте двух разных цветов – будет выглядеть по-разному. На фоне белого грунта, все цвета будут казаться более темными, поэтому нужно будет использовать более светлые цвета, чем те, которые были бы нужны, для написания на фоне серого грунта. Так как на сером грунте, наоборот, все цвета будут казаться более светлыми и нужно будет использовать более темные цвета.

Белый грунт является универсальным и начинающим художникам не рекомендуется использовать для работы грунт других цветов, пока они не изучат все влияния цветов друг на друга и не научатся в совершенстве применять их на практике.

ОЦЕНКА ЦВЕТА НА КАРТИНЕ.

Все цвета, которые мы видим на картине и в природе, мы видим уже измененными их действием друг на друга и действием на них освещения. Увидеть каждый цвет в отдельности, без каких либо изменений, мы не можем. Если на картине выбрать какой ни будь один элемент, а все остальные прикрыть чем то – его цвет будет отличаться, от того цвета который он приобретает, если смотреть на всю картину, но все равно он будет претерпевать изменения из-за особенностей освещения. Для того чтобы правильно подобрать цвета для картины, нужно учесть, как, в результате чего, изменяются эти цвета на выбранном вами мотиве, а также правильно и равномерно распределить интенсивность цветов. Наиболее интенсивные цвета стоит использовать на переднем плане, а цвета с наименьшей интенсивностью - на заднем.

ОТНОШЕНИЯ ЦВЕТОВ.

Задача художника - передать каждый цвет таким образом, чтобы он правильно воспринимался в условиях освещения, которое запечатлено на картине, верно соотносился с нарисованным объектом, а его интенсивность соответствовала, тому на каком пространственном плане находится объект. Для этого нужно уметь правильно подбирать соотношения между цветами.

Кроме насыщенности, светлоты и цветового тона, у цветов еще есть фактурные свойства. Цвета, передающие цвет поверхности, которая имеет четкое расположение в пространстве, отличаются от таких же цветов, которые, к примеру, служат просто для придания цвета фону. Они называются цветами поверхностей. Благодаря таким отличиям, мы всегда можем приблизительно определить, на каком расстоянии находится какая-нибудь цветная поверхность. Цвета, не служащие для отображения рельефа, которые используются для рисования, чего ни будь не имеющего четкого местоположения (например: радуга или небо, мы не можем определить расстояние до них на глаз), называются бесфактурными цветами. Цвета, которыми рисуют прозрачные среды, которые воспринимаются не в плоскости, а объемно (воздух, вода), называются объемными цветами.

Существует также понятие плотности цвета, которая определяется плотностью нанесения слоя краски. Краска, нанесенная на поверхность слоем разной плотности, в разных местах, делает картину более живой.

Отношения цветов определяются по фактурным характеристикам, по плотности и по основным свойствам. Чтобы не сбиться с верных цветовых отношений, во время рисования, нужно периодически давать отдых глазам (закрывать глаза хотя бы ненадолго), так как они утомляются от цвета. Например: если долго смотреть на зеленое пятно, а потом быстро перевести взгляд на лист белой бумаги – Вы увидите на этом листе такое же пятно, только сиренево-розового цвета. Появление таких, не настоящих, эффектов происходит от усталости глаз от цвета. Они называются – отрицательные последовательные образы. Еще, утомление зрения проявляется, в случае если наблюдаемые цвета начинают рябить. Если долго смотреть на лист цветной бумаги – его цвет будет становиться менее насыщенным. Это тоже признак усталости глаз. Если происходит, что-то из перечисленного выше – нужно на время прервать написание картины.

ЦВЕТ В КОМПОЗИЦИИ КАРТИНЫ.

С помощью цвета, можно уравновесить композицию живописной картины. Цвета, которые напоминают цвет земли или камней, кажутся тяжелыми, в то время как цвета, напоминающие цвет воздуха или неба, воспринимаются более легкими. Но, нужно учитывать, что даже если нарисовать одним из «легких» цветов, предмет, который на самом деле тяжелый (например: горы) - цвет, все равно, будет казаться тяжелым. Чтобы уравновесить композицию, нужно обращать внимание не только на весомость цветных объектов, но и на их заметность. Меньше всего бросается в глаза синий цвет, а красный и оранжевый – привлекают внимание больше всего.

С помощью светлотного контраста, а также яркости и броскости цвета, можно выделить на картине объекты, к которым нужно привлечь больше внимания.

Если проверить на практике, все сказанное в этой статье, поупражняться в живописи, внимательно понаблюдать за натурой, подробней ознакомиться с цве товедением – Вам будет проще стать настоящим художником-пейзажистом.

Олдридж пишет: «… Осьминоги удивительно быстро и гармонично окрашиваются под цвет окружающей их местности, и, когда вы, подстрелив одного из них, убьете или оглушите его, он не сразу потеряет способность менять окраску. Это я наблюдал однажды сам, положив добытого осьминога на газетный лист для разделки. Осьминог моментально изменил окраску, сделавшись полосатым, в белую и черную полоску!» Ведь он лежал на печатной странице и скопировал ее текст, запечатлев на своей коже чередование черных строк и светлых промежутков. По видимому, осьминог этот не был совсем мертв, глаза его еще воспринимали оттенки меркнущих красок солнечного мира, который он навсегда покидал.

Даже среди высших позвоночных животных немногие обладают бесценным даром изменять по прихоти или необходимости окраску кожи, перекрашиваться, копируя оттенки внешней декорации.

Моллюски, членистоногие и позвоночные - три высшие ветви эволюционного развития животного мира, и только среди них находим мы искусных «хамелеонов», способных изменять окраску сообразно с обстоятельствами. У всех головоногих моллюсков, у некоторых раков, рыб, земноводных, пресмыкающихся и насекомых спрятаны под кожей эластичные, как резина, клетки. Они набиты краской, словно акварельные тюбики. Научное название этих чудесных клеток - хроматофоры. (У млекопитающих и птиц, тоже высших животных, нет в коже хроматофоров, так как, скрытые под шерстью и перьями, они были бы бесполезны).

Каждый хроматофор - микроскопический шарик (когда пребывает в покое) или точечный диск (когда растянут), окруженный по краям, будто солнце лучами, множеством тончайших мускулов - дилататоров, то есть расширителей. Лишь у немногих хроматофоров только четыре дилататора, обычно их больше - около двадцати четырех. Дилататоры, сокращаясь, растягивают хроматофор, и тогда содержащаяся в «ем краска занимает в десятки раз большую, чем прежде, площадь. Диаметр хроматофора увеличивается в шестьдесят раз: от размеров иголочного острия до величины булавочной головки. Иными словами, разница между сократившейся и растянутой цветной клеткой столь же велика, как между двухкопеечной монетой и автомобильным колесом.

Когда мускулы расширители расслабляются, эластичная оболочка хроматофора принимает прежнюю форму.

Дилататоры, пожалуй, самые неутомимые труженики из всех мышц, производящих работу в животном царстве. Они не знают усталости. Экспериментаторы Хилл и Соландг установили, что сила их сокращения нисколько не уменьшается даже после получасового напряжения, вызванного воздействием электрического тока.

Все другие неутомимые мышцы животных (и сердечная и мускулы крыльев) работают в пульсирующем ритме, когда за периодом сокращения следует пауза отдыха. Дилататоры часами и без перерыва остаются в напряжении, поддерживая на коже нужную окраску.

Хроматофор растягивается и сокращается с исключительной быстротой. Он изменяет свой размер за 2/3 секунды, а по другим данным, еще быстрей - за 1/2 секунды.

Каждый дилататор соединен нервами с клетками головного мозга.» осьминогов «диспетчерский пункт», заведующий сменой декораций, занимает в мозгу две пары лопастевидных долей. Передняя пара контролирует окраску головы и щупалец, задняя - туловища. Каждая лопасть распоряжается своей, то есть правой или левой стороной. Если перерезать нервы, ведущие к хроматофорам правой стороны, то на правом боку моллюска застынет одна неизменная окраска, в то время как его левая половина будет играть колерами разных цветов.

Какие органы корректируют работу мозга, заставляя его изменять окраску тела точно в соответствии с фоном окрестностей?

Глаза. Зрительные впечатления, полученные животным, по сложным физиологическим каналам поступают к нервным центрам, а те подают соответствующие сигналы хроматофорам. Растягивают одни, сокращают другие, добиваясь сочетания красок, наиболее пригодного для маскировки. Слепой на один глаз осьминог теряет способность легко менять оттенки на безглазой стороне тела.. Исчезновение цветовых реакций у ослепленного осьминога не полное, потому что изменение окраски зависит также и от впечатлений, полученных не только глазами, но и присосками. Если лишить осьминога щупалец или срезать с них все присоски, он бледнеет и, как ни пыжится, не может ни покраснеть, ни позеленеть, ни стать черным. Уцелеет на щупальцах хотя бы одна присоска - кожа спрута сохранит все прежние оттенки.

Хроматофоры головоногих содержат черные, коричневые, красно бурые, оранжевые и желтые пигменты. Самые крупные - темные хроматофоры, в коже лежат они ближе к поверхности. Самые мелкие - желтые. Каждый моллюск наделен хроматофорами только трех каких нибудь цветов: коричневыми, красными и желтыми, либо черными, оранжевыми и желтыми. Их сочетание, конечно, не может дать всего разнообразия оттенков, которыми знамениты головоногие моллюски. Металлический блеск, фиолетовые, серебристо голубые, зеленые и голубовато опаловые тона сообщают их коже клетки особого рода - иридиоцисты. Они лежат под слоем хроматофоров и за прозрачной оболочкой прячут множество блестящих пластиночек. Иридиоцисты заполнены, словно комнаты смеха в парках, рядами зеркал, целой системой призм и рефлекторов, которые отражают и преломляют свет, разлагая его на великолепные краски спектра.

Богатством расцветок и совершенством маскировки головоногие моллюски далеко превосходят прославленного хамелеона. Он просто был бы посрамлен, как несчастный Марсий лучезарным Аполлоном, если бы задумал состязаться в игре красок с осьминогом или каракатицей. Раздраженный осьминог из пепельно-серого через секунду может стать черным и снова превратиться в серого, продемонстрировав на своей коже все тончайшие переходы и нюансы в этом интервале красок. Бесчисленное разнообразие оттенков, в которые окрашивается тело осьминога, можно сравнить лишь с изменчивым цветом вечернего неба и моря.

К этой изумительной игре красок осьминоги прибегают в критические минуты жизни, чтобы ошеломить, напугать врага. «Если вы, - пишет Олдридж, - заметив осьминога, начнете толкать его ружьем, он постарается отпугнуть вас, все время меняясь в окраске, а это чудесное зрелище. Он будет сгибаться и извиваться, раздувать свое тело так, чтобы показаться огромным, будет вытягивать, шевелить и вновь сокращать свои щупальца, делать вид, что готов напасть на вас; он начнет выпучивать и закатывать глаза, видимо, пытаясь убедить вас в достоверности всех страшных историй, рассказываемых про него. И если это не устрашило вас, тогда он обдаст вас чернильной струей и в смятении исчезнет с такой невероятной быстротой, что оставит вас в недоумении: почему ему сразу не начать было с бегства?»

Изменение цвета кожи - своего рода мимический язык спрута. Игрой красок он выражает свои чувства - и страх, и раздражение, напряженное внимание, и любовную страсть. Фейерверком цветовых вспышек угрожает соперникам, привлекает самку.. Их калейдоскоп чувств составлен из золотисто оранжевых и буро красных тонов. Когда кальмара не обуревают эмоции, он бесцветен и полупрозрачен, как матовое стекло. Тогда чернильный мешок черным провалом зияет на молочном теле животного призрака. Этому обстоятельству кальмар и обязан своим названием. Слово «кальмар» происходит от итальянского «calamaio», что значит «сосуд с чернилами». Раздражаясь, кальмар становится пунцовым или оливково-бурым, и его «чернильница» исчезает за потемневшими покровами.

Атнагулова Е.Р. 1

Магафурова Ф.Ф. 1

1 Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа № 154 города Челябинска»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Цель работы

Исследовать причины изменения окраски различных органов растений

Задачи

1. Изучение литературы по определению пигментов в растениях.

2. Провести химические опыты по выделению пигментов: хлорофилла, ксантофиллаиз листьев пеларгонии, антоцианов из корнеплодов свеклы.

3. Определить зависимость изменения окраски различных органов растений от условий окружающей среды.

3. Выступить на школьной научно-практической конференции.

Гипотеза

Изменение окраски различных органов растений зависит от условий внешней среды.

Объект исследования

Различные части растений: листья пеларгонии, корнеплоды свеклы, цветки фиалки.

Предмет исследования

Растительные пигменты и изменение их окраски в зависимости от внешних условий.

Методы исследования

Описательный, сравнительный, экспериментальный, моделирование, визуальная диагностика.

Новизна работы

Использован цифровой микроскоп для изучения проводящих канальцев в листьях растений.

Практическая значимость

Без огромных экономических затрат можно находить новые месторождения полезных ископаемых, необходимых для развития и экономического процветания России

Влияния окружающей среды на изменение окраски различных органов растений.

Одним из главных признаков осени является изменение окраски листьев растений. У разных растений осенняя окраска различна, например, листья липы - желто-зеленого цвета, тополей и берез - желтого. Листья дуба окрашиваются в красный цвет. Это многообразие оттенков обусловлено различным сочетанием в осенних листьях трех групп пигментов: желто-оранжевых каротиноидов, зеленого хлорофилла, красного и синего антоцианов.

Изменение окраски листьев всегда начинается с прекращения синтеза хлорофилла в связи с понижением температуры. Хлорофилл - пигмент, который образуется в зеленых листьях под действием солнечной энергии. Осенью температура окружающей среды падает, солнце светит не так ярко, поэтому имеющийся в хлоропластах хлорофилл начинает постепенно разрушаться : у одних видов - полностью (листья дуба), у других - частично (слива). Осенью происходит затухание жизнедеятельности в связи с подготовкой к зимнему периоду покоя.

В хлоропластах зеленых листьев всегда присутствует зеленый хлорофилл и желто-оранжевыекаротиноиды (ксантофилл). Есть в клетках и антоцианы, но в отличие от хлорофилла они не связаны внутри клетки с пластидными образованиями, а чаще всего растворены в клеточном соке, иногда встречаются в виде кристалликов.

Актуальность проблемы

Однако, изменение окраски листьев, цветков, плодов - это не всегда только результат прекращения синтеза хлорофилла и затухания процессов жизнедеятельности растений. Существует много факторов внешней среды, которые влияют на изменение окраски различных органов растений. Наиболее часто при избытке того или иного химического элемента или его недостатке возникают изменения в различных органах растений. Для ученых-химиков, агрономов растения могут служить индикаторами содержания питательных веществ в почве, а также возможного наличия рудных месторождений. В наше время, когда ресурсы полезных ископаемых на планете истощаются, эта проблема выходит на первый план .

Мы провели серию опытов по выделению пигментов из листьев растений, а также исследовали влияние факторов внешней среды на изменение окраски различных органов растений.

Перед проведением опытов мы прослушали правила техники безопасности при работе в химической лаборатории и строго соблюдали их.

Опыт № 1.Выделение антоциана .

Реактивы: 10% раствор соляной кислоты (HCl), 10% раствор щелочи (NaOH), дистиллированная вода, спиртовка, держатель, спички, воронка, фильтровальная бумага. При работе со спиртовкой сначала всю пробирку прогрели, затем установили пламя в одном месте.При работе с кислотой и щелочью надели резиновые перчатки.

Несколько кусочков нарезанной свеклы прокипятили в небольшом количестве воды. Вода окрасилась от антоцианов в грязно-красный цвет. После фильтрования мы разлили раствор в две пробирки, в одну добавили несколько капель соляной кислоты, а в другую - несколько капель щелочи. В первой пробирке раствор сразу стал ярко-красного цвета, а в другой - желто-зеленого цвета (см. приложение 1).

Этот опыт доказывает, что антоциан в зависимости от того, в какой среде он находится, способен быстро изменять свой оттенок. Например, в бутонах медуницы лекарственной клеточный сок имеет кислую реакцию, поэтому венчик розоватого цвета, а уже отцветающие цветки медуницы лекарственной - синего цвета , так как среда клеточного сока щелочная. Изменение окраски цветка является сигналом для опылителей, сообщающим о том, какие цветки раскрылись недавно, то есть с большей вероятностью содержат пищу. Второй пример: клубни картофеля, выращенные на торфяных почвах, имеют синеватый оттенок, а при внесении в почву удобрения сульфата калия - розовый цвет. Таким образом, условия внешней среды непосредственным образом влияют на изменение окраски антоциана в растениях.

Следует отметить, что фрукты и овощи с синей, фиолетовой или красной кожицей или мякотью являются крайне полезным источником пищи для человека. Их употребление уменьшает риск возникновения онкологических заболеваний. Ежевика, черника, вишня, клюква, баклажаны, малина, краснокочанная капуста - продукты, содержащие рекордное количество антоцианов .Мы рекомендуем их к употреблению .

Опыт № 2. Обесцвечивание антоцианов сернистым газом.

Реактивы: сера (порошок). Оборудование: стеклянный колокол, железная ложечка, спички. Опыт мы проводили под вытяжкой, так как сернистый газ (SO 2 )раздражает верхние дыхательные пути человека. Одели также ватно-марлевую повязку.

Красный цветок пеларгонии положили под стеклянный колокол, который поставили в вытяжной шкаф. Подожгли серу в железной ложке и внесли под стеклянный колокол, плотно его закрыли. Наблюдали заполнение сернистым газом все пространство колокола, а через 5-7 минут - постепенное обесцвечивание лепестков венчика пеларгонии. Сернистый газ оказывает на антоциан удивительное действие: красные цветки стали превращаться в белые! (см. приложение 2).

Опыт № 3. Выделение хлорофилла и ксантофилла.

Реактивы: 95% этиловый спирт, бензин, мел. Оборудование: фарфоровая ступка, пробирка, воронка, фильтровальная бумага.

К измельченным листьям пеларгонии добавляем 10 мл этилового спирта, на кончике ножа мел для нейтрализации кислот клеточного сока, растираем в фарфоровой ступке до однородной зеленой массы. Приливаем еще этилового спирта, продолжаем растирание, пока спирт не окрасился в интенсивно-зеленый цвет. Фильтруем раствор в чистую сухую пробирку (см. приложение 3).

Разделяем пигменты по методу Крауса. Метод основан на различной растворимости хлорофилла и ксантофилла в спирте и бензине. Хлорофилл обладает большей растворимостью в бензине, чем в спирте.

Приливаем в пробирку 2-3 мл вытяжки, столько же бензина и 1-2 капли воды. Закрываем большим пальцем пробирку, энергично взбалтываем в течение 2-3 минут. Даем отстояться. Наблюдаем: жидкость в пробирке разделилась на 2 слоя: бензиновый (ярко-зеленого цвета) наверху, спиртовый (желтого цвета) внизу. Желтый цвет спиртовому раствору придает пигмент ксантофилл. В бензиновом слое находится пигмент хлорофилл, который имеет ярко-зеленый цвет (см. приложение 3).

Мы считаем, что пигменты придают растениям яркую окраску для привлечения насекомых - опылителей . Кроме того, присутствие пигментов в растениях имеет большое значение, как для самих растений, так и для человека. При участии зеленого пигмента хлорофилла в листьях зеленых растений идет уникальнейший и единственный в нашей Солнечной системе (а возможно, и во Вселенной!) процесс - фотосинтез . Из углекислого газа и воды при действии солнечных лучей и наличии хлорофилла в листьях растений образуется органическое вещество - глюкоза и кислород. Благодаря именно этому процессу существует жизнь на планете Земля.

Опыт № 4. Влияние ионов металлов на окраску цветков узамбарской фиалки .

Мы поливали узамбарскую фиалку с лепестками голубого цвета раствором марганцевокислого калия (KMnO 4) в течение месяца (1 раз в неделю).Для приготовления раствора перманганата калия брали несколько кристалликов KMnO 4 и растворяли в воде. Раствор приобретал ярко-розовый цвет. Цвет лепестков венчика стал меняться нарозовый. При поливе узамбарской фиалки с лепестками розового цвета раствором алюмокалиевых квасцов(KAl(SO 4)2 .12H 2 O), цвет венчика стал меняться наголубой (см. приложение 4).

Таким образом, в результате полива из почвы окрашенные растворы поступают в растения и накапливаются в клетках. Мы рассмотрели проводящие канальцыв цифровой микроскоп и вот что увидели (приложение 4).

Эксперимент .

Мы с мамой провели в саду такой эксперимент: под куст белой розы закопали медные провода, предварительно мелко нарезав их. Медные провода нам дал папа из старого телевизора. На следующий год в некоторых бутонах роз мы заметили голубоватый оттенок . Что же произошло? Мы знаем, что ионы меди Cu 2+ в растворе голубого цвета, поэтому при накоплении их в растении произошло изменение окраски.

Именно на способности растений изменять свой внешний вид в зависимости от химического состава почвы и воздуха основан биогеохимический метод поиска месторождений полезных ископаемых.

Теоретической основой этого метода служит учение академиков В. И. Вернадского и А. П. Виноградова об ореолах рассеяния химических элементов. Согласно этому учению, на месторождении какого-либо минерала наблюдается зона повышенной концентрации входящего в его состав элемента, или ореол рассеяния.

Многие растения придерживаются одинаковых по химическому составу почв и являются «спутниками» руд. В Америке есть свинцовая трава, растущая над залеганием свинцовой руды (Pb). В Бельгии вблизи выходов цинковой руды (Zn ) всегда растет галмейная фиалка, а на отвалах оловянных месторождений (Sn)растет седмичник.

На нашей малой родине, Урале, растет маленькая орхидея - венерин башмачок . Это растение внесено в Красную книгу России как редкий вид. Венерин башмачок растет на почвах, богатых кальцием(Ca). Поселившись неожиданно на островах Онежского озера, венерин башмачок подсказал ученым месторождение ценного минерала. Растения - помощники геологов, часто они указывают на подземные залежи полезных ископаемых на глубинах до 20-25 метров.

Заключение

Опытным путем мы установили, что в растительных клетках содержится зеленый пигмент хлорофилл, желто-оранжевый ксантофилл, красный и синий антоцианы.

Наша гипотеза подтвердилась: факторы внешней среды оказывают влияние на окраску различных органов растений.

Зная зависимость изменений в окраске растений от условий окружающей среды, можно определить месторождения полезных ископаемых, а также химический состав почвы, глубину залегания грунтовых вод, содержание в почве питательных веществ.

Список литературы

Артамонов В. И. Зеленые оракулы - М.:Мысль, 1989.

Батурицкая Н. В. Фенчук Т. Д. Химические опыты с растениями: Кн. для учащихся. - М., 1991.

http://www.lepestok.kharkov.ua/bio/s20061201.htm

http://himik.my1.ru/publ/antociany_krasjashhie_veshhestva_rastenij/1-1-0-16.

Приложение 1

Антоциан изменяет окраску в кислой и щелочной среде

Приложение 2

В атмосфере сернистого газа лепестки пеларгонии обесцвечиваются

Приложение 3

Хлорофилл лучше растворяется в бензине (верхний слой), а в нижнем слое спирта находится ксантофилл.

Приложение 4

Вот что мы увидели в цифровой микроскоп:

Проводящие канальцы имеют розовую окраску, так как из почвы поступает окрашенный раствор перманганата калия (KMnO 4 ).

Приложение

Приложение Г

Пигмент хлорофилл лучше растворяется в бензине (верхний слой). Ярко-зеленое окрашивание.

В нижнем слое пигмент ксантофилл, растворенный в спирте . Желто-зеленое окрашивание.

Антоциан изменил окраску в кислой среде.

В щелочной среде антоциан становится желтого цвета.