Человеческое мышление представляет собой сложный познаватель­ный процесс, включающий в себя использование множества различных приемов, методов и форм познания. Различия между ними условны, и очень часто все эти термины употребляются как синонимы, однако имеет смысл делать некоторое различие между ними. Под приемами мышления и научного познания понимаются общелогические и обще­гносеологические операции, используемые человеческим мышлением во всех его сферах и на любом этапе и уровне научного познания. Они в равной степени характеризуют как обыденное мышление, так и научное, хотя в последнем приобретают более определенную и упоря­доченную структуру. Приемы мышления, как правило, характеризуют общую, гносеологическую направленность хода мысли на том или ином этапе познавательной деятельности. Например, при движении от це­лого к части, от частного к общему, от конкретного к абстрактному и т.д.

Методами называют более сложные познавательные процедуры, которые включают в себя целый набор различных приемов исследова­ния.

Метод - это система принципов, приемов, правил, требований, ко­торыми необходимо руководствоваться в процессе познания.

В данном определении метода выражено его операциональное существо; метод содержит в себе совокупность требований, которые характеризуют порядок познавательных операций. Аспекты метода: предметно-содержательный, операциональный, аксиологический.

Предметная содержательность метода состоит в том, что в нем отражено знание о предмете исследования; метод основывается на знании, в частности, на теории, которая опосредует отношение метода и объекта. Многие философы признают, что метод - это та же теория, но повернутая своим острием на познание и преобразование объекта; это система нормативных правил, выводимых из теории (или вообще из определенного знания) с целью дальнейшего познания объекта. Предметная содержательность метода свидетельствует о наличии у него объективного (объектного) основания. Метод содержателен, объекти­вен.

Операциональный аспект указывает на зависимость метода уже не


столько от объекта, сколько от субъекта. На формирование правил-предписаний оказывают существенное влияние уровень научной под­готовки специалиста, его умение перевести представления об объективных законах в познавательные приемы, его опыт применения в познании тех или иных приемов, способность их совершенствовать; влияют на выбор и разработку правил соображения удобства и "эконо­мии мышления". Нередко на основе одной и той же теории возникают модификации метода, зависящие лишь от субъектных моментов. Метод субъектен, или субъективен (в данном отношении).


Аксиологический аспект метода выражается в степени его надеж­ности, экономичности, эффективности. Перед ученым порой встает вопрос о выборе одного из двух или нескольких близких по своему характеру методов. Решающую роль в выборе могут сыграть соображе­ния, связанные с большей ясностью, общепонятностью или результа­тивностью метода. Когда в 20-х годах в нашей стране проходила дискуссия по вопросам методологии и перед частью естествоиспытате­лей встала проблема, какому методу отдать предпочтение - элемента-ристскому (механистическому) или системному ("диалектике") - физиолог А. Ф. Самойлов заявил, в частности: "Те марксисты, которые воодушевлены верою в силу диалектического метода в познании при­роды, если они при этом специалисты-естественники в какой-нибудь определенной области естествознания, должны на деле доказать, что они, применяя диалектическое мышление, диалектический метод, в состоянии пойти дальше, скорее, с меньшей затратой труда, чем те, которые идут иным путем. Если они это докажут, то этим без всякой борьбы, без излишней бесплодной оскорбительной полемики, диалек­тический метод завоюет себе свое место в естествознании. Естествоис­пытатель прежде всего не упрям. Он пользуется своим теперешним методом только и единственно потому, что его метод есть метод единственный. Такого естествоиспытателя, который желал бы пользо­ваться худшим методом, а не лучшим, нет на свете. Докажите на деле, что диалектический метод ведет скорее к цели, - завтра же вы не найдете ни одного естествоиспытателя не диалектика" ("Диалектика природы и естествознание" // "Под знаменем марксизма", 1926, № 4-5, стр. 81).

Таковы главные стороны метода научного познания: предметно-со­держательная, операциональная и аксиологическая.

Методы научного познания можно подразделить на три группы: специальные, общенаучные, универсальные. Специальные методы при­менимы только в рамках отдельных наук. Объективной основой таких


методов являются соответствующие специально-научные законы и теории. К этим методам относятся, например, различные методы каче­ственного анализа в химии, метод спектрального анализа в физике и химии, метод Монте-Карло, метод статистического моделирования при изучении сложных систем и т.д. Общенаучные методы характеризуют ход познания во всех науках. Их объективной основой являются общеметодологические закономерности познания, которые включают в себя и гносеологические принципы. К ним относятся: методы экс­перимента и наблюдения, метод моделирования, гипотетико-дедуктив-ный метод, метод восхождения от абстрактного к конкретному и т.д. Универсальные методы характеризуют человеческое мышление в целом и применимы во всех сферах познавательной деятельности человека (с учетом их специфики). Их объективной основой выступают общефи­лософские закономерности понимания окружающего нас мира, самого человека, его мышления и процесса познания и преобразования мира человеком. К этим методам относятся философские методы и принци­пы мышления, в том числе принцип диалектической противоречиво­сти, принцип историзма и др.

Приемы научного мышления.

Анализ и синтез. Анализ - это прием мышления, связанный с разложением изучаемого объекта на составные части, стороны, тенден­ции развития и способы функционирования с целью их относительно самостоятельного изучения. Синтез - прямо противоположная опера­ция, которая заключается в объединении ранее выделенных частей в целое и с целью получить знание о целом путем выявления тех существенных связей и отношений, которые объединяют ранее выде­ленные в анализе части в одно целое. Эти два взаимосвязанных приема исследования получают в каждой отрасли науки свою конкретизацию. Из общего приема они могут превращаться в специальный метод: так, существуют конкретные методы математического, химического и со­циального анализа. Аналитический метод получил свое развитие и в некоторых философских школах и направлениях. То же можно сказать и о синтезе.

Абстрагирование и идеализация. Эти методы относятся к общенауч­ным приемам исследования. Абстрагирование есть процесс мысленного выделения, вычленения отдельных интересующих нас в контексте исследования признаков, свойств и отношений конкретного предмета или явления и одновременно отвлечение от других свойств, признаков, отношений, которые в данном контексте несущественны. Временное отвлечение от ряда признаков, свойств и отношений изучаемых пред-


метов позволяет глубже понять явление. В зависимости от целей исс­ледований выделяются различные виды абстрагирования. Если требу­ется образовать общее понятие о классе предметов, используется абстракция отождествления, в ходе которой мысленно отвлекаются от несходных признаков и свойств некоторого класса предметов и выде­ляют общие признаки, присущие всему этому классу. Существует также такой вид абстракции, как аналитическая, или изолирующая, абстрак­ция.

Идеализация является относительно самостоятельным приемом познания, хотя она и является разновидностью абстрагирования. Ре­зультатами идеализации являются такие понятия, как "точка", "прямая" в геометрии, "материальная точка" в механике, "абсолютно черное тело" или "идеальный газ" в физике и т. п. В процессе идеализации происходит предельное отвлечение от всех реальных свойств предмета с одновре­менным введением в содержание образуемых понятий поизнаков, нереализуемых в действительности. Образуется так называемый иде­альный объект, которым может оперировать теоретическое мышление при познании реальных объектов. Например, понятие материальной точки в действительности не соответствует ни одному объекту. Но механик, оперируя этим идеальным объектом, способен теоретически объяснить и предсказать поведение реальных, материальных объектов, таких как снаряд, искусственный спутник, планета Солнечной системы и т.д.

Индукция, дедукция, аналогия. Характерным для опытных наук при­емом исследования является индукция. При использовании этого при­ема мысль движется от знания частного, знания фактов к знанию общего, знанию законов. В основе индукции лежат индуктивные умо­заключения. Они проблематичны и не дают достоверного знания. Такие умозаключения как бы "наводят" мысль на открытие общих закономер­ностей, обоснование которых позже дается иными способами. В бук­вальном смысле индукция и означает наведение.

Приемом, по гносеологической направленности противоположным индукции, является дедукция. В дедуктивном умозаключении движение мысли идет от знания общего к знанию частного. В специальном смысле слова термин "дедукция" обозначает процесс логического вы­вода по правилам логики. В отличие от индукции дедуктивные умозак­лючения дают достоверное знание при условии, что такое знание содержалось в посылках. В научном исследовании индуктивные и дедуктивные приемы мышления органически связаны. Индукция на­водит человеческую мысль на гипотезы о причинах и общих законо-


мерностях явлений; дедукция позволяет выводить из общих гипотез эмпирически проверяемые следствия и таким способом эксперимен­тально их обосновывать или опровергать.

Аналогия. При аналогии на основе сходства объектов по некоторым признакам, свойствам и отношениям выдвигают предположение об их сходстве в других отношениях. Вывод по аналогии так же проблемати­чен, как и в индукции, и требует своего дальнейшего обоснования и проверки.

Моделирование. Умозаключение по аналогии лежит в основании такого ныне очень широко распространенного в науке приема иссле­дования, как моделирование. Вообще моделирование в силу своего сложного комплексного характера скорее может быть отнесено к классу методов исследования, чем приемов. Моделирование - это такой ме­тод исследования, при котором интересующий исследователя объект замещается другим объектом, находящимся в отношении подобия к первому объекту. Первый объект называется оригиналом, а второй - моделью. В дальнейшем знания, полученные при изучении модели, переносятся на оригинал на основании аналогии и теории подобия. Моделирование применяется там, где изучение оригинала невозможно или затруднительно и связано с большими расходами и риском. Ти­пичным приемом моделирования является изучение свойств новых конструкций самолетов на их уменьшенных моделях, помещаемых в аэродинамическую трубу. Моделирование может быть предметным, физическим, математическим, логическим, знаковым. Все зависит от выбора характера модели.

Модель - это объективированная в реальности или мысленно представляемая система, замещающая объект познания. В зависимости от выбора средств построения модели различаются и разные виды моделирования. С возникновением новых поколений ЭВМ в науке получило широкое распространение компьютерное моделирование на основании специально создаваемых для этих целей программ. Компь­ютерное моделирование включает в себя использование математиче­ского и логического моделирования.

Наблюдение является исходным методом эмпирического познания. Наблюдение - это целенаправленное изучение предметов, опирающе­еся в основном на такие чувственные способности человека, как ощущение, восприятие, представление; в ходе наблюдения мы получа­ем знание о внешних сторонах, свойствах и признаках рассматривае­мого объекта.

Познавательным итогом наблюдения является описание - фикса-


ция средствами языка исходных сведений об изучаемом объекте. Ре­зультаты наблюдения могут также фиксироваться в схемах, графиках, диаграммах, цифровых данных и просто в рисунках.

К структурным компонентам наблюдения относятся: сам наблюда­тель, объект исследования, условия наблюдения и средства наблюдения - установки, приборы и измерительные инструменты.

С первого взгляда может показаться, что наблюдение относится к пассивным, чисто созерцательным средствам познания и безусловно по отношению к эксперименту оно таковым и является. Но при внешней пассивности в наблюдении в полной мере реализуется то, что именуется активным характером человеческого познания. Активность проявляется прежде всего в целенаправленном характере наблюдения, в наличии исходной установки у наблюдателя: что наблюдать и на какие явления обращать особое внимание. Это обусловливает и второй мо­мент активности наблюдения, а именно его избирательный характер. Однако в процессе наблюдения ученый не игнорирует явления, не входящие в его установки. Они также фиксируются и в конечном счете могут оказаться основанием для установления главных фактов. Актив­ность наблюдения проявляется также и в его теоретической обуслов­ленности. Мы определяли наблюдение как метод, опирающийся на чувственные познавательные способности человека, но в наблюдении постоянно проявляется и рациональная способность в форме теорети­ческих установок. В методологии широко известна фраза: "Ученый смотрит глазами, но видит головой". Так дилетант и геолог, глядя на один и тот же кусок породы, видят, наблюдают разные вещи. Анало­гичным образом обыватель и эголог, наблюдая за поведением живо­тных, зафиксируют различные результаты этого наблюдения. Не прав был Ф. Бэкон, который надеялся перед наблюдением очистить сознание от всех "идолов". Практически это означало бы стирание всего знания, которое ученый получил в процессе образования. Лучший пример тому деятельность Галилея, который для наблюдения небесных явлений создал телескоп, что обусловило значительный прогресс в сборе эмпи­рического материала в этой области. Активность наблюдения проявля­ется и в отборе исследователем средств описания.

Можно построить достаточно богатую классификацию видов на­блюдения, чего мы здесь сделать не сможем. Отметим лишь два важных вида наблюдения, различающихся установкой на качественное и коли­чественное описание явлений. Качественное наблюдение было извест­но человеку с древнейших времен. Наука нового времени начинается с широкого использования количественных наблюдений и соответст-


венно описаний. В основе такого типа наблюдений лежит процедура измерения. Измерение - это процесс определения отношения одной изме­ряемой величины, характеризующей изучаемый объект, к другой однород­ной величине, принятой за единицу. Пример - процедура измерения роста или веса человека. Переход науки к количественным наблюде­ниям и измерению лежит в основании зарождения точных наук, т. к. открывает путь к их математизации и позволяет сделать эксперимен­тальную проверку теоретических гипотез более эффективной.

Эксперимент является, как и Наблюдение, базисным методом на эмпирическом этапе познания. Он включает в себя элементы метода наблюдения, но не тождествен последнему. Он представляет собой более активный метод изучения объекта, чем наблюдение. Практиче­ское вмешательство в ход исследований в нем связано, в основном, с поиском подходящих условий для наблюдения или использования соответствующих приборов, усиливающих органы чувств человека. Со становлением экспериментального метода ученый превращается из наблюдателя природы в естествоиспытателя. Говоря метафорически, с помощью этого метода ученый обретает возможность "задавать вопросы природе".

Эксперимент - это активный целенаправленный метод изучения явлений в точно фиксированных условиях их протекания, которые могут воссоздаваться и контролироваться самим исследователем. Экс­перимент имеет перед наблюдением ряд преимуществ: в ходе экспери­мента изучаемое явление может не только наблюдаться, но и воспроизводиться по желанию исследователя; в условиях эксперимента возможно обнаружение таких свойств явлений, которые нельзя наблю­дать в естественных условиях; эксперимент позволяет изолировать изучаемое явление от усложняющих обстоятельств путем варьирования условий и изучать явление в "чистом виде"; в условиях эксперимента резко расширяется арсенал используемых приборов, инструментов и аппаратов.

В общей структуре научного исследования эксперимент занимает особое место. С одной стороны, именно эксперимент является связу­ющим звеном между теоретическим и эмпирическим этапами и уров­нями научного исследования. По своему замыслу эксперимент всегда опосредован предварительным теоретическим знанием: он задумыва­ется на основании соответствующих теоретических знаний и его целью зачастую является подтверждение или опровержение научной теории или гипотезы. Сами результаты эксперимента нуждаются в определен­ной теоретической интерпретации. Вместе с тем метод эксперимента


по характеру используемых познавательных средств принадлежит к эмпирическому этапу познания. Итогом экспериментального исследо­вания прежде всего является достижение фактуального знания и уста­новление эмпирических закономерностей.

Другой важной гносеологической особенностью эксперимента яв­ляется одновременная его принадлежность и к познавательной, и к практической деятельности человека. Целью экспериментального ис­следования является приращение знания, и в этом отношении он относится к сфере познавательной деятельности. Но поскольку экспе­римент включает в себя определенное преобразование материальных систем, он является одной из форм практики. Эксперимент, будучи формой и методом познания, в то же время выступает в качестве основы и критерия истинности знания, хотя и в ограниченных масштабах. Граница между экспериментом и другими формами практической деятельности относительна, и в некоторых случаях, когда речь идет о крупномасштабном производственном или социальном эксперименте, последний оказывается полноценной формой практической деятель­ности.

Экспериментальный метод, возникнув в недрах физики, нашел затем широкое распространение в химии, биологии, физиологии и других естественных науках. В настоящее время эксперимент все боль­ше распространяется в социологии, выступая и как метод познания, и как средство оптимизации социальных систем. По существу, со времен Галилея экспериментальный метод не претерпел существенных изме­нений с точки зрения его структуры и роли в познании. Существенные изменения произошли в технической оснащенности эксперимента, возникли новые виды эксперимента, связанные с использованием ЭВМ, расширилась сфера применения экспериментального метода. Принципиальная новизна в понимании эксперимента, пожалуй, каса­ется лишь необходимости учета взаимодействия исследуемого объекта с измерительными приборами, что во времена Галилея не представля­лось актуальным.

Выделяются следующие виды эксперимента: 1) исследовательский, или поисковый, эксперимент; 2) проверочный или контрольный экс­перимент; 3) воспроизводящий; 4) изолирующий; 5) качественный или количественный; 6) физический, химический, социальный, биологи­ческий эксперимент. Исследовательский, или поисковый, эксперимент направлен на обнаружение новых, неизвестных науке явлений или их новых, неожиданных свойств. Например, серия экспериментов с про­водниками при различных температурах в свое время закончилась


открытием явления низкотемпературной сверхпроводимости. А экспе­рименты с проводниками сложного физико-химического состава при­вели недавно к открытию высокотемпературной сверхпроводимости. Эксперименты с катодными лучами имели своим результатом открытие Рентгеном нового вида проникающего излучения, названного его име­нем, а опыты с рентгеновскими лучами повлекли за собой открытие А. Беккерелем радиоактивности. В развитых науках большую роль играет проверочный, или контрольный, эксперимент. Объектом про­верки является то или иное теоретическое предсказание либо та или иная гипотеза. По отношению к теоретическим гипотезам эксперимент может быть подтверждающим, опровергающим и решающим. Экспе­римент является подтверждающим, если он задумывается с целью подтвердить эмпирически проверяемые следствия из гипотезы; соот­ветственно, он будет опровергающим, если ставится с целью опровер­жения. Его называют решающим, если целью служит опровержение одной и подтверждение другой из двух (или нескольких) соперничаю­щих теоретических гипотез. Это различие относительно. Эксперимент, задуманный как подтверждающий, может по результатам оказаться опровергающим, и наоборот. Что касается решающего эксперимента, то в силу сложного и неоднозначного характера связи теории с опытом многие исследователи отрицают его существование, хотя на определен­ном этапе соперничества гипотез он может создавать условия для временного предпочтения одной из них. В качестве примера провероч­ного эксперимента выступает один из экспериментов по проверке волновой теории света. В начале прошлого века С. Пуассон, анализируя математическую часть волновой теории света Френеля, пришел к неожиданному выводу: если эта теория верна, то в центре тени, образуемой непроницаемым экраном на пути точечного источника света должно образоваться белое пятно. Этот вывод был не чем иным, как эмпирически проверяемым следствием из теории Френеля, которое казалось крайне маловероятным как для сторонников корпускулярной, так и для сторонников волновой теории света. По замыслу Пуассона, позже был поставлен опыт с целью опровергнуть теории Френеля, но вместо этого его результаты блестяще подтвердили теорию Френеля. Белое пятно в центре тени было обнаружено и названо пятном Пуас­сона.

Особым видом эксперимента является мысленный эксперимент. Ес­ли в реальном эксперименте ученый для воспроизведения, изоляции или изучения свойств того или иного явления ставит его в различные реальные физические условия и варьирует их, то в мысленном экспе-


рименте эти условия являются воображаемыми, но воображение при этом строго регулируется хорошо известными законами науки и пра­вилами логики. Ученый оперирует чувственными образами или теоре­тическими моделями. Последние тесно связаны с их теоретической интерпретацией, поэтому мысленный эксперимент относится скорее к теоретическим, чем к эмпирическим методам исследования. Мыслен­ный эксперимент не может рассматриваться как форма практической деятельности человека. Экспериментом в собственном смысле его можно назвать лишь условно, поскольку способ рассуждения в нем аналогичен порядку операций в реальном эксперименте. Классическим примером является мысленный эксперимент Эйнштейна со свободно падающим лифтом. Результатом была формулировка принципа экви­валентности тяжелой и инертной массы, положенного в основание общей теории относительности.

Проведение экспериментального исследования включает в себя ряд стадий. К первой стадии относится планирование эксперимента, в ходе которого определяется его цель, осуществляется выбор типа экспери­мента и продумываются его возможные результаты. Все это зависит от той исследовательской проблемы, которую ученый пытается решить. В ходе планирования эксперимента существенное значение имеет выде­ление тех факторов, которые оказывают влияние на изучаемое явление и его свойства, а также выделение набора тех величин, которые должны контролироваться и измеряться. Второй этап эксперимента связан с выбором технических средств проведения и контроля эксперимента. Техника, используемая в эксперименте, в том числе и измерительные приборы, должна быть практически выверена и теоретически обосно­вана. В современном эксперименте широко используются статистиче­ские методы контроля. Завершается экспериментальное исследование стадией интерпретации результатов эксперимента, которая включает в себя статистический и теоретический анализ, а также истолкование результатов эксперимента.

Гипотеза как форма и метод теоретического исследования.

Цель теоретического исследования заключается в установлении законов и принципов, которые позволяют систематизировать, объяс­нять и предсказывать факты, установленные в ходе эмпирического исследования. В истории методологии был период, когда некоторые ученые и философы считали, что основным методом теоретического исследования является индуктивный метод, позволяющий логически выводить общие законы и принципы из фактов и эмпирических обоб­щений. Но уже в конце XIX в. стало ясно, что такого метода построить


нельзя. Однозначного дискурсивного пути, ведущего от знаний о фактах к знаниям о законах, не существует. Это по-своему констатировал А, Эйнштейн. Провозгласив, что высшим долгом физиков является установление общих законов, он добавляет, что "к этим законам ведет не логический путь, а только основанная на проникновении в суть опыта интуиция" (Эйнштейн А. "Физика и реальность". М., 1964, с. 9). Но то, что Эйнштейн называет "основанной на проникновении в суть опыта интуицией", на самом деле является сложным познавательным приемом, именуемым методом гипотезы, в рамках которого и прояв­ляется интуиция исследователя.

В методологии термин "гипотеза" используется в двух смыслах: как форма существования знания, характеризующаяся проблематично­стью, недостоверностью, и как метод формирования и обоснования объяснительных предложений, ведущий к установлению законов, принципов, теорий. Гипотеза в первом смысле слова включается в метод гипотезы, но может употребляться и вне связи с ней.

Лучше всего представление о методе гипотезы дает ознакомление с его структурой. Первой стадией метода гипотезы является ознаком­ление с эмпирическим материалом, подлежащим теоретическому объ­яснению. Первоначально этому материалу стараются дать объяснение с помощью уже существующих в науке законов и теорий. Если таковые отсутствуют, ученый переходит ко второй стадии - выдвижению до­гадки или предположения о причинах и закономерностях данных явлений. При этом он старается пользоваться различными приемами исследования: индуктивным наведением, аналогией, моделированием и др. Вполне допустимо, что на этой стадии выдвигается несколько объяснительных предположений, несовместимых друг с другом.

Третья стадия есть стадия оценки серьезности предположения и отбора из множества догадок наиболее вероятной. Гипотеза проверя­ется прежде всего на логическую непротиворечивость, особенно если она имеет сложную форму и разворачивается в систему предположений. Далее гипотеза проверяется на совместимость с фундаментальными интертеоретическими принципами данной науки. Например, если фи­зик, объясняя факты, обнаружит, что его объясняющее предположение входит в противоречие с принципом сохранения энергии или принци­пом физической относительности, он будет склонен отказаться от такого предположения и искать новое решение проблемы. Однако в развитии науки бывают такие периоды, когда ученый склонен игнори­ровать некоторые (но не все) фундаментальные принципы своей науки. Это так называемые революционные, или экстраординарные, периоды,


когда необходима коренная ломка фундаментальных понятий и прин­ципов. Но на этот шаг ученый идет лишь в том случае, если перепро­бованы все традиционные пути решения проблемы. Так, основатели электродинамики были вынуждены отказаться от принципа дальнодей­ствия, который в ньютоновской физике имел фундаментальное значе­ние. М. Планк, перепробовав множество путей традиционного объяснения излучения абсолютно черного тела, отказался от принципа непрерывности действия, который до этого момента считался в физике "неприкосновенным". Такого рода гипотезы Н. Бор и называл "сума­сшедшими идеями". Но от шизофренического бреда эти идеи и догадки отличает то, что, порывая с одним или двумя принципами, они сохра­няют согласие с другими фундаментальными принципами, что и обус­ловливает серьезность выдвигаемой научной гипотезы.

На четвертой стадии происходит разворачивание выдвинутого предположения и дедуктивное выведение из него эмпирически прове­ряемых следствий. На этой стадии возможна частичная переработка гипотезы, введение в нее с помощью мысленных экспериментов уточ­няющих деталей.

На пятой стадии проводится экспериментальная проверка выве­денных из теории следствий. Гипотеза или получает эмпирическое подтверждение, или опровергается в результате экспериментальной проверки. Однако эмпирическое подтверждение следствий из гипотезы не гарантирует ее истинности, а опровержение одного из следствий не свидетельствует однозначно о ее ложности в целом. Все попытки построить эффективную логику подтверждения и опровержения тео­ретических объяснительных гипотез пока не увенчались успехом. Ста­тус объясняющего закона, принципа или теории получает лучшая по результатам проверки из предложенных гипотез. От такой гипотезы, как правило, требуется максимальная объяснительная и предсказатель-ная сила. Особую ценность имеют гипотезы, из которых выводятся так называемые "рискованные предсказания" (термин К. Поппера), кото­рые предсказывают факты невероятные в свете имеющихся теорий или эмпирической интуиции. К числу таких рискованных предсказаний прежде всего относятся предсказание Менделеевым на основании гипотезы периодического закона существования неизвестных химиче­ских элементов и их свойств или предсказание общей теорией относи­тельности отклонения луча света, проходящего вблизи Солнца, от прямолинейного пути. И то, и другое предсказания получили экспери­ментальное подтверждение, что способствовало превращению перио­дического закона и общей теории относительности из гипотез в теории.


Знакомство с общей структурой метода гипотезы позволяет опре­делить ее как сложный комплексный метод познания, включающий в себя все многообразие его и форм и направленный на установление законов, принципов и теорий.

Иногда метод гипотезы называют еще гипотетико-дедуктивным методом, имея в виду тот факт, что выдвижение гипотезы всегда сопровождается дедуктивным выведением из него эмпирически прове­ряемых следствий. Но дедуктивные умозаключения - не единствен­ный логический прием, используемый в рамках метода гипотезы. При установлении степени эмпирической подтверждаемости гипотезы ис­пользуются элементы индуктивной логики. Индукция используется и на стадии выдвижения догадки. Существенное место при выдвижении гипотезы имеет умозаключение по аналогии. Как уже отмечалось, на стадии развития теоретической гипотезы может использоваться и мыс­ленный эксперимент. Что касается интуиции, о которой говорит Эйн­штейн, то она вкраплена во все стадии метода гипотезы, начиная от анализа фактов, подлежащих объяснению, до принятия научным сооб­ществом хорошо обоснованной гипотезы в качестве закона или теории. Именно интуитивное озарение может позволить ученому выделить из совокупности фактов главные, ведущие к выдвижению гениальной догадки. Интуитивное озарение может проявляться и в выборе анало­гии, наводящей на эвристически ценную догадку, и т.д. Дискурсивное мышление в рамках метода гипотезы постоянно перемежается с инту­итивными шагами мысли. Но способность к интуитивному озарению дается гениальному ученому не "от бога", хотя гениальность имеет и врожденные элементы. Как считал Эйнштейн, интуитивное озарение в значительной степени есть продукт "проникновения в суть опыта", что зависит преимущественно от высокого профессионализма и тяже­лой постоянной работы ума над решением поставленной проблемы.

Объяснительная гипотеза как предположение о законе - не един­ственный вид гипотез в науке. Существуют также "экзистенциальные" гипотезы - предположения о существовании неизвестных науке эле­ментарных частиц, единиц наследственности, химических элементов, новых биологических видов и т. п. Способы выдвижения и обоснования таких гипотез отличаются от объяснительных гипотез. Наряду с основ­ными теоретическими гипотезами могут существовать и вспомогатель­ные, позволяющие приводить основную гипотезу в лучшее соответствие с опытом. Как правило, такие вспомогательные гипотезы позже эли­минируются. Существуют и так называемые рабочие гипотезы, которые


позволяют лучше организовать сбор эмпирического материала, но не претендуют на его объяснение.

Важнейшей разновидностью метода гипотезы является метод ма­тематической гипотезы, который характерен для наук с высокой сте­пенью математизации. Описанный выше метод гипотезы является методом содержательной гипотезы. В его рамках сначала формулиру­ются содержательные предположения о законах, а потом они получают соответствующее математическое выражение. В методе математической гипотезы мышление идет другим путем. Сначала для объяснения ко­личественных зависимостей подбирается из смежных областей науки подходящее уравнение, что часто предполагает и его видоизменение, а затем этому уравнению пытаются дать содержательное истолкование. Характеризуя метод математической гипотезы, С. И. Вавилов писал: Положим, что из опыта известно, что изученное явление зависит от ряда переменных и постоянных величин, связанных между собой приближенно некоторым уравнением. Довольно произвольно видоиз­меняя, обобщая это уравнение, можно получить другие соотношения между переменными. В этом и состоит математическая гипотеза или экстраполяция. Она приводит к выражениям, совпадающим или рас­ходящимся с опытом, и соответственно этому применяется дальше или отбрасывается.

Специалист по методологии науки И. В. Кузнецов попытался вы­делить различные способы видоизменения исходных уравнений в про­цессе выдвижения математической гипотезы: 1) изменяется тип, общий вид уравнения; 2) в уравнение подставляются величины другой приро­ды; 3) изменяется и тип уравнения, и вид величины; 4) изменяются предельные граничные условия. Все это дает основание и для типологии метода математической гипотезы.

Сфера применения метода математической гипотезы весьма огра­ничена. Он применим прежде всего в тех дисциплинах, где накоплен богатый арсенал математических средств в теоретическом исследова­нии. К таким дисциплинам прежде всего относится современная фи­зика. Метод математической гипотезы был использован при открытии основных законов квантовой механики. Так, Э. Шредингер для описа­ния движения элементарных частиц за основу взял волновое уравнение классической физики, но дал иную интерпретацию его членов. В итоге был создан волновой вариант квантовой механики. В. Гейзенберг и М. Борн пошли в решении этой задачи другим путем. Они взяли за исходный пункт в выдвижении математической гипотезы канонические уравнения Гамильтона из классической механики, сохранив их мате-


матическую форму или тип уравнения, но ввели в эти уравнения новый тип величин - матрицы. В результате возник матричный вариант кван-тово-механической теории.

Метод гипотезы демонстрирует творческий характер научного ис­следования в процессе открытия новых законов, принципов и создания теорий.

Правила метода гипотезы не предопределяют однозначно резуль­татов исследования и не гарантируют истинности полученного знания. Именно творческая интуиция, творческий выбор из многообразия возможных путей решения проблемы приводит ученого к новой теории. Теория не вычисляется логически и не открывается, она создается творческим гением ученого и на ней всегда лежит печать личности ученого, как она лежит на любом продукте духовно-практической деятельности человека.

§ 3. Компьютер и философия*

Возникновение и интенсивное развитие электронно-вычислитель­ной техники при постоянно расширяющейся сфере ее использования, взаимосвязанное с изменениями в жизненно важных сферах общества, включая экономику, социальную структуру, политику, науку, культуру и повседневную жизнь людей, является объектом изучения различных гуманитарных дисциплин, в том числе и философии.

Первые систематические попытки выявления и изучения философ­ских проблем, связанных с компьютерной техникой и открываемыми ею возможностями, были предприняты в рамках того, что может быть названо кибернетическим движением в широком смысле.

Основатель этого интеллектуального движения, американский ма­тематик Н. Винер, в годы второй мировой войны занимался разработ­кой математических средств для управления огнем с использованием вычислительных устройств, обеспечивающих расчеты для выстрела. Вынужденные в ходе этой работы исследовать выполнение человеком тех функций, которые предстояло передать электротехнической систе­ме,- прежде всего функции предсказания будущего,- ученые обрати­лись к проблемам сознательной деятельности человека и нейрофизиологии. Летом 1947 г. появился термин "кибернетика" - так группа ученых, объединившихся вокруг Винера и Розенблюта, решила

* Параграф написан старшим научным сотрудником Института философии РАН кандидатом философских наук И. Ю. Алексеевой.


назвать "теорию управления и связи в машинах и живых организмах" (См.: Винер Н. "Кибернетика или управление и связь в животном и машине". 2-е изд. М., 1968. С. 56-57). Основными понятиями новой теории стали такие понятия, как "информация", "обратная связь", "кодирование", "адаптация", "гомеостазис" и др.

Идеи кибернетики получили большую популярность как среди ученых самых разных специальностей, так и в широкой публике. Употребление термина "кибернетика" не было однозначным. С кибер­нетикой связывались надежды на создание единой теоретической базы для множества дисциплин, изучавших различные процессы обработки информации в XIX и в XX вв.: теории проводной связи, теории радиосвязи, теории автоматического регулирования, теории математи­ческих машин и др. Нередко эти дисциплины стали называть кибер­нетикой (или технической кибернетикой),- в то же время многие ученые продолжали работать в таких областях, не пользуясь киберне­тической терминологией.

Кибернетика характеризовалась и как "общая теория управления, не связанная непосредственно ни с одной прикладной областью и в то же время применимая к любой из них" (Вир Ст. "Кибернетика и управление производством". Пер. с англ. М.: Гос. изд-во физико-мате­матической литературы, 1963. С. 20), и как точная наука об управлении, непременно использующая количественные методы (Берг А. Предис­ловие к русскому изданию//Там же. С. 5).

Кибернетическое движение в целом включало самые различные направления, в том числе искусственный интеллект, различные типы моделирования, применения логико-математических методов в биоло­гических, медицинских, социально-экономических (и в других гума­нитарных) исследованиях. Это обстоятельство нашло выражение в характеристике кибернетики как "исследования процессов управления в сложных динамических системах, основывающегося на теоретиче­ском фундаменте математики и логики и использующего средства автоматики, особенно электронные цифровые вычислительные, управ­ляющие и информационно-логические машины" (Бирюков Б. В. "Ки­бернетика и методология науки". М., 1974. С. 13).

В русле кибернетического движения осуществлялись философские и логико-методологические исследования управления, информации, мышления, познания, структуры научного знания и перспектив его развития. Характерные для кибернетического движения идея общности (одинаковости или сходства) закономерностей, определяющих процес­сы управления и переработки информации в самых разных сферах


реальности и идея плодотворности использования математических и логико-математических трактовок этих процессов на различных уров­нях абстракции получили специфическое преломление в многочислен­ных сравнениях человеческого мышления и работы ЭВМ.

Появление компьютерных систем, которые стали называть интел­лектуальными системами (ИС), и развитие такого направления, как искусственный интеллект (ИИ), побудило по-новому взглянуть на ряд традиционных теоретико-познавательных проблем, наметить новые пути их исследования, обратить внимание на многие, остававшиеся ранее в тени аспекты познавательной деятельности, механизмов и результатов познания. В ходе бурных дебатов 60-70-х годов на тему "Может ли машина мыслить?" были, по существу, представлены раз­личные варианты ответа на вопрос о том, кто может быть субъектом познания: только ли человек (и, в ограниченном смысле, животные) или же и машина может считаться субъектом мыслящим, обладающим интеллектом и, следовательно, познающим. Сторонники последнего варианта пытались сформулировать такое определение мышления, которое позволяло бы говорить о наличии мышления у машины,- например, мышление определялось как решение задач (См.: Ботвинник M. M. "Почему возникла идея искусственного интеллекта?"// "Кибер­нетика: перспективы развития". М., 1981). [Нужно отметить, однако, что и способность компьютерной системы к принятию каких-либо решений также может быть поставлена (и ставится) под сомнение]. Оппоненты сторонников "компьютерного мышления", напротив, стре­мились выявить такие характеристики мыслительной деятельности человека, которые никак не могут быть приписаны компьютеру и отсутствие которых не позволяет говорить о мышлении в полном смысле этого слова. К числу таких характеристик относили, например, способность к творчеству, эмоциональность (См.: Тюхтин В. С. "Соот­ношение возможностей естественного и искусственного интеллек­тов"//" Вопросы философии". 1979. № 3).

Компьютерное моделирование мышления дало мощный толчок психологическим исследованиям механизмов познавательной деятель­ности. Это проявилось, с одной стороны, в проникновении в психоло­гию "компьютерной метафоры", ориентирующей на изучение познавательной деятельности человека по аналогии с переработкой информации на компьютере, и, с другой стороны, в активизации исследований, стремящихся показать плодотворность и самостоятель­ную ценность иных подходов - например, изучение мышления в кон­тексте общей теории деятельности. O.K. Тихомиров, специально


исследуя "соотношение кибернетического и психологического подхо­дов к изучению мышления", настаивал, что "широко распространенное сближение человеческого мышления и работы вычислительной маши­ны не обосновано". Вместе с тем, отмечает он, "именно развитие кибернетики сделало очевидным неполноту господствовавших в пси­хологии теорий мышления и поведения, выдвинув для изучения новые аспекты" (Тихомиров O.K. "Структура мыслительной деятельности человека. (Опыт теоретического и экспериментального исследования)". Изд-во Моск. ун-та, 1969. С. 4). Характеризуя значение аналогий между человеческим мышлением и компьютерной переработкой информа­ции, английская исследовательница М. Воден пишет: "В той степени, в какой аналогия с компьютером может служить общим человеческим интересам более глубокого познания разума, осторожное использова­ние "психологической" терминологии в отношении определенного типа машин должно скорее поощряться, чем запрещаться... аналогии дают возможность не только обозначить сходные черты между сравнивае­мыми объектами, но ведут к обнаружению действительно важных сходств и различий" (Boden M. A. "Artificial Intelligence and Natural Man". 2nd ed. L., 1987. P. 421).

Компьютерное моделирование мышления, использование методов математических и технических наук в его исследовании породило в период "кибернетического бума" надежды на создание в скором буду­щем строгих теорий мышления, столь полно описывающих данный предмет, что это сделает излишними всякие философские спекуляции по его поводу. Надеждам такого рода, однако же, не суждено было сбыться, и сегодня мышление, будучи предметом изучения ряда част­ных наук (психологии, логики, искусственного интеллекта, когнитив- . ной лингвистики), остается также притягательным объектом философских рассмотрении.

В последние два десятилетия в компьютерных науках заметное внимание стало уделяться такому традиционно входившему в сферу философии предмету, как знание. Слово "знание" стало использоваться в названиях направлений и составляющих компьютерных систем, а также самих систем (системы, основанные на знаниях; базы знаний и банки знаний; представление, приобретение и использование знаний, инженерия знаний). Тема "компьютер и знание" стала предметом обсуждения и в значительно более широком контексте, где на первый


план вышли ее философско-эпистемологические, социальные и поли­тико-технологические аспекты.

Что касается такой области, как ИИ, то не будет преувеличением сказать, что в 80-е годы понятие знания потеснило понятия мышления и интеллекта, традиционно занимавшие почетное место в рефлексии профессионалов ИИ над своей деятельностью. Теория искусственного интеллекта стала иногда характеризоваться как "наука о знаниях, о том, как их добывать, представлять в искусственных системах, перера­батывать внутри системы и использовать для решения задач" (Поспелов Д.А. "Ситуационное управление: теория и практика". М., 1986. С. 7.), а история искусственного интеллекта, исключая ее ранние этапы,- как история исследований методов представления знаний (См.: "Представ­ление и использование знаний"/Под ред. X. Уэно, М. Исидзука. М.,

Расширение сферы применения ИС, переход от "мира кубиков" к таким, более сложным областям, как медицина, геология и химия, потребовал интенсивных усилий по формализации соответствующих знаний. Разработчики ИС столкнулись с необходимостью выявить, упорядочить разнообразные данные, сведения эмпирического характе­ра, теоретические положения и эвристические соображения из соот­ветствующей области науки или иной профессиональной деятельности и задать способы их обработки с помощью компьютера таким образом, чтобы система могла успешно использоваться в решении задач, для которых она предназначается (поиск информации, постановка диагно­за и т. д.). Это привело к изменениям в характере данных, находя­щихся в памяти компьютерной системы,- они стали усложняться, появились структурированные данные - списки, документы, семан­тические сети, фреймы. Для элементарной обработки данных, их поиска, записи в отведенное место и ряда других операций стали использоваться специальные вспомогательные программы. Проце­дуры, связанные с обработкой данных, усложнялись, становились самодовлеющими. Появился такой компонент интеллектуальной си­стемы, как база знаний.

Термин "знания" приобрел в ИИ специфический смысл, который Д. А. Поспелов характеризует следующим образом. Под знаниями по­нимается форма представления информации в ЭВМ, которой присущи такие особенности, как: а) внутренняя интерпретируемость (когда каждая информационная единица должна иметь уникальное имя, по которому система находит ее, а также отвечает на запросы, в которых это имя упомянуто); б) структурированность (включенность одних


информационных единиц в состав других); в) связность (возможность задания временных, каузальных пространственных или иного рода отношений); г) семантическая метрика (возможность задания отно­шений, характеризующих ситуационную близость); д) активность (выполнение программ инициируется текущим состоянием инфор­мационной базы). Именно эти характеристики отличают знания в ИС от данных - "определяют ту грань, за которой данные превращаются в знания, а базы данных перерастают в базы знаний". (См. "Искусст­венный интеллект. Справочное издание в 3 кн.". Т. 2. М., 1990. С. 8).

Пользуясь терминологией Л. Витгенштейна, можно сказать, что это понимание знаний как формы представления информации "работает" в рамках особой, характерной для ИИ языковой игры. В ходе этой языковой игры могут появляться формулировки, способные вызвать недоумение эпистемолога, пытающегося оценить их с точки зрения привычных философских интерпретаций знания. К такого рода фор­мулировкам относятся ставшее "общим местом" утверждение, что дан­ные не являются знаниями, а также предложения использовать в качестве знаний тот или иной язык или выражения типа "под знаниями будем понимать такого-то вида формулы".

Вместе с тем, только что приведенная характеристика знаний в ИС не является совершенно изолированной от того, что мы обычно пони­маем под знанием. Такие черты, как внутренняя интерпретируемость, структурированность, связность, семантическая метрика и активность, присущи любым, более или менее крупным блокам человеческих знаний и в этом смысле знания в компьютерной системе можно рассматривать как модель или образ (в широком понимании данного слова) того или иного фрагмента человеческого знания.

Однако связь знаний в специфическом для ИИ смысле со знанием в более привычном, "обычном", смысле не ограничивается лишь сход­ством некоторых структурных характеристик. Ведь значительная часть информации, представляемой в базе знаний ИС, есть не что иное, как знания, накопленные в той области, где должна применяться данная система. Исследование этого знания (зафиксированного в соответст­вующих текстах или существующего как незафиксированное в тексте и даже неартикулированное знание индивида-эксперта) под углом зрения задач построения ИС и определяет технологический подход ИИ к знанию как таковому.

Технологический подход к знанию предполагает постановку, ис­следование и решение технологических вопросов о знании. К послед­ним относятся вопросы типа "Каким образом следует (можно,


допустимо) обращаться (иметь дело) со знанием, имея в виду достиже­ние такой-то цели?". "Обращаться" или "иметь дело",со знанием пред­полагает здесь не только приобретение, хранение или обработку знаний, но и любые ментальные и речевые акты, осуществляемые в отношении знания,- например, утверждение, что некто ("а") знает нечто ("р"), может быть истолковано как ментальный акт, совершаемый некоторым "наблюдателем" в отношении знания, которым обладает субъект "а" (в качестве "наблюдателя" может выступать субъект "а").

При самом широком истолковании технологический подход к знанию является неотъемлемым элементом жизни любого человека. В этом смысле и первобытный человек, использующий для передачи информации примитивные сигналы, и наш современник, выбирающий между почтой, телеграфом, телефоном и телефаксом, могут считаться решающими технологические вопросы относительно знания.

Примером технологического подхода к исследованию знания как особой сущности может служить характеристика сократовой майевтики в диалогах Платона. Искусство Сократа задавать наводящие вопросы таким образом, что собеседник в конце концов приходит к верным выводам относительно обсуждаемых предметов (во всяком случае, к таким выводам, которые считает верными сам Платон), характеризу­ется здесь как искусство пробуждения истинных мнений, живущих в душе человека, в результате чего мнения становятся знаниями. Пожа­луй, наиболее выразительная иллюстрация этой процедуры дана в известном примере из диалога "Менон", где мальчик-раб решает гео­метрическую задачу. Вообще же говоря, все диалоги Платона демонст­рируют сократову технику "пробуждения" знания. Однако собственно технологический подход к исследованию знания мы находим у Платона лишь в тех случаях, когда сама эта техника становится предметом осмысления, когда сама она рассматривается как средство для совер­шения каких-то действий над знанием. Фрагментарные характеристики данной техники встречаются во многих диалогах - примером может служить тот же "Менон", где говорится о пробуждении знаний вопро­сами. Более подробного рассмотрения она удостоена в диалоге "Теэтет". Здесь Сократ говорил о своем искусстве как аналогичном ремеслу своей матери - повитухи Фенареты, и то, что в "Меноне" характеризовалось как техника пробуждения знаний, здесь характеризуется как своеоб­разная техника родовспоможения "мужчинам, беременным мыслью" (См.: Платон. Соч. в 3 т. Т. 2. М., 1970. С. 234).

Технологические вопросы о знании могут быть до известной сте­пени противопоставлены экзистенциальным вопросам - т. е. вопро-


сам о том, как существует знание, каково оно есть. К вопросам последнего типа относятся, например, вопросы о соотношении знания с мнением или верой, о структуре знания и его видах, об онтологии знания, о том, как происходит познание.

До второй половины нынешнего столетия экзистенциальный под­ход в исследовании знания был преобладающим. Это не означает, конечно, что не развивалась сама технология получения, передачи, хранения и обработки знания, а также оценки результатов познания, претендующих на статус знания. Достаточно вспомнить о развитии книгопечатания и технических устройств для передачи информации, о методах обучения и педагогических исследованиях, посвященных тех­нике передачи знаний и воспитанию способности к самостоятельному приобретению и использованию знаний, развитие методов науки и исследований этих методов. Однако, даже когда эти способы работы со знанием становились предметом исследования, их соотносили не столько со знанием как особого рода сущностью, сколько с познаваемой реальностью (которая могла истолковываться как физическая, менталь­ная или психическая в зависимости от мировоззрения исследователя). Многие из этих рассмотрении могут быть после определенных интер­претаций квалифицированы как технологические, но это все же будет относиться скорее к результату нашей интерпретации, чем к самому исследованию.

Расцвет технологических (в указанном выше смысле) исследований знания связан с развитием эпистемической логики и искусственного интеллекта. Довольно типичной чертой исследований по эпистемиче­ской логике является разработка определенных средств для решения вопроса о том, будет ли такого-то вида формула (содержащая эписте-мические операторы, соответствующие словам "знает", "полагает", "со­мневается", "отрицает" и др.) доказуемой в таком-то исчислении или общезначимой для такого-то типа моделей. С точки зрения технологи­ческого подхода к знанию этот вопрос может быть понят как вопрос о легитимации (узаконении) с использованием определенного символи-ко-концептуального аппарата результатов мертально-речевой деятель­ности в отношении знания некоторого субъекта (или группы субъектов), выраженных в форме, пригодной для применения данного аппарата. Характер легитимируемых результатов определяется как осо­бенностями используемых формализмов, так и позицией исследователя по отношению к экзистенциальным вопросам о знании.

Технологические вопросы о знании, исследуемые в рамках ИИ, касаются, в значительной степени, способов представления знаний.


Проблемы представления знаний связаны, в свою очередь, с разработ­кой соответствующих языков и моделей. Существуют различные типы моделей: логические, продукционные, фреймовые, семантические сети и другие. Логические модели предполагают представление знаний в виде формальных систем (теорий), и в качестве языка представления знаний в таких моделях обычно используется язык логики предикатов. Продукционные представления можно охарактеризовать (упрощенным образом) как системы правил вида "Если А, то В", или "Предпосылка - действие". Сетевые модели предполагают выделение некоторых фик­сированных множеств объектов и задание отношений на них (это могут быть отношения различного рода: пространственные, временные, от­ношения именования и др.). Фреймовые представления иногда рас­сматривают как разновидность семантических сетей, однако для первых характерно наличие фиксированных структур информационных еди­ниц, в которых определены места для имени фрейма, имен слотов и значений слотов. (Характеристику основных моделей представления знаний можно найти в упоминавшемся выше справочном издании "Искусственный интеллект", т. 2, а также, например, в: "The Handbook of Artificial Intelligence". V. 1. Massachusetts ets., 1986). Каждая из упо­мянутых моделей имеет свои достоинства и недостатки в отношении того или иного круга задач.

Преимущества логических моделей, использующих язык логики предикатов, связаны с дедуктивными возможностями исчисления пре­дикатов, теоретической обоснованностью выводов, осуществляемых в системе. Однако такого рода модели в сложных предметных областях могут оказаться слишком громоздкими и недостаточно наглядными в качестве моделей предметной области или соответствующих фрагмен­тов знания. Продукционные модели получили широкое распростране­ние благодаря таким достоинствам, как простота формулировки отдельных правил, пополнения и модификации, а также механизма логического вывода. В качестве недостатка продукционного подхода отмечают низкую эффективность обработки информации при необхо­димости решения сложных задач. Преимущества семантических сетей и фреймовых моделей заключаются, с одной стороны, в их удобстве для описания определенных областей знаний (и соответствующих фрагментов реальности, изучаемых в данных областях), когда выделя­ются основные (с точки зрения задач, для которых создается ИС) объекты предметной области и (или) система понятий, в которых будут анализироваться конкретные ситуации, а также описываются свойства объектов (понятий) и отношения между ними. И хотя в целом для этих


типов моделей существуют значительные проблемы с организацией вывода, фреймовые системы многими были оценены как перспектив­ные благодаря возможностям подведения под них достаточно строгих логических и математических оснований. Разумеется, в ИС вовсе не обязательно должна быть реализована только какая-нибудь одна из упомянутых моделей представления знаний "в чистом виде". Сочетание различных моделей может способствовать созданию более эффектив­ных систем. На уровне теории ИИ это иногда находит отражение в разработке новых типов моделей представления знаний, сочетающих в себе черты моделей, ставших уже традиционными.

В рамках технологического подхода к знанию, осуществляемого ИИ, рассматриваются вопросы экономичности представлений знаний с помощью тех или иных средств, их дедуктивных возможностей, эффективности в решении задач. Вместе с тем влияние теории ИИ (и, в частности, представления знаний) на исследование знания как тако­вого простирается далеко за пределы технологического подхода. Срав­нивая влияние тех или иных моделей представления знаний на экзистенциальные исследования знания, мы не можем не заметить различия в той роли, которую играет, с одной стороны, логический подход и, с другой стороны, такие подходы, как продукционный, фреймовый и другие, объединяемые иногда под общим названием эвристического (См.: Попов Э. В. "Экспертные системы". М., 1987) или когнитивного (см.: "Представление и использование знаний"/Под ред. X. Уэно, М. Исидзука. М., 1989) подхода. Нужно отметить, что оба этих подразделения могут быть приняты лишь условно: подразделение "ло­гический - эвристический" или "логический - когнитивный" вызыва­ет сомнения, поскольку для логических моделей характерно наличие эвристик и, кроме того, модели эти могут содержать допущения отно­сительно когнитивного поведения. Пример - разработанная группой В. К. Финна ИС, которая рассматривается своими создателями как реализация логики здравого смысла, объединяющей естественный ра­ционализм и естественный эмпиризм (См.: Финн В. К. "Об обобщенном ДСМ-методе автоматического порождения гипотез"//"Семиотика и ин­форматика". 1989. Вып. 29).

Тем не менее в целом логический подход к представлению знаний в ИС не привел до сих пор к каким-либо серьезным изменениям в экзистенциальных рассмотрения« знания, к появлению новых влия­тельных концепций в этой области. Прочие же подходы оказывают более заметное влияние на исследование экзистенциальных вопросов о знании - в качестве примера можно сослаться на фреймовую кон-


цепцию строения знания, получившую известное распространение как в психологии, так и в когнитивной лингвистике. Сказанное было бы неверно истолковывать как аргумент в пользу преимуществ этих типов моделей представления знаний перед логическими.

Дело в том, что логический подход в представлении знаний, как и сами логические исчисления, возник на основе трактовок знания, складывавшихся в течение многих веков - на основе того, что может быть названо классической рационалистической эпистемологией с характерными для нее пропозициональным истолкованием элементар­ного знания, рассмотрением теорий математизированных наук в каче­стве образцовых форм организации знания, строгими стандартами правильности рассуждений. Уровень классической эпистемологии и разработанности ее концептуальных основ столь высок, что за период времени, в течение которого ведутся исследования по представлению знаний в компьютерных системах (а этот период ничтожно мал в сравнении с "возрастом" классической эпистемологии), эти исследо­вания, имеющие в качестве своей концептуальной базы саму клас­сическую эпистемологию, закономерно должны были скорее демонстрировать ее возможности в применении к новому кругу задач, чем стимулировать существенные изменения в ней. Утверждение, что неклассические логики, все шире применяемые в представлении зна­ний, также развиваются на концептуальной основе классической эпи­стемологии, может, на первый взгляд, показаться парадоксальным. Тем не менее оно справедливо в той степени, в какой неклассические логики являются модификациями классических исчислений и разделяют с ними те глубинные концептуальные предпосылки, которые могут быть в известном смысле противопоставлены концептуальным основам иных подходов. С этой точки зрения, работы по логике естественного языка и рассуждений здравого смысла свидетельствуют о высокой гибкости инструментария, развиваемого на базе классической эписте­мологии и о богатстве его возможностей.

Другие подходы в представлении знаний достаточно тесно связаны с развитием когнитивной психологии. Однако само это направление сложилось под влиянием "компьютерной метафоры", когда познава­тельные процессы стали рассматриваться по аналогии с работой вы­числительных машин. Неудивительно поэтому, что происходящее в ИИ оказывало и оказывает заметное воздействие на когнитивную психо­логию (как и на еще более молодое направление - когнитивную лин­гвистику). Это справедливо и в отношении собственно представления знаний. И фреймовые, и сетевые модели основываются на соответст-


вующих концепциях структур человеческого восприятия и памяти. Показательно при этом, что концепция фрейма как когнитивной струк­туры была мотивирована задачами разработки ИС. Вместе с тем, эта концепция имеет самостоятельное значение как концепция психоло­гическая и эпичтемологическая и используется в исследовании про­блем, выходящих за рамки собственно разработок компьютерных систем (См., напр.: Филмор И. "Фреймы и семантика понимания"//"Но-вое в зарубежной лингвистике". М., 1988. Вып. 23. "Когнитивные аспекты языка").

Сегодня можно говорить о том, что представлению знаний в ЭВМ в виде систем правил (что характерно, прежде всего, для продукцион­ных моделей) соответствует новый подход в философско-эпистемоло-гических исследованиях, придающий особое значение правилам и предписаниям, регулирующим человеческую деятельность. Этот подход представлен в работах А. И. Ракитова. В середине 80-х годов А. И. Ракитов и Т. В. Андрианова прогнозировали возможность появления новых тенденций в эпистемологии, касающихся прежде всего исследо­вания познавательной функции правил как особой эпистемологиче-ской категории и выявления механизма рационализации и регулятивной трансформации интеллектуального творчества. Такого рода предположения (и постановка задачи развития эпистемологии в этом направлении) были обусловлены тем обстоятельством, что для построения баз знаний компьютерных систем потребовалось изучение механизмов функционирования знания под таким углом зрения, чтобы это позволило выявить правила работы данных механизмов, т. е. "инструкции, указывающие, какие классы действий или отдельные действия и каким образом должны быть выполнены" (Ракитов А. И., Андрианова Т. В. "Философия компьютерной революции"//"Вопросы философии". 1986. № 11. С. 78).

В книге "Философия компьютерной революции" (М., 1991) А. И. Ракитов выдвигает идею "информационной эпистемологии". "Возник­новение "интеллектуальной технологии" и жгучий интерес к природе и возможностям машинного мышления, порожденный компьютерной революцией,- пишет он, - привели к формированию нового, нетра­диционного раздела эпистемол

По направлению Психология выпускник должен обладать «культурой научного мышления». Актуальность работы обусловлена необходимостью определения понятия «научное мышление» и выявления его сущностных характеристик. Для анализа особенностей развития научного мышления целесообразно рассмотреть развитие и характеристики других типов мышления, рассматриваемых в контексте профессионального образования , а именно:

Эмпирическое;

Теоретическое;

Профессиональное;

Научное мышление.

Одной из основных целей обучения является присвоение индивидом способов мышления, которые закрепляют и воспроизводят в понятийной форме структуру предметной деятельности.

Понятия, и, следовательно, оперирующий ими тип мышления, классифицируется на эмпирические и теоретические по типу абстракции (формальной или содержательной) и обобщения (по внешним признакам или внутренним, существенным связям), а так же на научное и житейское – по пути своего развития.

В основе теоретического мышления лежит теоретическое понятие, развивающееся в процессе освоения научного метода. Житейское понятие (псевдопонятие) лежит в основе комплексного мышления, являясь по своему содержанию комплексом - обобщением построенным на образных а не логических основах, развивающихся при усвоении детьми значения слов (вне специального обучения).

выделяет следующие сущностные особенности теоретического понятия:

Принадлежность к единой системе знания. Теоретические понятия выявляют отношения внутри целостной системы знания.

Отражение динамики развития системы. «… в этих понятиях воспроизводится процесс развития, становления системы, целостности конкретного и лишь внутри этого процесса раскрываются особенности и взаимосвязи единичных предметов».

Теоретическое мышление развивается в процессе учебной деятельности как её новообразование. Анализируя структуру построения учебных действий по решению учебных задач, можно сказать, что критерием освоения студентом этого типа мышления является умение решать практические задачи на теоретическом уровне, показателем чего является переход от элементарной формы практического мышления к сложной (требующей использования результатов отвлечённой теоретической деятельности). Теоретическое мышление позволяет студенту корректно строить модель изучаемого предмета ми использовать её для решения конкретной задачи. Поэтому теоретическое мышление является необходимым условием развития профессиональной компетентности.

Возникновение термина «профессиональное мышление» подчёркивает роль практического опыта, умения применять полученные знания в реальной профессиональной деятельности .

Профессиональное мышление часто отождествляется с научным. В основе данного подхода лежит дифференциация на частнонаучный и общенаучный уровни. Общенаучный уровень – уровень методологии (философии) науки в целом, тогда как частнонаучный уровень предполагает владение методом определённой, частной науки.

Научное мышление, позволяющее выходить за границы системы развивается на основе частнонаучного мышления: «Ибо только тот выход за пределы данной научной системы плодотворен и чреват открытием новой системы, которому предшествовало исчерпание всех возможностей объяснения новых проблематических фактов в рамках старой системы». Новые научные факты привносятся в науку благодаря профессиональной практической деятельности специалистов. Чстнонучное же мышление необходимо содержит в своей основе мышление теоретическое. Поэтому можно сказать, что научное мышление включает в себя все качества и свойства вышеперечисленных типов мышления как своих подструктурных элементов.

Таким образом, мы можем выделить следующие характеристики/критерии оценки научного мышления:

а) тип используемых понятий: научный.

Поскольку полученную в результате процесса познания модель является не простой суммой знаний о различных сторонах предмета, а цельным и всесторонним знанием о предмете как едином целом, студенту необходимо видеть понятие как модель, и модель эту – в системе научного знания.

Обобщаясь всё более, научные понятия восходят к единой, целостной научной карте мира как существующей парадигме, поэтому критерием освоения понятийного аппарата конкретной науки в процессе развития теоретического мышления является формирование системы знаний, а не их совокупности.

Важно подчеркнуть, что системность знания может быть только результатом суждений студента – самостоятельного объединения их в систему, посредствам выявления сущностных (структурных) взаимосвязей.

б) система научного знания как результат самостоятельного поиска структурных взаимосвязей.

Умение применить имеющиеся знания на практике и использовать их как ориентир в своей профессиональной деятельности, заключается во владении методом, позволяющим строить модель реального предмета и изучать его на теоретическом уровне.


в) метод научного моделирования.

Поскольку научное мышление раскрывает природу частного в его структурных взаимосвязях с общим (общенаучным) знанием, для развития собственной научной карты мира студенту необходимо постоянно соотносить вновь полученные знания с ранее существующими.

г) научная карта мира как результат постоянной интеграции нового знания.

Научное мышление предполагает специфическую опосредованность восприятия задачи. В зависимости от уровня и содержания знаний человека, он не только по-иному рассуждает, но и по-иному видит то, что ему дано – знания человека отражаются в его восприятии действительности. Поэтому смена вышеперечисленных типов мышления – от эмпирического к научному – определяет направление развития студента в процессе обучения в ВУЗе.

Анализируя различные педагогические концепции начала XIX – XXI веков, можно сказать, что так или иначе все они содержат в себе однотипные схемы развития мышления учащихся.

Гессен выделяет три основные научного образования, различающихся «не объёмом и количеством материала, но самим способом и задачей преподавания»:

Ступень эпизодического курса: задача - осознание основных элементов, из которых строится окружающие его эпизоды и объясняющей их системы; форма – вопрос.

Ступень систематического курса: задача – освоение системы знаний как продуктом метода; форма - задание

Ступень научного курса: освоение научного метода форма: задача

В основе концепции поэтапного формирования умственных действий Гальперина лежит аналогичная схема: на первом этапе ученик осваивает базовые понятия и метод как формулу действия, решая задачи с полной ориентировочной основой (1); это позволяет ему перейти к решению задач с неполной ориентировочной основой (2); и, далее, самостоятельно строить ориентировочные основы для проблемных ситуаций, преобразовывая, тем самым, их в задачи (3).

Так, в большинстве педагогических концепций первый этап обучения представлен заданиями, которые решаются по образцу.

Второй этап – задачами.

Третий – проблемными ситуациями.

Уровень же научного мышления представлен ситуацией отсутствия проблемы и характеризуется возможностью её поставить и самостоятельно преобразовать в задачу.

Важно подчеркнуть несколько принципиальных отличий учебной деятельности от научной:

Цель – субъективное открытие нового знания/ объективное;

Форма – задача/проблема;

Оценка и интеграция результатов работы – локальная/глобальная;

Направленность – репродуктивная/ творческая.

Творческая составляющая научного мышления задаётся я как самой его целью – достижение объективно нового знания о мире – так и процессом мышления: в ходе научной работы необходима постоянная интеграция результатов частнонаучных исследований в общую, единую научную карту мира. В этом соотнесении новых результатов с уже известными науке теориями и фактами и заключается осмысление мира, оно раскрывает суть и творческую природу научного мышления.

«Узнать, - пишет Гессен - овладел ли учащийся методом научного мышления, нельзя ни путём опроса, ни путём предложения ему для решения одной или нескольких задач. Владение методом научного знания означает уменье применить его к решению самых разнообразных вопросов, способность приходить самому к новому знанию, а на вершине научного образования – расширять сферу знания самостоятельными исследованиями».

Исследовать процесс мышления на базе решения учебных задач не представляется возможным ещё и по той причине, что в реальном процессе познавательной деятельности , как справедливо отмечает Матюшкин, необходимо существуют ещё как минимум два звена исследуемой цепи:

Во-первых, практически не исследуются те виды познавательной активности, которые предшествуют возникновению и формулированию задачи. «Мыслительный акт начинается с центрального звена проблемной ситуации – неизвестного. Он выражается как вопрос к действительности, первоначально обращённый к другому человеку».

И, во-вторых, это оценка, репрезентация и реализация решения, следующие за актом решения. В этих звеньях представлено понимание собственного найденного решения. Их значение особенно важно для развития мышления учащихся, рефлексивных уровней его регуляции.

Диалогические формы учебной деятельности формируют «второй план» работы: понимания – изложения; решения – обоснования; восприятия – оценки. Диалогичность мышления становится внутреннем достоянием студента, когда он научается вести внутренний диалог, соотносить свои рассуждения с возможными возражениями оппонентов и использовать систему научной аргументации.

Таким образом, полная структура мыслительного акта включает:

Порождение проблемы и формирование мыслительной задачи,

Решение задачи,

Обоснование и репрезентация найденного решения.

Решение задачи и подразумевает:

1. Выбор проблемы

2. Преобразование проблемной ситуации в задачу:

- Выявление условия и требований задачи как членов основного отношения

Здесь же происходит формирование антиципирующей схемы

Выявление требований позволяет начать прогнозирование. (Может быть не ясно, каким конкретно будет искомый предмет, но уже достаточно известно, каким требованиям он должен удовлетворять).

3. Моделирование основного отношения задачи

«Важно, что бы заместители были адекватны объекту и действовали не в соответствии со своими свойствами, а в соответствии со свойствами реальных объектов, которые они замещают».

4. Постановка гипотезы

Отсутствие изначально заданного эталона или образца решения предполагает необходимость выявления части условий в качестве исходных и постановку вопроса о том, не расходится ли намечающееся решение с остальными (невидимыми) условиями – наметившееся решение становится гипотезой. Данная гипотеза является актом прогнозирования и всё дальнейшее мышление разворачивается как её проверка. Мышление соотносит, сопоставляет каждую мысль, возникшую в процессе мышления, с задачей, её условиями.

Способ мышления студента, должный являться новообразованием развития, не определяется решением поставленной задачи, поскольку и не решение задачи приводит к образованию относительно стабильных продуктов мыслительной деятельности – формированию понятий, суждений, изменению отношения к предмету мыслительной деятельности и т. д.

1. тип используемых понятий /например/:

1 – эмпирические понятия, бессистемно

2 – научные (корректно), бессистемно

3 – научные (корректно), систематизировано.

2. система научного знания как результат самостоятельного поиска структурных взаимосвязей:

3. метод научного моделирования – по пунктам.

4. Способность к интеграции частноначного знания в систему общеначного.

5. Проблемность – способность видеть проблему и ставить её, преобразовывая в задачу.

6. Способ репрезентации – (критичность, аргументированность,

Научное мышление -- совокупность характерных черт мышления ученых, система ориентации на те или иные идеи, методы, образцы исследования, интерпретации и оценки; "готовность к направленному восприятию и соответствующему пониманию того, что воспринято". Научное мышление может формироваться под влиянием различных научных картин мира (например, эксперименты У. Гарвея, приведшие к открытию кровообращения, интерпретировались им одновременно с точки зрения механистической и аристотелевской научных картин мира; разрешение противоречий, возникавших при этом, вело к созданию теоретической физиологии).

Идеалы и нормы объяснения и описания, доказательности и обоснованности, строения (организации) научного знания, определяющие научное мышление, обусловлены историческим состоянием науки и обладают как инвариантным, так и вариабельным содержанием. Например, идеал обоснованного знания инвариантен для всех этапов истории науки, но по-разному трактуется в различных философско-методологических и научных традициях: в "картезианской" науке обоснованность знания равнозначна его выводимости из самоочевидных истин, в "ньютонианской" науке она является синонимом эмпирической проверяемости; идеал детерминистского объяснения существенно различен в эпоху П. Лапласа и в эпоху квантовой физики.

Научное мышление заменяет повторную смежность и совпадение отдельных фактов открытием одного значительного факта, причем достигает этой замены, разбивая грубые и цельные факты наблюдения на известное число более тонких процессов, недоступных непосредственно восприятию.

Рассмотрим роль и возможности формирования умений мыслить научно у школьников. Проводимые изменения в системе среднего образования позволяют говорить о том, что школа сегодня реально ориентируется на многообразие образовательных потребностей, на личность обучаемого. Вариативное образование помогает школьникам обрести иные пути понимания и переживания знаний в изменяющемся мире. Современному ученику нужно передавать не столько информацию, как собрание готовых ответов, сколько метод их получения, анализа и прогнозирования интеллектуального развития личности.

На современном этапе развития школы экстенсивный путь получения знаний исчерпал себя. На смену прежней системы увеличения объема знаний приходит интенсивный путь включающий в себя становление принципиально новых образовательных технологий. Эти технологии базируются на продуктивности, креативности, мобильности а главное опираются на научное мышление, формирование которого становится основной задачей образовательного процесса.

Научное мышление одна из ступеней человеческого познания. Оно позволяет получать знания о таких объектах, свойствах и отношениях реального мира, которые не могут быть непосредственно восприняты на чувственной ступени познания.

Предпосылки научного мышления, связанны с устройством человеческого ума. Оно направлено, прежде всего, на объяснение изучаемых наукой явлений, а объяснение - это особая форма мышления, связанная не только с онтологическим устройством мира, его организованностью в систему причинно-следственных связей, но и с особенностями человеческого ума. Потребность в объяснении "встроена" в наш ум, является одной из его внутренних закономерностей.

Формирования научного мышления начинает складываться в старшем школьном возрасте. Только в отношении старшего школьного возраста можно серьезно говорить о формировании подлинно научного мировоззрения. Для этого необходима определенная степень моральной, интеллектуальной, психической зрелости.

Процесс формирования научного мировоззрения у старшеклассников связан с умением правильно оценивать общественные явления, с воспитанием правильного отношения к ним. Возможно, и необходимо специально обучать школьников приемам самостоятельного научного анализа и оценки социально-экономических и общественных фактов и явлений.

Однако выбор методологических знаний из широкого спектра современных образовательных стандартов, способствующих развитию научного мышления у обучающихся довольно сложен. С одной стороны эти знания необходимы, а с другой должны быть достаточны и посильны для полноценного усвоения школьниками предметного материала.

Необходимыми условиями формированием научного мышления у обучающихся являются некоторые моменты преподавания:

· организация исследовательской деятельности;

· обучение рациональным приемам научного анализа и оценки социально-исторических и общественно-политических явлений с помощью научно обоснованных критериев;

· формирование необходимых навыков работы с различными источниками информации, умений преподнести и защитить свою точку зрения; мышление научный школьный ученик

· расширение сферы использования информационных технологий: привлечение ресурсов Интернета, создание презентационных материалов;

Исследование, исследовательское поведение - одна из фундаментальных форм взаимодействия живых существ с реальным миром, направленная на его изучение и познание этого мира. Оно выполняет принципиально незаменимые функции в развитии познавательных процессов всех уровней, в приобретении социального опыта, в социальном развитии и развитии личности. Понятие исследовательского поведения находится в одном ряду с такими фундаментальными понятиями, как научение, интеллект, творчество, образуя с ними неразрывную связь.

В организации исследовательской деятельности необходимо разделять научно-исследовательскую деятельность школьника с учебно-исследовательской. Научно-исследовательская деятельность, включает в себя производство новых знаний в общекультурном значении. Исследование здесь является способом получения результата.

В данном случае речь идет об учебно-исследовательской деятельности основанной на использовании приемов, позволяющих создать мотивационную базу для осознанного восприятия знаний в ходе исследовательской деятельности и выработать интеллектуальные умения лежащие в основе научного мышления учащихся. В ходе учебно-исследовательской деятельности происходит самостоятельное приобретение новых личностно-значимых знаний. В результате повышения мотивации к учебной деятельности учащиеся приобретают навыки исследования как способ освоения действительности.

Метод исследовательской деятельности учащихся особенно актуален в старших классах школы, т.к., во-первых, ученики уже обладают определённым набором знаний, умений и навыков, необходимых для самостоятельной научной работы (сбора и осмысления информации, работы с источниковой базой, самостоятельным мышлением); во-вторых, в контексте реформы образования, направленной на профилизацию старших классов, ученик может избрать наиболее для него нужную и интересную сферу для работы над исследованием; в-третьих, учащиеся перед поступлением в высшее учебное заведение имеют возможность овладеть навыками исследовательской работы, умением связно и чётко формулировать свои мысли, знают, как использовать научный аппарат и т.д.

Исследовательская деятельность учащихся приобретает всё большее значение в современных образовательных технологиях. Это связано, прежде всего, с тенденциями развития российского общества. Быстрые перемены в различных сферах жизни требуют от школы больших усилий, направленных к развитию следующих умений и навыков: умение самостоятельно приобретать знания, применять свои знания на практике для решения разнообразных проблем, работать с различной информацией, анализировать, обобщать, аргументировать, самостоятельно критически мыслить, искать рациональные пути в решении проблем, быть коммуникабельным, контактным в различных социальных группах, гибко адаптироваться в меняющихся жизненных ситуациях. Эти навыки формируют и развивают педагогические технологии, которые учат, как вырабатывать активную, деятельную позицию. Именно к таким технологиям относится и ученическое исследование.

В основе исследовательской деятельности старшеклассника лежит потребность в новой информации, новых впечатлениях и знаниях, в новых результатах деятельности. Эта потребность является неотъемлемой составляющей формирования личности. Под исследовательской активностью так же понимается творческое отношение школьника к миру, которое выражается в мотивационной готовности и интеллектуальной способности к познанию реальности путём практического взаимодействия с ней, к самостоятельной постановке разнообразных исследовательских целей, к изобретению новых способов и средств их достижения, к получению разнообразных, в том числе неожиданных, непрогнозировавшихся результатов исследования.

Для развития исследовательской активности учащегося, а соответственно и научного мышления необходимо найти дополнительные формы образовательной деятельности, в которых школьники могли бы принять участие на добровольной основе -- основе интереса к тому или иному направлению.

Научное общество школьников создано с целью совершенствования знаний учащихся в определенной области науки, их знакомства с методами научного познания; развития интересов и способностей школьников, приобретения умений и навыков поисково-исследовательской деятельности, а также понимания глубокой связи, существующей между отдельными учебными дисциплинами. Основные задачи научного общества это: формирование умений и навыков работы с научной литературой и аппаратурой; выявление способностей ведения поисковой работы; профориентационная работа среди школьников.

Очень часто ошибкой является стремление учителя превратить ученическое исследование в полноценную научную работу, предъявляя к работе ученика требования как к дипломной работе выпускника вуза. Нельзя забывать, что школьник впервые знакомится с основами научно-исследовательской работы. И, несмотря на то, что исследование он проводит самостоятельно и сам приходит к определённым выводам и результатам, учитель должен проводить работу совместно с учеником, постоянно контролируя её на всех этапах. Роль учителя чрезвычайна, важна на всех этапах проведения исследования, да сама форма исследовательской работы предполагает очень тесное сотрудничество учителя и ученика.

Работа начинается с определения темы, формулирования целей и задач исследования. В выборе темы учитель должен учитывать, прежде всего, интересы ученика. В истории множество знаменательных дат и событий, которые являются важными вехами в развитии нашей страны. И, конечно, хочется, чтобы ученик избрал актуальную на сегодняшний день тему. Но если он сам проявляет инициативу, то тема должна быть ему близка и являться сферой именно его (а не учителя) интересов. Задача учителя на этом этапе помочь ему сделать осознанный выбор, показать значимость выбранной темы, как в личном плане, так и в социальном контексте. При исследовании сложной системы необходимо множественное целеполагание - постановка разнообразных, разнотипных и разноуровневых целей, которые могут конкурировать между собой. Мотивационной основой успешного исследования сложных систем человеком являются его любознательность и познавательная активность, в том числе бескорыстная.

Поэтому помощь в осуществлении и развитии исследовательского поведения учащихся имеет свою специфику. В тех областях, где исследовательское поведение требуется больше всего (в областях высокой неопределённости, новизны и динамики), возникает целый ряд дополнительных степеней свободы для развёртывания практической и познавательной деятельности, но также и ряд принципиальных ограничений.

Одним из направлений развития научного мышления является система приемов и эвристик решения различных задач: от типовых до, так называемых, нестандартных (проблемных, творческих, олимпиадных, развивающих и т.п.). Разработаны подходы и представлены конкретные примеры построения заданий, направленные на овладение методологическими знаниями в их ориентировочной и инструментальной функции. В частности, обоснована целесообразность группировки и анализа "разнопредметных" по содержанию задач, но сходных в отношении познавательных стратегий, применяемых для их решения.

Проводятся викторины из системы занимательных, не содержательных вопросов. Иногда учащимся предлагаются графические задания-загадки на карточках с вопросом: "Что это такое?" Учащиеся проявляют большой интерес к логическим задачам, в которых им надлежит в тексте добавить ту или иную пропущенную строчку.

Обоснована необходимость использовать, в качестве развивающих, задачи исследовательского типа. Их содержание предполагает многовариантность исходов решения в зависимости от сочетания значений характеристик, на основе которых задается сюжет проблемы. Они направлены на формирование теоретического мышления, моделируют реальные проблемные ситуации, возникающие в решении научных и практических задач.

Формированию научного мышления способствуют текстовые задачи исследовательского типа, предусматривающие в качестве опосредствующего звена при решении построение и анализ теоретической модели ситуации, задаваемой сюжетом задачи. При том предполагается, что конкретно предметные знания, необходимые для ее решения, достаточно хорошо освоены учащимися. Формируя предметные знания, необходимо воздействовать на ум, чувства и волю школьника.

В условиях современной системы образования проблема развития системно-логического мышления учащихся приобретает особую актуальность. Именно системно-логическое мышление как личностное качество обучаемых наиболее ярко проявляется в обнаружении и преодолении противоречий, возникающих затруднений. В этих условиях активизации учебной деятельности создает возможность решать проблему первичности формирования способностей к творчеству и вторичности знаний, которые опять же нужны для развития творческих качеств личности ученика.

Развитие самостоятельности мышления есть основная задача школьного обучения. Она включает в себя поощрение активности в поиске путей достижения поставленной цели предполагает решение детьми нетиповых, нестандартных задач. Условия, необходимые для организации систематической работы по формированию и развитию самостоятельности мышления очень трудно обеспечить на уроке.

Этому должна служить организация систематических занятий во внеклассной работе. Умственное развитие, развитие мышления является важной стороной в развитии личности младшего школьника, в частности в ее познавательной сфере.

Мышлению человека характерен активный поиск связей и отношений между разными событиями. Именно направление на отражение прямо не наблюдающихся связей и отношений, на выделение в видах и явлениях главных и неравных, существенных и не существенных деталей отличает мышление как познавательный процесс от восприятий и ощущений. При выделении связей и отношений можно действовать по-разному, в одних случаях, чтобы установить отношения между предметами, нужно их реально изменить, преобразовать. В других случаях достаточно, не трогая сами предметы, изменять лишь их образы, мысленно представляя. Возможны и такие случаи, когда отношения между вещами устанавливают, не прибегая к практическому или мысленному изменению вещей, а только путем рассуждений и умозаключений. Таким образом, школьник устанавливает невидимые отношения вещей, т.е. мыслит по-разному, с помощью разных средств, разных способов.

В первом случае, это будет практическое мышление, наглядно - действенное, поскольку здесь ученик для выяснения отношений действует с предметами, практически изменяет их состав, свойства.

Во втором случае, мышление будет наглядно - образным, поскольку здесь для выяснения отношений оперируют лишь в мысленном плане, с образами предметов, если предмет в данный момент здесь присутствуют или с их представлениями, если предмет отсутствует. Огромный интерес у учащихся вызывает использование на уроках видео материала, что является мотивацией научной деятельности и формирует наглядно-образное мышление. В последующем срабатывает обратная связь учитель - ученик, когда учащиеся, заинтересованные научно-популярными историческими передачами, приводят интересные факты, проводят научные исследования.

В третьем случае мышление будет словесно - логическое, поскольку здесь для выяснения отношений школьник использует слова, (а не сами предметы или их образы), которые лишь обозначают предметы, строит из этих слов суждения, связанные по правилам логики, от общих суждений к частному.

Итак, научное мышление школьника осуществляется тремя способами; наглядно действенный, наглядно - образный, словесно - логический. Поэтому главная цель работы по развитию у детей словесно - логического мышления заключается в том, чтобы с его помощью формировать у детей умение рассуждать, делать выводы из тех суждений, которые предлагаются в качестве исходных, умение ограничиваться содержанием этих суждений и не привлекать других соображений, связанных с внешними особенностями тех вещей или образов, которые отражаются и обозначаются в исходных суждениях.

Своеобразие наглядно - образного мышления заключается в том, что, решая задачи с его помощью, старшеклассник не имеет возможности реально изменять образы и представления. Это позволяет разрабатывать разные планы для достижения цели, мысленно согласовывать их, чтобы найти наилучший план научной работы.

Так решение задач с помощью наглядно - действенного мышления позволяет развивать у учеников навыки управления своими действиями, осуществление целенаправленных, а не случайных и хаотичных попыток в решении задач.

Формирование у учащихся научного мышления предполагает понимание ими процесса и методов познания, логики научной деятельности, как деятельности по приобретению и изложению научных знаний.

Логическая культура предполагает не только умение рассуждать последовательно и доказательно, с соблюдением законов логики, но и способность обнаруживать в рассуждении логические ошибки и подвергать их квалифицированному анализу. Отсюда, школа должна способствовать формированию у учащихся логической культуры, основанной на законах и операциях правильного мышления.

В настоящее время в условиях быстро меняющегося мира, требующего от человека умения ориентироваться в новых и часто неопределенных, нестандартных ситуациях, такой же важной задачей школы является максимальное развитие творческих способностей учащихся, формирование у них научного мышления.

Каждый человек по мере продвижения по линии жизни познает окружающий мир. Для этого он применяет органы чувств и логику, сравнивая внешний вид предметов, запахи, фактуру, расстояния, размеры, а так же влияние свойств предметов друг на друга при их взаимодействии. Думаю ни для кого не секрет: кому-то достаточно поверхностных знаний, а кто-то хочет дойти до сути вещей. Есть мнение, что второй подход не только позволяет понять многие стороны нашей жизни, но и провести её спокойно и счастливо.

Наверняка вы задумывались о том, что зачастую наши умозаключения лишены объективности, искажены неполным знанием фактов и предвзяты ввиду неосведомленности. Тем не менее, качество жизни и того, что мы делаем, напрямую зависит от образа нашего мышления. В итоге можно дорого заплатить за такое легкомыслие, или же – постараться развить в себе мастерство научного познания в широком смысле этого слова.

Научное мышление – это способ восприятия мира, при котором совершенствуется качество познания, благодаря умелому контролю над составляющими этого процесса и следованию критериям интеллектуальности.

В результате такой работы над собой у человека появляется ряд неоспоримых преимуществ. Он способен поднимать важные для себя вопросы, выражая их ясно и точно. Собирать о них информацию и трезво её оценивать, используя абстрактное мышление для более эффективного представления. Приходить к обоснованным заключениям и решениям, проверяя их в соответствующих условиях. Для него открывается возможность мыслить непредубежденно в рамках различных понятий и осознавать их смысл, выдвигать предположения и проверять их на практике. В итоге, человек может продуктивно взаимодействовать с людьми, предлагая решения для комплексных задач.

В то же время исследователь должен обладать определенной степенью смелости, отстаивая свое мнение, даже если оно является непопулярным.

За счет чего такие результаты могут быть достигнуты? Какими инструментами стоит пользоваться? Одной из составляющих научного мышления является . В предыдущем абзаце прозвучала фраза «критерии интеллектуальности» – что это такое? Это черты личности, мыслительного процесса и речи, которые помогают структурировать информацию о предмете размышления и получить более полную картину поставленной проблемы.

Среди них, в первую очередь, такие качества, как точность и ясность. Ясность поставленной проблемы формируется за счет уточнения. Например, совершенно по разному звучит постановка вопроса «Как мне расставить мебель в спальне?» и «Как мне расставить мебель в спальне, чтобы было достаточно места для утренней зарядки и была возможность смотреть фильмы?». Дабы не тратить время на лишнюю информацию, сведения должны относиться к поставленной проблеме – быть релевантными.

Очевидно, что для решения вопроса расположения мебели, цвет её не всегда так важен. Кроме того, рассмотрение проблемы должно быть глубоким и учитывать всю широту аспектов и мнений. Так, стоит задуматься, смотреть фильм с проектора или же лучше повесить плазменную панель? Если проектор, то достаточно ли будет места между ним и стеной для комфортного просмотра картинки? Не будет ли цвет стены сильно менять цвет изображения? Какого рода зарядку я буду делать – крутить холохуп или разминаться на коврике? Сколько именно места мне понадобится?

Таков начальный инструментарий научного мышления. Ученые, изучающие различные области знания, применяют его для формирования звеньев цепи научного исследования, сочетая теоретические и эмпирические методы. Давайте разберем, чем занимается такая историческая дисциплина, как археология. Начнем с постановки задачи – поиск вещественных источников прошлого и их интерпретация в целях изучения истории человечества.

Очевидно, что место раскопок выбирается не случайно: перед этим ученые задумываются – где удастся собрать больше полезной информации, требуемой для ответа на конкретный исторический вопрос? Для этого они проводят анализ имеющихся данных путем исследования местности, исторических письменных источников и трудов других исследователей.

Такие качества характера, как сопереживание и честность позволят развивать точки зрения, отличные от собственных.

Во время раскопок, археологи строго фиксируют обстоятельства обнаружения артефактов, классифицируют найденные предметы, устанавливают их возраст, рассматривая весь комплекс археологического материала в контексте той местности, где они были обнаружены. На основе этого они выдвигают версии и предположения, которые могут быть подтверждены найденными древностями. В то же время, археологи понимают, что будущие исследования могут заставить пересмотреть убеждения прошлого.

Помимо соответствия критериям интеллектуальности и применения научных методов, ученый должен обладать некоторыми чертами характера, которые помогут ему развить объективность своих суждений. Скромный ученый способен быть чутким к своим знаниям, отдавая себе отчет в том, где он может заблуждаться и по каким вопросам его точка зрения будет ограниченной. В то же время исследователь должен обладать определенной степенью смелости, отстаивая свое мнение, даже если оно является непопулярным.

При этом такие качества характера, как сопереживание и честность позволят осознавать ценность взглядов других людей и развивать точки зрения, отличные от собственных, а также избегать двойных стандартов. Однако не стоит забывать об уверенности в своих рассуждениях, сохраняя интеллектуальную автономность – умение следовать логике, вместо того чтобы слепо принимать мнение других. Конечно же, на исследовательском пути будут встречаться сложности, которые невозможно будет преодолеть без настойчивости.

Взятая нами тема родом из эпохи Просвещения, когда блестящие ответы на вопросы соотношения веры и знания, данные ещё Бл. Августином в европейской философии, были забыты, а на щит поднят вопрос противостояния науки и религии в свете нарастающего позитивизма и сциентизма. В ту эпоху это был вопрос не философии и даже не науки, а секулярной идеологии, призванной внушить обывателям и интеллигенции, что монолит средневекового богословия уже не является определяющим мировоззрением.

По сути, за этим стояло желание вырвать из рук церковной организации, а именно папства, инициативу идеологической гегемонии в Европе нарождающихся новых сил. Это была реакция на то, что «в течение многих веков различные формы христианских церквей выставили и культурной жизни европейских народов учение о едином религиозном мировоззрении, заменяющем вполне и исключительно все формы мировоззрений научного и философского» — (1).
Однако, почему же эти вопросы поднимаются и сегодня, когда, с одной стороны, наука выросла в свой полный возраст и, казалось бы, должна оставить «детскую болезнь левизны», а с другой христианское богословие и его прикладные разделы, вроде апологетики, разработало серьёзный аппарат гностического обоснования христианских истин?
Ответ на данный вопрос лежит вне данной работы, но он также носит сугубо идеологический характер противостояния Христианству со стороны секулярных сил и конкуренции с ним в области мировоззрения.

Что такое наука?

Чтобы разобраться в вопросе возможности для учёного быть христианином или шире верующим человеком какой-либо религии, нужно определить состояние сегодняшней науки в части мировоззрения. Современная наука развивается очень быстрыми темпами, в настоящее время объем научных знаний удваивается каждые 10-15 лет. Около 90 % всех ученых когда-либо живших на Земле являются нашими современниками.

Наука явилась главной причиной столь бурно протекающей научно-технической революции, перехода к постиндустриальному обществу, повсеместному внедрению информационных технологий, появления «новой экономики», для которой не действуют законы классической экономической теории, начала переноса знаний человечества в электронную форму и т.д.

«Наука неуклонно, постоянно захватывает области, которые долгие века служили уделом только философии или религии; она встречается там с готовыми и укоренившимися построениями и обобщениями, не выдерживающими критики и проверки научными методами искания» — (1). Отсюда появляется позитивистский энтузиазм у представителей науки и сциентизм, как вера во всемогущество науки.

Как частность этого процесса возникает убеждение, что раз наука способна отвечать на все вопросы, то религия является всего лишь архаичной формой культуры и противоречит единственно верному способу познания - научному. Учёный Бьюб высказался об этом так: «Многие ученые, занятые психоанализом, полагают, что Бог — имя неизвестное, костыль для неоткрытого и что чем больше мы познаем мир, тем меньше остается места для Бога» — (7).

Нам, в этой связи, важно понять: является ли наука источником мировоззренческих установок? Для ответа на данный вопрос следует определится с тем, что является методом современной науки.

Научный метод

Научный метод — это совокупность получения новых знаний и методов решения задач в рамках конкретной науки. Притом для разных наук метод может быть разным. Главным же свойством здесь является то, что научный метод строится на основе наблюдения и опытов, т.е. чисто на эмпирическом материале. Притом любой эксперимент должен быть непременно повторяем. Без этого доказательность того или иного опыта теряет силу.
Здесь важнейшим вопросом является предмет изучения науки . Предметом является практически весь умопостигаемый мир, притом не только материальный, но и психический, в том числе и система абстрактных идей. По сути, наука не ставит предела своему исследованию, а потому из неё можно предположить претензию на всезнание, полнота которого будет возрастать по мере развития научных методов и накопления знаний.
Также и способы получения знаний нельзя ограничить лишь материальными опытами и внешними наблюдениями. Сегодня наука шагнула глубоко в сущность материи и во внутренний мир самого человека через психологические науки. Стала предметом научного исследования и сама религия.

Универсальность научного метода

Является ли научный метод универсальным для познания всего?
Как мы определили, сам научный метод не ставит пределов для проникновения ума учёного в тайны мироздания. Но является ли этот метод способным постичь все аспекты бытия? Вот вопрос, который может нам раскрыть предел науки и её место в познании.
Современные науки многообразны и условно делятся на естественные и гуманитарные. Притом по-старинке принято говорить о точности наук естественных и аморфности гуманитарных. Однако, современное состояние гуманитарного знания позволяют определять его как строго научное в силу расширения понимания методов и объектов познания. Феноменология показывает, как важно для любого исследования понять взаимное воздействие объекта и субъекта в процессе познания.
В данной связи важно проведенное Гуссерлем различие между миросозерцанием познающего субъекта, представляемой им картиной мира и объективным научным знанием. «Миросозерцание и наука, — считал Гуссерль, — имеют свои различные источники ценности, различные функции и свои различные способы действия и поучения. Миросозерцание нужно рассматривать как habitus и создание отдельной личности, науку же — как создание коллективного труда исследующих поколений»(2).
Тут мы подходим к важнейшей теме - научному мышлению.

Научное мышление

И. Кант писал: «Без сомнения, всякое наше познание начинается с опыта…». Опыт лежит в основе познания, в том числе и научного. Научное познание основывается на опыте, полученном и проверенном в специальной системе научного мышления, где универсальность и повторяемость опыта являются необходимым условием.
Но здесь мы сталкивается с проблемой, поставленной в философии, а именно с вопросом о достоверности нашего знания, полученного через чувственные восприятия. Разные философы предлагали различные выходы из данной проблемы. И. Кант рассматривает эту тему в своих трёх работах с критикой «чистого разума», «практического разума» и «способности суждения». Как бы там ни было, но чувственные и психологические восприятия накладываются на наш разум своеобразную матрицу, через которую не просто прорваться к т.н. объективной реальности. Здесь можно много сказать об обусловленности мышления учёных через их мировоззренческие предустановки, что часто влияло на их научные выводы, но это не принципиально, если мы рассматриваем науку в «чистом виде», как она сама хотела бы себя видеть.

Так вот, если научный метод основан на определённом восприятии опыта, на системе мышления, то он зависим от этого «опыта мысли», пришедшего в науку из предшествовавших ей философских учений. Чистота мышления, в данном случае, весьма сомнительна, т.к. постулирование строится на опыте ненаучного мировоззрения.
Если же предположить, что научное мышление само в себе достигает «чистоты», то значит, что сама система научного мышления «подпитывается» со стороны индивидуальных мыслительных способностей учёных, участвующих в процессе совершенствования метода научного мышления. Но здесь необходимо присутствует обусловленность мышления этих учёных мировоззренческими установками их культуры, религии, социума. Получается, что научное мышление является также продуктом окружающей его эпохи, а значит не может быть «чистым».
Говоря о научном мышлении, следует указать и на уровень мышления, задействованный в процедурах научного мышления. Строго говоря, это рациональная часть ума. Хотя, конечно, многие учёные пользовались интуицией и даже озарением, однако этот опыт уже вне собственного научного. И как становится ясно из экзистенциальной философии того же Канта или феноменологии, данный вид мышления никак не способен преодолеть тех апорий, которые выявила перед ним философия. А более тонкие способы мышления уже мало уловимы для того, чтобы быть научно формализованными. Здесь следует говорить об ограниченности научного мышления в рамках рационального познания мира. А значит и научный метод также ограничен некоторым кругом феноменов, поддающихся наблюдению и исследованию научного мышления.

Учёный и наука.

Далее мы вплотную подходим к возможности личной веры для учёного. Как мы показали выше, наука исследует и объясняет круг феноменов, доступных для рационального типа мышления. Также важно то, что научное мышление не замкнутая система, а постоянно пополняющаяся и эволюционирующая, при этом неизбежно мировоззренчески ориентированная. Плохо это или хорошо для науки - вопрос другой. Нам важно это лишь констатировать.
Учёный, занимаясь наукой, неизбежно вносит в неё свои мировоззренческие установки в двух смыслах: определения цели исследований и в метод научного познания. Это разнится с идеалом чистого учёного, духовные идеалы, нравственность, мораль которого не влияет на результат исследования или эксперимента. Не говоря уже о возможности практического вреда от безнравственного учёного, сам факт влияния на процесс научного познания внутренних предустановок учёного говорит о многом, хотя и не стоит этого преувеличивать. Скорее можно говорить об уровне интеллектуальных и прочих способностей, зависящих от духовного состояния человека.
Учёный вполне может заниматься наукой отдельно от своей религии, но это не значит, что его религия не влияет на науку. Вот именно так лучше ставить вопрос, а не в русле того, что наука якобы не даёт учёному «иллюзии сверхбытия».
Не наука может вытеснять религию, а религия науку. И чем более учёный будет осознавать, рефлексировать свою религию, тем более он будет учёным, верно понимая пределы научного познания и возможности знания вне науки. Здесь христианская религия приходит на помощь науке, ограждая её от неотрефлексированных религиозных влияний примитивных культов, вроде сциентизма и позитивизма.

Заключение.

Учёный вполне может быть христианином, что показывает целый сонм учёных - христиан и приведённое выше рассуждение. Даже очень хорошо, если ум учёного развился до понимания глубочайших христианских истин, позволяющих проникать за пределы рационального мышления. И более, нравственно крепкий человек в научной деятельности будет придерживаться принципа - не навреди.
Христианин, занимающийся наукой, кроме всего прочего и восстанавливает подлинную преемственность знания, ибо наука, научный метод по своему характеру, по требованию здравомыслия и рассудительности, по аскетичности выдаёт своё христианское происхождение.
Для христианина учёного пафос позитивистского мышления эпохи Просвещения, приведший к рационалистическому самолюбованию, в контексте современных научных представлений не уместен. Мы сейчас находимся в ситуации формирования научного мировоззрения на совершенно новых началах.

Источники:

  1. В.И. Вернадский. Научное мировоззрение.
  2. Данилевский И.Н. «Источниковедение».
  3. Аудиолекции проф. Осипова по апологетическим темам.
  4. Аудиолекция диак. Андрея Кураева по теме «Коперник, Бруно, Галилей».
  5. Аудиокурс лекций В.П. Леги по основному богословию.
  6. Осипов А.И. Путь разума в поисках истины. Основное богословие. М., 1999.
  7. Подборка цитат учёных о вере. http://prediger.ru/forum/index.php?showtopic=1583