Смотреть все

(12) НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ СПОСОБ ИЗМЕРЕНИЯ ГЛУБИНЫ НАРУШЕННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЕВОЙ ПОЛУПРОВОДНИКОВОЙ ПЛАСТИНЫ(71) Заявитель Научно-исследовательское конструкторско-технологическое республиканское унитарное предприятие Белмикросистемы(72) Авторы Чигирь Григорий Григорьевич Ануфриев Леонид Петрович Ухов Виктор Анатольевич Пеньков Анатолий Петрович(73) Патентообладатель Научно-исследовательское конструкторско-технологическое республиканское унитарное предприятие Белмикросистемы(57) Способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, включающий локальное удаление нарушенного слоя, выявление границы раздела нарушенного слоя и монокристаллического кремния, измерение глубины нарушенного слоя, отличающийся тем, что удаление нарушенного слоя осуществляют распылением пучком ионов с атомным номером от 7 до 18, энергией от 3 до 10 кэВ, направленным под углом 10-450 к поверхности пластины, выявление границы раздела осуществляют путем регистрации интенсивности выхода Оже-электронов с распыляемой поверхности до достижения ею величины, равной интенсивности выхода Оже-электронов для монокристаллического кремния, а глубину нарушенного слоя определяют измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины., 1999. - . 10.05.. - . 315.1222147 , 1994.01559983 , 1995.02006985 1, 1994.02156520 2, 2000.0587091 1, 1994.2001044253, 2001. Изобретение относится к технологии производства полупроводниковых приборов и интегральных микросхем (ИМС), в частности к технологическому процессу создания кремниевых пластин, и может быть использовано при измерении глубины нарушенного слоя на поверхности кремниевой пластины. 5907 1 Известен способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, основанный на использовании метода эллипсометрии и позволяющий эффективно исследовать свойства нарушенного слоя, его толщину, качество обработанных подложек 1. Однако данный способ позволяет лишь фиксировать наличие нарушенного слоя на поверхности пластины сравнением измеренных эллипсометрических констант и их значением для кремния без нарушенного слоя. Для определения глубины нарушенного слоя необходимо последовательно удалять поверхностные слои кремния и производить эллипсометрический контроль. Это значительно усложняет способ контроля,так как эти операции несовместимы в одном процессе. Кроме того, при эллипсометрическом контроле используется излучение видимого диапазона длин волн (обычно 0,65 мкм),которое проникает в поверхностные слои кремния на глубину около 0,5 мкм. Это приводит к тому, что разрешение по глубине у данного метода составляет 0,5 мкм, и он не позволяет измерять глубину нарушенных слоев меньше нескольких микрон. Наиболее близким к предлагаемому техническому решению является способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, включающий локальное удаление нарушенного слоя, выявление границы раздела нарушенного слоя и монокристаллического кремния, измерение глубины нарушенного слоя 2. Данный способ позволяет измерять глубину нарушенного слоя на поверхности кремниевых пластин в диапазоне 5-200 мкм. В этом способе локальное удаление нарушенного слоя на всю его глубину производится изготовлением косого шлифа под малым углом к контролируемой поверхности кремниевой пластины (от 10 до 10). Шлиф изготавливается методом механической полировки, которая не вносит каких-либо механических повреждений на поверхности косого шлифа. Полировка производится в щелочной суспензии субмикронных частиц (рН от 10 до 12). Перед изготовлением косого шлифа поверхность кремниевой пластины покрывается слоем нитрида кремния толщиной не менее 1 мкм. Этот слой защищает поверхность пластины и обеспечивает формирование качественной (резкой) границы шлифа на поверхности пластины. После изготовления косого шлифа производится измерение величины его угла. Выявление нарушенного слоя на поверхности шлифа производится методом химического декорирования - травление образца в травителе на основе хромовой кислоты (75 г триоксида хрома растворяются в 1 л воды). Контроль границы раздела нарушенный слой-монокристаллический кремний производится на декорированном шлифе под оптическим микроскопом в режиме интерференционного контраста при увеличении 100-500 х и затем производится измерение протяженности (длины) нарушенного слоя на поверхности шлифа (расстояние от границы шлифа на поверхности кремниевой пластины до границы раздела нарушенный слой-монокристаллический кремний). Глубина нарушенного слоя рассчитывается умножением значения измеренной длины нарушенного слоя на поверхности шлифа на величину тангенса угла шлифа. Существенным недостатком данного способа является отсутствие возможности проводить измерения нарушенных слоев глубиной менее 5 мкм. Это обусловлено тем, что граница раздела нарушенный слой-монокристаллический кремний в данном способе выявляется недостаточно четко и воспроизводимо. Она определяется не автоматически по количественному критерию, а устанавливается оператором по качественным признакам непосредственно под микроскопом. Отсутствие четкого критерия определения границы раздела нарушенный слой-монокристаллический кремний не позволяет проводить измерения тонких нарушенных слоев (менее 5 мкм) из-за большой погрешности измерений. В основу изобретения положена задача повышения точности и расширение диапазона измерений тонких (менее 5 мкм) нарушенных слоев за счет воспроизводимого, автоматического определения границы раздела нарушенный слой-монокристаллический кремний. Сущность изобретения заключается в том, что в способе измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, включающем 2 5907 1 локальное удаление нарушенного слоя, выявление границы раздела нарушенного слоя и монокристаллического кремния, измерение глубины нарушенного слоя, удаление нарушенного слоя осуществляют распылением пучком ионов с атомным номером от 7 до 18,энергией от 3 до 10 кэВ, направленным под углом 10-45 к поверхности пластины, выявление границы раздела осуществляют путем регистрации интенсивности выхода Ожеэлектронов с распыляемой поверхности до достижения ею величины, равной интенсивности выхода Оже-электронов для монокристаллического кремния, а глубину нарушенного слоя определяют измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины. Использование пучка ионов позволяет прецизионно (с высокой точностью) контролировать снятие слоев. При этом режим распыления выбирается таким, чтобы он не вносил нарушений в поверхностные слои кремния (не изменял нарушенный слой) и не приводил к неоднородности распыления (формирование микрорельефа распыления) при использовании пучка ионов, направленного под углом менее 10 к поверхности кремниевой пластины, наблюдается неоднородность удаления слоев и формирование в процессе распыления на поверхности пластины микрорельефа распыления. Формирование микрорельефа распыления снижает точность контроля, т.к. с такой поверхности измерительный сигнал формируется одновременно с различных по глубине точек при использовании пучка ионов, направленного под углом более 45 к поверхности кремниевой пластины, наблюдается внедрение падающих ионов в поверхностные слои,что приводит к дополнительному дефектообразованию и увеличению нарушенного слоя. При использовании углов падения пучка ионов в диапазоне 10-45 увеличения нарушенного слоя и формирования микрорельефа на поверхности кремниевой пластины не наблюдается при выборе пучка ионов с атомным номером менее 7 (легкие ионы) наблюдается внедрение падающих ионов в поверхностные слои, что приводит к дополнительному дефектообразованию и увеличению нарушенного слоя при выборе пучка ионов с атомным номером более 18 (тяжелые ионы) наблюдается дополнительное дефектообразование и увеличение нарушенного слоя. При использовании пучка ионов с атомным номером от 7 до 18 производится однородное распыление поверхности образца без внесения дополнительных дефектов и увеличения нарушенного слоя при выборе пучка ионов с энергией менее 3 кэВ наблюдается неоднородность удаления слоев и формирование в процессе распыления на поверхности пластины микрорельефа распыления при выборе пучка ионов с энергией более 10 кэВ наблюдается дополнительное дефектообразование и увеличение нарушенного слоя. При использовании пучка ионов с энергией 3-10 кэВ производится однородное распыление поверхности образца без внесения дополнительных дефектов и увеличения нарушенного слоя. Регистрация интенсивности выхода Оже-электронов с поверхности кремния при удалении поверхностных слоев кремния позволяет эффективно контролировать наличие нарушенного слоя на поверхности кремниевой пластины. Причем локальность контроля по глубине (усреднение по глубине) из-за особенностей метода Оже-спектроскопии составляет всего 1-2 нм. Интенсивность выхода Оже-электронов определяется на Ожеспектрометре автоматически и по мере удаления нарушенного слоя она постепенно возрастает. После удаления нарушенного слоя величина интенсивности выхода достигает максимальной величины, равной значению для монокристаллического кремния (кремний без нарушенного слоя). Значение величины интенсивности выхода для монокристаллического кремния зависит от конструктивных особенностей используемого Ожеспектрометра и она определяется экспериментально. Периодически ее значение может уточняться. Таким образом, контроль интенсивности выхода Оже-электронов с поверхности кремния при удалении поверхностных слоев кремния позволяет эффективно контро 3 5907 1 лировать наличие нарушенного слоя на поверхности кремниевой пластины и обеспечить автоматическое установление границы раздела нарушенный слой-монокристаллический кремний на поверхности пластины с погрешностью по глубине, не превышающей 2,0 нм,и дальнейшее удаление поверхностных слоев кремния прекращается. Таким образом, на поверхности образца формируется ступенька на верхней ее части находится исходная поверхность анализируемой кремниевой пластины с нарушенным слоем, на нижней части поверхность с удаленным нарушенным слоем. Величина этой ступеньки равна глубине нарушенного слоя. Глубина нарушенного слоя определяется измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины, например, с помощью микропрофилометра. Современные микропрофилометры позволяют определять величину ступеньки с погрешностью 1 нм. Пример конкретного выполнения. Заявленный способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины, включающий удаление нарушенного слоя распылением пучком ионов с атомным номером от 7 до 18, энергией от 3 до 10 кэВ, направленным под углом 10-45 к поверхности пластины, выявление границы раздела регистрацией интенсивности выхода Оже-электронов с распыляемой поверхности до достижения ею величины, равной интенсивности выхода Оже-электронов для монокристаллического кремния,определение глубины нарушенного слоя измерением высоты ступеньки, образованной в результате удаления нарушенного слоя с поверхности кремниевой пластины, проиллюстрируем на примере анализа кремниевых пластин КЭФ-4.5 диаметром 100 мм (эти пластины широко используются в серийном производстве КМОП ИМС). Анализ проводился на двух пластинах одна пластина была взята после операции шлифовки алмазными пастами АСМ 0,5-1,0, вторая - после операции финишной химико-механической полировки суспензией аэросила (поверхность соответствовала 14-му классу). Каждая анализируемая пластина КЭФ-4.5 разрезалась на две равные части. На одной части пластины проводились измерения глубины нарушенного слоя по предлагаемому способу (в 10 точках вблизи центра пластины), на второй - по способу-прототипу (в 10 точках на шлифе вблизи центра пластины). Сравнительные параметры приведены в таблице, где указаны номер процесса по порядкуугол падения пучка ионоватомный номер ионов в пучке (т.) энергия ионов в пучке (Е, кэВ) измеренная глубина нарушенного слоя (, мкм). Она определялась как среднее значение глубины нарушенного слоя из 10-ти измерений абсолютная погрешность определения глубины нарушенного слоя слоя. Она определялась из следующего выражения (удвоенное значение величины среднеквадратичного отклонения из 10 измерений) относительная погрешность определения глубины нарушенного слоя (/). Анализ проводился на Оже-спектрометре -660 (ф., США), величина интенсивности выхода Оже-электронов с поверхности монокристаллического кремния(без нарушенного слоя) для данного спектрометра составляла 2,37105 Оже-электрон./сек(определялась экспериментально), величина интенсивности выхода Оже-электронов с поверхности кремниевой пластины после шлифовки составляла 5,2104 Оже-электрон./сек,величина интенсивности выхода Оже-электронов с поверхности кремниевой пластины после полировки составляла 1,15105 Оже-электрон./сек. Удаление поверхностных слоев кремния распылением пучком ионов и измерение интенсивности выхода Оже-электронов производилось непосредственно на Оже-спектрометре. Для проведения измерений интен 4 5907 1 сивности процесс распыления останавливали. Измерения высоты ступеньки проводились на микропрофилометре(минимальная измеряемая глубина ступеньки - 5 нм, погрешность измерения не хуже 1 нм). Данные, приведенные в таблице, показывают, что измерения глубины нарушенного слоя по предлагаемому способу имеют более высокую точность за счет автоматического,воспроизводимого определения границы раздела нарушенный слой-монокристаллический кремний. Сравнительные измерения на пластинах с глубиной нарушенного слоя более 5 мкм показывают, что для предлагаемого способа погрешность измерений составляет 2,2 , а по способу-прототипу - 5,5 . Повышение точности измерений обеспечивает расширение диапазона измерений тонких (менее 5 мкм) нарушенных слоев. Из таблицы видно, что нарушенные слой глубиной 0,3 мкм контролируются с погрешностью 5 . По способу-прототипу такие слои контролю не подлежат (погрешность контроля превышает 100). Таблицаат Е, кэВ/100,Кремниевая пластина КЭФ-4.5 после шлифовки поверхности 1 10 7 3 8,9 0,2 2,2 2 25 15 7 9 0,2 2,2 3 45 18 10 9,1 0,2 2,2 4 8 5 7 7 0,5 7,1 5 47 15 12 10 0,4 4.0 6 Прототип 9 0,5 5,5 Кремниевая пластина КЭФ-4.5 после финишной полировки поверхности 7 10 7 3 0,29 0,015 5,2 8 25 15 7 0,3 0,015 5,0 9 45 18 10 0,31 0,015 4,8 10 8 5 2 0,2 0,04 20 11 25 22 12 0,4 0,03 7,5 12 Прототип Не измер. 1,0 100 Таким образом, предлагаемый способ измерения глубины нарушенного слоя на поверхности кремниевой полупроводниковой пластины в сравнении со способом прототипа позволяет повысить точность измерений более чем в 2 раза и обеспечивает расширение диапазона измерений тонких (менее 5 мкм) нарушенных слоев за счет воспроизводимого,автоматического определения границы раздела нарушенного слоя и монокристаллического кремния. Источники информации 1. Луфт Б.Д. Физико-химические методы обработки поверхности полупроводников. Москва Радио и связь, 1982. - С. 16-18. 2.950-98.1999, . 10.05,. - . 315. Национальный центр интеллектуальной собственности. 220034, г. Минск, ул. Козлова, 20.

Физические основы разрушения твердых материалов в струях газа

    Модели деформируемых твердых тел

    Быстрое развитие технологий, связанных с использованием высокоактивных поверхностных структур перерабатываемых материалов, требует детальных сведений о структуре поверхностных слоев и способов их изменения в процессе подготовки материалов. . Целесообразно сделать анализ дефектных приповерхностных слоев, образованных в результате механической обработки материалов. Известно, что для каждого конкретного материалa, имеющего определенные деформационные свойства, особенности формирования нарушенного слоя определяются температурным режимом на границе взаимодействия абразива с обрабатываемым материалом, т. е. интенсивностью тепловыделения и характером теплоотвода. Иными словами, температурный режим зависит от размера и формы частиц абразива, от соотношения и величины твердостей и теплопроводностей абразива и обрабатываемого материала при идентичных или близких динамических условиях обработки. Так, в случае полирования алмазными пастами, т. е. твер щми абразивами с острыми краями, теплопроводность которых выше, чем у кремния, тепловыделение на границе взаимодействи i абразива и обрабатываемого материала мало (осуществляется;ороший теп-лоотвод через абразив). В результате взаимодействии абразива с поверхностью обрабатываемого материала преобла 1ает эффект резания, приводящий к хрупкому разрушению поверх юсти. В этом случае в процессе формирования нарушенного слоя основное развитие получает первый, сильно разрушенный подсло i и величина нарушенного слоя определяется глубиной проникнов >ния трещин. В процессе химико-механического полирования суспензиями окисла циркония или двуокиси кремния (частицы абразива сферической формы, твердость и теплопроводность которых сравнима или меньше, чем у кремния) выделяется значительнее количество тепла при малом теплоотводе через абразив. Происходит значительный тельный разогрев поверхности обрабатываемого материала (до 250°С, локально может быть значительно выше), что способствует протеканию процесса пластической деформации вплоть до обра зования сеток дислокаций. В данном случае получает «развитие второй подслой нарушенного слоя . Таким образом, нарушенный слой, образованный в результате механической обработки, имеет сложное строение. I В методом просвечивающей электронной микроскопии изучена структура приповерхностных слоев кремния, н наиболее часто применяемого в технологических процессах. Изучение структуры проводилось в комплексе с послойным химическим |травливанием поверхностных слоев в растворе смеси плавиковой и азотной кислот (1:6) и просмотром соответствующих слоев с помощью сканирующего электронного микроскопа (РЭМ). Толщина исследуемых пластин 400-^200 мкм. Общая глубина изучаемой структуры доводилась до 250 мкм от поверхности. Выбор такой предельной глубины обоснован возможным влиянием поверхностной обработки на объем пластины, а также определением границ такого влияния. Отождествление дефектов и доказате льство того, что они возникают из-за механической обработки, проводилось путем изменения общей толщины пластин, подвергаемы механической обработке. На основе электронно-микроскопическиx исследований создана схема строения нарушенного слоя, которая является в последнее время наиболее приемлемой. Согласно этой модели нарушенный слой состоит из рельефного, поликрасталлических слоев, зоны трещин и дислокаций и упругодеформированной зоны. Наибольшее разрушение кристаллической структуры наблюдается в первых двух зонах, величина которых пропорциональна размеру зерна абразива. Таким образом, во время механической обработки на поверхности возникает рельефный слой с поликристаллической структурой, толщина которого составляет 0,3-0,5 величины микронеровностей. Непосредственно под рельефным, поликристчллическнм слоем находятся трещины с дислокациями, которые являются основными дефектами механической абразивной обработки и вносят основной вклад в полную глубину нарушений; этот второй слой проникает в 3-5 раз глубже, чем первый, и характеризуется мозаичной кристаллографической структурой. Плотность и размер трещин уменьшаются с глубиной, между трещинами наблюдаются дислокации и дислокационные сетки. nike air tn air В переходной области между областями пластической деформации и чисто упругих напряжений предположительно находится квазистатическая область, в которой имеется поле напряжений вследствие комбинаций дислокаций и внедренных дефектов или других микродефектов. Дислокационная и упругодеформированная зоны мало изучены, поэтому определенных данных о полной глубине нарушенного слоя, так и о процессах, происходящих в этих зонах, нет. nike air max flyknit ultra 2.0 Можно заключить, что скопления дислокаций характерны сразу для двух последних зон нарушенного слоя и могут ….(см. Структура …при лазерных возд., с.23…)- Твердое тело, как одна из форм существования вещества, независимо от его химической природы (органическая или неорганические) представляет собой сложную квантово-механическую систему, полного описания которой пока нет. В связи с этим рассматривают приближенные модели, причем ограничения, определяющие тип модели для конкретной рассматриваемой задачи, обычно относят к второстепенным процессам, не изменяющим существенно свойства твердых тел. Химические, оптические, электрофизические, механические свойства вещества зависят от его электронной конфигурации. Носителями этих свойств являются валентные электроны Поглощение и эмиссия излучения обусловлены переходами валентных электронов из одних энергетических состояний в другие. ??? (см. также Гордон) Твердость вещества – свойство, которое определяет (?) способность к разрушению, — обусловлена сопротивлением электронных облаков сжатию, что в твердом веществе сопровождается увеличением электронов. Физическую основу теории строения вещества составляет квантовая механика, в принципе позволяющая вычислить все физические константы, характеризующие свойства вещества, исходя только из четырех фундаментальных величин: заряда e и массы электрона m, постоянной Планка h и массы ядер. Силы квантово-механического взаимодействия между ядрами и электронами – межатомные химические связи – удерживают межатомные химические связи удерживают атомы в определенном порядке, чем и обусловливают структуру вещества. В структурном отношении твердые тела имеют кристаллическое или аморфное строение. Кристаллическое, органическое или неорганическое, твердое тело представляет собой совокупность множества произвольно расположенных и взаимно связанных кристаллов. Природные кристаллы, из которых сформированы твердые тела, в первом приближении соответствуют идеальному кристаллу, структура которого характеризуется периодически повторяющимся расположением в пространстве составляющих его атомов. Расположенные определенным образом в кристалле атомы, образуют его кристаллическую решетку. Простейшая кристаллическая решетка – кубическая. Стремление атомов занять места, наиболее близкие к другим атомам, приводит к образованию решеток различных типов: простая кубическая; кубическая объемно центрированная; кубическая гранецентрированная; гексагональная плотноупакованная. Отклонение структуры от идеальной, имеющееся в реальном кристалле, обуславливают различие физических свойств реальных и идеальных веществ. Каждому соответствует определенная кристаллическая структура, определяющая его свойства, изменяющаяся при изменении внешних условий и изменяющая при этом свойства. Способность вещества существовать в некоторых кристаллических формах называют полиморфизмом, различные кристаллические формы – полиморфными (аллотропическими) модификациями. При этом аллотропическую форму, соответствующую самой низкой температуре и давлению, при которых существует устойчивое состояние вещества, обозначают α, следующие состояния, при более высоких температурах и давлениях – β, γ и т. д. Переход вещества из одной формы в другую принято называть фазовым. Порядок расположения атомов в кристалле определяет его наружную форму. Совершенным кристаллом называют полностью симметричную структуру с атомами, размещенными строго в узлах решетки. При любых нарушениях в расположении атомов кристалл считается несовершенным. Характер и степень нарушения правильности (совершенства) кристаллического строения в значительной мере определяют свойства вещества. Поэтому, стремление придать тому или иному веществу определенные свойства обусловливает необходимость изучения возможностей изменения в требуемом направлении кристаллической структуры твердых тел или их аморфизиции с целью получения требуемых их физико-механических свойств. Аморфное состояние твердых веществ характеризуется изотропией свойств и отсутствием точки плавления. При повышении температуры аморфное вещество размягчается и переходит в жидкое состояние постепенно. Эти особенности обусловлены отсутствием у вещества, находящегося в аморфном состоянии строгой периодичности, присущей кристаллам, в расположении атомов, ионов, молекул и их групп. Аморфное состояние образуется при быстром охлаждении расплава. Например, расплавляя кристаллический кварц и затем быстро охлаждая расплав, получают аморфное кварцевое стекло.

    1.2. ФИЗИЧЕСКО-МЕХАНИЧЕСКИХ СВОЙСТВА ДЕФОРМИРУЕМЫХ ТВЕРДЫХ ТЕЛ

    Модель реального твердого тела может быть представлена сплошной средой с определенными физико-механическими свойствами, заключенной в области D объема V с площадью поверхности S. Движение частиц тела, находящегося под действием внешних сил, температуры и других факторов, определяется в большой степени физическим и механическим поведением среды тела. Физическое поведение среды характеризуется уравнением состояния σ = σ (ε, έ, Τ), (1.17) которое устанавливает связь между средним значением напряжения σ (давлением р) и средним значением деформации ε (плотностью ρ) в зависимости от температуры Т, средней скорости деформации έ и другил параметров. Установление уравнения состояния во многом зависит от характера объемного деформирования среды, которое связано с одним из фундаментальных ее свойств - сжимаемостью. Под сжимаемостью понимают способность среды изменять свою плотность в зависимости от действующего давления ρ = ρ (р). (1-18) Сложность зависимости (1.18) в первую очередь определяется внешним давлением, действующим на среду. Давление р будет низким, если справедлива зависимость р = -3Кε, где К. Adidas Zx Flux Pas Cher Adidas Zx pas cher — модуль объемного сжатия; средним, если ему соответствует область фазовых и полиморфных переходов; высоким если происходят электронные переходы; сверхвысоким, если происходи разрушение электронных оболочек и потеря атомами индивидуальных свойств с последующим превращением среды в электронный газ. Сжимаемость может быть статической, если зависимость (1.18) получена в условиях статического нагружения, и динамической если зависимость получена при динамическом нагружении в виде ударной адиабаты (рис.1.14) или в какой-либо другой форме. Для задач динамики разрушения тела в условиях газодинамического диспергирования наибольший интерес представляет динамическая сжимаемость. Анализ экспериментальных данных по динамической сжимаемости металлов, выполненный Л. П. Орленко [цитируется из работы: В.Н. Ионов, В.В. Селиванов. Динамика разрушения деформируемого тела. adidas superstar homme moins cher – М.: Машиностроение, 1987. – 272 с. ], позволил установить явный вид зависимости (1.18) Р = А (ρ / ρ 0) n ! В. Для более широкого класса материалов р = — где А, В, n, С 0 , λ - постоянные материала; ε= ρ 0 /ρ- 1. Для решения задач о деформации и разрушении тел необходима более полная информация о поведении среды при нагружении, поэтому необходимо иметь уравнение состояния (1.17), усанавливающее связь между инвариантами – интенсивностью напряжений σ i как основной характеристикой касательных напряжений и интенсивностью деформаций ε i как основной характеристикой сдвиговых деформаций в зависимости от температуры Т, скорости деформаций έ i и других параметров… При статическом нагружении, фиксированных температуре и других параметрах уравнение состояния …(см. с. 34) При динамическом нагружении тела, как показывают результаты многочисленных исследований, поведение среды иное, чем при статическом: изменение скорости деформации приводит к существенным изменениям ее механических свойств. Установлено, что:

    1. динамический модуль упругости Е л тел кристаллической структуры мало отличается от статического Е с, тогда как в телах органических с высокомолекулярной структурой влияние скорости деформации заметно в пределах упругости;

      с увеличением скорости деформации предел текучести σ т увеличивается, причем увеличение значительнее в средах с выраженной площадкой текучести;

      предел прочности σ в также зависит от скорости деформации, увеличиваясь с ростом последней, причем разрушение с большой скоростью деформации вызывает меньшую остаточную деформацию, чем разрушение с малой скоростью деформации при прочих равных условиях;

      упрочнение среды с увеличением скорости деформации уменьшается. Это указывает на существенное изменение диаграммы σ i - ε i (рис. 1.17) при динамическом нагружении. Количественное изменение σ i в зависимости от ε i описывается соотношением:

    σ т = σ т 0 с.36 Ион.. где σ т 0 – предел текучести при скорости деформации έ 0 ; К и n – постоянные. Экспериментально установлено, что для многих сред существует нижний порог чувствительности к скорости деформации:

    при различных скоростях деформации, меньших критического значения, зависимость σ (ε) одинакова. Чувствительность среды при постоянной скорости деформации характеризуется коэффициентом динамической чувствительности λ = (дσ/д In ε) ε,T Peзультаты испытаний металлов при скоростях деформаций выше нижнего порога динамической чувствительности представлены соотношением σ i ‌ εiT = А + В lg έ i , где А и В - константы, зависящие от ε i и Т. Для других сред типично увеличение значения λ по повышении скорости деформации.

Экспериментальные исследования механического поведения сред при переменной скорости деформации позволили предложить зависимость (с. σ * = А [ ∫(h (ε)/ έ 0) q dε ] n , справедливую при произвольном изменении скорости реформации έ = h (ε), начиная со значения έ 0 при ε 0 . Для произвольной истории нагружения предложена зависимость (c.38 Ионов) … t σ = σ (ε (р)) — ∫ t 0 K(t-τ)σ(τ) dτ, где σ (ε (р)) - предельная динамическая зависимость при έ → ∞; ε (р) = ε - σ /Е - пластическая деформация; К(t) - ядро, при обработке данных эксперимента принятое в форме ядра Абеля. ‘ В результате изучения механического поведения среды при динамическом нагружении установлен вид уравнения (1.31 с.37) в зависимости от свойств среды, температуры и скорости деформации. Описанные свойства упругопластической среды являются склерономными (не зависящими от времени), однако среда обладает и реономными (зависящими от времени) свойствами, которые характерны для релаксации и последействия. Процесс самопроизвольного уменьшения интенсивности напряжениё σ i с течением времени t при постоянной интенсивности деформаций ε i называют релаксацией (рис.1. 19). Для математического описания релаксации Максвеллом предложена зависимость dσ i /dt =Еdε i dt –σ i /τ, где τ - постоянная, зависящая от температуры Т и называемая временем релаксации. При ε i = С имеем (с.38 Ион) = сг г (М) ехр (~t/t). ………………………………………… которое может быть получено из следующих соображений. При небольших температурах Т -<\(a cn h/(ak) свободная энергии в соответствии с (1.4) F = U 0 + 77(9/7-)-Воспользовавшись термодинамическим равенством f~t(-^-\ — Г д (F }] 1 \ дТ) v ~ [ 5(1/7) \ Т /V получим дР, _ J_ д I F \ _ U D дв -I ~ 6 д(\1Т) \ Т) 9 ‘ где U D - внутренняя энергия в дебаевском приближени i, обусловленная колебаниями атомов. Учитывая, что -р = - (dFldV)r, запишем уравнение состояния калорического типа dt/O . р Up rar /i 1Q4 Р - -^г t i -у~, Kf. U- iy / полученное Грюнайзеном. На ударной адиабате давление ‘ можно представить в виде двух слагаемых: упругого /? у и тепле иого р т давлений, причем, как следует из термодинамического равенства р TdS = dE + pdV, ~»~§ъ при Т — О К имеем k |^^>> /V- ди»/дУ\ pr^-TUn/V. ^ Щ%&’ (1-20) ^—^Ш& Как следует из (1.20), параметр Грюнайзена Г, характеризуемый отношением тепловой энергии решетки к тепловому j г ^»^^/^^\ Рис. nike air max 90 1.14. Положение ударной адиабаты () n V V V относительно кривой холодной сжимаемой (2)

Физическая модель деформации и разрушения твердых тел, вызываемых внешними силами
Повреждения, накапливаемые при сложных нагружениях

Нагружение постоянным во времени напряжением, вызывающее ползучесть, циклическое нагружение с постоянной амплитудой напряжения или деформации, вызывающее усталость, или нагружения с постоянной скоростью изменения напряжения или деформации представляют собой простые нагружения. Между тем специфика обработки материала струями газа выдвигает на проблему поведения материала при динамическом нагружении в тех случаях, когда нагрузка изменяется со временем (например, при ползучести, когда заданное напряжение изменяется со временем; при усталости, когда амплитуда циклического напряжения меняется со временем), т. е. проблему накопления повреждений при сложных нагружениях. Однако теории, точно описывающие этот процесс, в настоящее время, по-видимому, не существует. Ранее применительно к усталости было сформулировано эмпирическое правило Майнера . Суть его заключается в следующем. Если обозначить через N i число циклов при амплитуде напряжения σ i , а через N fi - долговечность при воздействии только напряжением с амплитудой σ i , то при нагружении с переменной амплитудой напряжения условием разрушения становится соотношение (8.103) Майнер и большинство других исследователей следующим образом трактуют выражение (8.103). (Екобори с.214). Разрушение возникает тогда, когда общая сумма частных сумм различного рода поглощенных энергий, приходящихся на каждый цикл, становится равной некоторой постоянной величине. Причем практически все предложенные до сих пор многочисленные правила, описывающие накопление повреждений, включают в себя такого рода представление. Необходимо отметить, что одни исследователи рассматривают правило Майнера в виде (8.103) как простую эмпирическую формулу, другие - как выражение изложенной выше энергетической гипотезы. Прежде чем перейти к последующему изложению, необходимо, по-видимому, привести пример универсального представления, подразумеваемого выражением (8.103). А именно: выражение типа (8.103) есть выражение для времени до возникновения дискретного явления в условиях предшествующего воздействия различными нагрузками (текучесть , усталостное разрушение и разрушение при ползучести, разрушение при совместных усталости и ползучести.(Екобори, с.216).

Дисперсность частиц, как фактор физико-химических свойств материала

Критический анализ опубликованных данных показывает, что вопреки утверждениям ряда авторов, якобы наблюдавших драматические изменения фундаментальных физических свойств у сравнительно крупных частиц диаметром (D) более 100 А, в действительности эти свойства практически не отличаются от таковых для массивного тела. Обнаруженные «эффекты», как правило, объясняются влиянием окисной оболочки частиц и взаимодействием их друг с другом и с окружающей средой. Природа сильных изменений свойств частиц, имеющих D < 100 А, недостаточно ясна, поскольку, согласно материалам первой части этой книги, основные характеристики массивного тела почти полностью сформированы уже в агрегатах, содержащих менее 1000 атомов (D ≤ 10 Ǻ). Предполагается, что причиной таких изменений может быть изомерная перестройка структуры кластеров, составляющих частицы. Предлагаемый критический обзор физических свойств малых частиц имеет целью, во-первых выявить, где возможно, размерную зависимость этих свойств, и, во-вторых, установить роль структурных единиц - кластеров в формировании наблюдаемых явлений. Большинство исследований вы полнено на аэрозольных частицах, полученных методом так называемого («газового испарения») «газодинамического диспергирования». (Петров Ю. И. Физика малых частиц. – М.: Наука, 1982.) с.63 Краткая характеристика метода газодинамического диспергирования. Петров с.63 + Структура и прочность материалов при лазерных воздействиях / М. С. Бахарев, Л. И. Мирин, С. А. Шестериков и др. – М.: Из-во Моск. ун-та. nike pour homme pas cher 1988. –224 с. Р а з м о л доломита. 1 ! Сырьем для помола служил 90 % кристаллический доломит, который подвергался размолу под давлением помольного газа II атм при исходном | размере крупинок материала в 6Э мкм. Запасы энергии кристаллической j структуры продуктов размола увеличиваются в процессе помола как в | воздушной среде, так и в среде CO 2 . Это видно на экзотермическом максимуме при температуре около 200 °С для серии кривых снятых ДГА показанных на рис.б. Подобное, но в процентном отношении меньшее накопление энергии, по лучил Kkac S. в процессе размола доломита на вибрационных мельницах. Помол, производимый С0 2 является более производительным,чем воздушный помол, так как 98 % исходного материала размалывается до средней величины частиц в 1-2 мкм. Общее кристаллическое состояние доломита не изменяется,хотя в результате сутце ствуюцих примесей некоторый процент кальцита становится аморфным. ! Размол известняка. ! Производился дальнейший размол в струйных мельницах при давлении помольного газа I атм, материала, предварительного размельченного до размера 200 мкм. nike roshe run homme bleu marine Помол, производимый воздухом, оказался результативнее. 98 % материала размалывается до размера частиц менее чем 2 мкм, но зато уменьшается до 60 % содержание карбоната в продукте помола. Уменьшение содержания СО? при помоле в среде помольного газа СО, носит затухаюций характерно при этом ухудшается размалывающая способность. На основании проведенных рентгеновских исследований было обнаружено, что 50 % кальцита становится аморфным в процессе помола газом СОг), а при размоле воздухом приобретает аморфное состояние всего несколько процентов.

Значение глубины и окультуренности пахотного слоя почвы для растений.

Мощность пахотного слоя почвы - один из показателей плодородия и ее окультуренности. Чем она больше, тем выше ее плодородие и урожайность сельскохозяйственных культур.

Получение высоких и устойчивых урожаев сельскохозяйственных культур возможно только при условии бесперебойного и полного удовлетворения потребностей растений в воде и пище. Вся пища (кроме углекислоты воздуха) и вода поступают в растение через корни из почвы. Понятно поэтому то исключительное влияние, которое уделяется в земледелии созданию наиболее благоприятных почвенных условий для роста и развития сельскохозяйственных растений. Все агротехнические приемы, из которых слагаются системы обработки почвы и применения удобрений в севообороте, направлены в конечном счете на это. Под влиянием агротехнических мероприятий, осуществляемых при сельскохозяйственном использовании почвы, ее свойства существенным образом меняются. Непосредственное воздействие приемов обработки и применение удобрений на состояние и свойства почвы ограничиваются верхним ее слоем определенной мощности. Он постоянно подвергается воздействию почвообрабатывающих орудий. Рыхление и оборачивание этого слоя орудиями почвообработки обеспечивает более сильное влияние на его свойства. Вносимые в почву органические и минеральные удобрения распределяются, в этом слое почвы отмечается интенсивная деятельность почвенных микроорганизмов, которым принадлежит ведущая роль в жизни почвы, создании условий ее плодородия.

На старопахотных дерново-подзолистых почвах особенно отчетливо видно, насколько резко верхний (пахотный) слой отличается от нижележащих слоев почвы как по внешнему виду, так и по свойствам. Он характеризуется более рыхлым сложением, повышенным содержанием гумуса и доступных растениям питательных веществ, пониженной кислотностью, высокой биологической активностью.

Возрастание мощности пахотного слоя положительно влияет на водный режим почвы. При его увеличении почва полнее может использовать выпадающие осадки. На почве с глубоким высокоокультуренным пахотным слоем, даже при выпадении дождей ливневого характера большая часть выпадающих осадков, как правило, успевает проникнуть в толщу этого слоя и задерживается в нем, в дальнейшем избыток влаги сверх полевой влагоемкости постепенно уходит в нижележащие слои. Наоборот, на почве с мелким пахотным слоем при тех же условиях рельефа при одинаковом состоянии поверхности и одинаковом сельскохозяйственном использовании почвы дожди ливневого характера обычно бывают мало полезными, так как большая часть выпавших осадков стекает по поверхности почвы. При повышенном количестве осадков почва с мелким пахотным слоем быстро переувлажняется, растения на ней страдают от избытка влаги и недостатка кислорода в почве. В то же время на расположенной рядом почве с глубоким пахотным слоем, хотя эта почва содержит больше влаги, чем первая, растения развиваются нормально, никаких признаков страдания их от избытка влаги не обнаруживается. На такой почве культурные растения лучше противостоят засухе и меньше страдают от избыточных дождей.

С увеличением мощности пахотного слоя улучшаются условия питания культурных растений. Даже в очень бедной почве содержание питательных веществ обычно в сотни раз превышает те их количества, какие используются сельскохозяйственными растениями ежегодно при самых высоких урожаях. Несмотря на такие большие запасы питательных веществ в почве, растения далеко не всегда имеют возможность своевременно и полностью удовлетворять свои потребности в пище. Преобладающая часть необходимых для растений питательных веществ находится в почве в недоступных формах - в органических остатках, в перегное, в составе почвенных микроорганизмов, а также в труднорастворимых минеральных соединениях. Лишь в результате переработки этих составных частей почвы микроорганизмами, а также распада тел отмерших микроорганизмов питательные вещества получаются в форме легкорастворимых соединений, доступных растениям. Эта полезная деятельность почвенных микроорганизмов может протекать нормально лишь при благоприятных для них почвенных условиях -при наличии в почве нужной им пищи, тепла, влаги, воздуха (кислорода), и при отсутствии повышенной кислотности почвы. В сильно уплотненной или переувлажненной почве вследствие недостатка кислорода жизнедеятельность полезных для растений микроорганизмов подавляется. В таких условиях в почве развивается другая группа микроорганизмов, продукты жизнедеятельности которых не только не используются сельскохозяйственными растениями для питания, но могут даже отрицательно сказаться на росте и развитии.

Количество микроорганизмов в почве исключительно велико. Но в таких громадных количествах почвенные микроорганизмы развиваются при благоприятных условиях температуры и влажности только в пахотном слое. В нижележащих слоях почвы деятельность микроорганизмов резко ослабляется. Преобладающая часть почвенных микроорганизмов нуждается в органическом веществе как источнике, необходимом для их жизнедеятельности энергии и как основном источнике веществ, нужных им для построения тела.

Подпахотный слой дерново-подзолистых почв, представленный п большинстве случаев подзолистым горизонтом, содержит очень мало органических веществ и микроорганизмы не могут интенсивно развиваться в нем прежде всего вследствие недостатка пищи. Другой причиной сильно подавленной деятельности микроорганизмов в подпахотном слое следует считать недостаток кислорода. Наконец, деятельность микроорганизмов в подпахотном слое часто тормозится вследствие повышенной кислотности почвы этого слоя. По указанным причинам деятельность микроорганизмов в дерново-подзолистых почвах наиболее выражена только в пределах пахотного слоя.

Следовательно, чем больше мощность пахотного слоя, тем больше биологически активный слой, в котором благодаря жизнедеятельности полезных почвенных микроорганизмов бесперебойно от весны до осени готовится необходимая культурным растениям пища.

Повышение мощности пахотного слоя почвы означает увеличение биологически активного слоя и создание больших возможностей для обеспечения сельскохозяйственных растений питательными веществами. Однако было бы грубой ошибкой на этом основании противопоставлять увеличение мощности пахотного слоя применению удобрений. Ранней весной при низкой температуре микроорганизмы не работают. На помощь земледелию приходит промышленность. Она предоставляет сельскому хозяйству минеральные удобрения, которые содержат питательные для растений вещества в доступных для них формах. На окультуренных почвах с глубоким пахотным слоем положительное влияние удобрений на урожай усиливается.

Для нормального почвенного питания сельскохозяйственных растений большое значение имеют мощность развития их корневых систем и распределение корней в почве по глубине. Мощность развития корневых систем зависит от уровня плодородия почвы, от степени ее окультуренное™. На дерново-подзолистых почвах у всех сельскохозяйственных растений основная масса корней (до 80-90 % общей их массы) располагается в пределах пахотного слоя. В этом же слое в течение всех жизни растений находится преобладающая часть тонких корешков, покрытых корневыми волосками, т. е. деятельная, поглощающая часть корневых систем, через которую поступает в растение пища из почвы. Объясняется это тем, что питательные вещества в доступных для растений формах содержатся в основном в пахотном слое. Чем больше мощность пахотного слоя, тем больший объем культурной почвы охватывается густой сетью корней и полнее обеспечивается почвенное питание растений. На почвах с мелким пахотным слоем растения свои потребности в почвенном питании вынуждены покрывать в основном за счет очень ограниченного, явно недостаточного слоя.

На окультуренных почвах с благоприятными физическими и агрохимическими свойствами подпахотных слоев зерновые культуры могут потреблять более 50 % влаги, 20-40 % питательных веществ из подпахотных горизонтов.

При наличии глубокого пахотного слоя случаи гибели озимых культур при неблагоприятных условиях перезимовки бывают исключением. На таких почвах озимые культуры, как правило, благополучно переносят даже самые тяжелые условия перезимовки. Объясняется это лучшими физическими свойствами почвы с глубоким пахотным слоем, отсутствием на них длительного осеннего переувлажнения и хорошим развитием озимых культур в осенний период.

На почвах с глубоким пахотным слоем гораздо реже наблюдается такое явление, как выпадение клеверов при неблагоприятных условиях перезимовки.

С увеличением мощности пахотного слоя повышается эффективность других агротехнических приемов возделывания сельскохозяйственных культур. Следовательно, можно сделать заключение, что только при наличии глубокого пахотного слоя и высокой окультуренности почвы могут быть обеспечены вполне благоприятные условия для роста и развития сельскохозяйственных растений. Они по-разному реагируют на мощность пахотного слоя и глубину обработки. К первой группе культур, хороню отзывающихся на глубокую обработку почвы относятся: свекла, кукуруза, картофель, люцерна, клевер, вика, кормовые бобы, подсолнечник,овощные культуры. Ко второй группе культур, средне отзывающихся на глубокую обработку почвы, относятся: озимая рожь, озимая пшеница, горох, ячмень, овес, кострец безостый. К третьей группе культур, слабо отзывающихся или совсем не отзывающихся на глубокую обработку почвы, относятся лен и яровая пшеница. На почвах с мощным пахотным слоем выше урожайность сельскохозяйственных культур.

Приемы увеличения мощности пахотного слоя. В начале прошлого века па преобладающей части пахотных земель дерново-подзолистых почв глубина пахотного слоя не превышала 14-15 см, а на значительной площади была не более 12 см. За истекший период благодаря росту культуры земледелия, увеличению внесения органических и минеральных удобрении мощность пахотного слоя доведена до 20-22 см. Экономически выгодным считается иметь мощность пахотного слоя 30-35 см. Однако следует иметь в виду, что увеличение мощности пахотного слоя не сводится только к увеличению глубины обработки, обязательным является внесение органических, минеральных и известковых удобрений, посев сидеральных культур.

Технология создания и окультуривания глубокого пахотного слоя дерново-подзолистых почв предусматривает оставление пахотного слоя на прежнем месте, рыхление и окультуривание нижележащих слоев. Особенно важно это соблюдать при неглубоком пахотном слое.

В настоящее время известно несколько способов углубления пахотного слоя почвы.

  • Пропахивание нижележащего слоя почвы с выносом его на поверхность.
  • Полное оборачивание пахотного слоя с одновременным рыхлением части подпахотного.
  • Рыхление на установленную глубину без оборачивания плугом без предплужников и без отвалов или чизельными плугами.
  • Углубление путем одновременной припашки части подпахотного слоя к пахотному и применение рыхления подпахотного.
  • Обработка почвы ярусными плугами с взаимным перемещением горизонтов.

При выборе способа углубления и окультуривания пахотного слоя дерново-подзолистых почв необходимо учитывать следующие показатели: 1) характеристика пахотного слоя (мощность, плодородие, гранулометрический состав); 2) характеристика подпахотных слоев: состав (подзолистый, иллювиальный, материнская порода), глубина, гранулометрический состав, агрофизические и агрохимические свойства (содержание гумуса, элементов питания, реакция среды, содержание подвижного алюминия и закисного железа).

Наиболее доступным способом увеличения мощности пахотного слоя является пропахивание нижележащего слоя почвы с выносом его на поверхность. Он осуществляется обычными плугами. За один прием следует припахивать не более 2-3 см подзолистого слоя. На почвах с пахотным слоем более 20 см его углубляют на 1/5 его толщины. Чтобы не допустить снижения урожайности сельскохозяйственных культур от пропахивания подзолистого горизонта к пахотному, необходимо разово внести 80-100 т/га органических удобрений, известковые удобрения для нейтрализации избыточной кислотности и минеральные удобрения в соответствии с планируемой урожайностью. Такое внесение позволит улучшить физические свойства и биологическую активность почвы и нейтрализацию кислотности. Лучшим местом углубления пахотного слоя путем припашки подзолистого является паровое поле, предназначенное под посев озимой ржи и поля под посадку картофеля. Нельзя углублять пахотный слой с вовлечением в него подзолистого горизонта под такие культуры, как сахарная свекла, кукуруза, пшеница и лен, даже с внесением удобрений, поскольку это приводит к снижению их урожая.

На почвах с неглубоким залеганием подзолистого горизонта при углублении пахотного слоя нужно проявлять некоторую осторожность, учитывая, что подзолистый слой отличается неблагоприятными физическими и биологическими свойствами, почти не содержит в усвояемой форме питательных веществ для растений и имеет повышенную кислотность. В этом случае подзолистый горизонт не выворачивают и не перемешивают с пахотным, а только рыхлят. При таком углублении пласт оборачивается на глубину гумусового слоя, а лежащий под ним горизонт рыхлится почвоуглубителями примерно на 10-15 см. В дальнейшем по мере окультуривания подзолистого горизонта можно частично припахивать его к пахотному обычным плугом. Не следует припахивать глеевый горизонт к гумусовому, так как он содержит закисные соли, вредные для сельскохозяйственных растений. На таких почвах хорошие результаты получают от углубления пахотного слоя плугами с почвоуглубителями, плугами без отвалов, плугами с вырезными отвалами и чизельными. Углубление путем рыхления на месте нижнего слоя (без выворачивания) в значительной степени повышает аэрацию, усиливает жизнедеятельность микроорганизмов и накапливает в почве усвояемые для растений продукты питания как за счет разложения органических веществ, так и за счет окисления минеральных соединений. Одним из эффективных способов постепенного увеличения мощности пахотного слоя является углубление путем одновременной припашки части пахотного слоя к пахотному и применение рыхления подпахотного.

Коренным образом можно изменить пахотный слой при вспашке ярусными плугами с взаимным перемещением почвенных горизонтов. Этот способ может быть эффективным при наличии в хозяйстве достаточного количества органических, минеральных и известковых удобрений, в противном случае может быть значительное снижение урожайности сельскохозяйственных культур. Увеличение мощности пахотного слоя требует больших материальных и денежных затрат, что не всегда под силу хозяйствам.

Результаты многолетних стационарных и краткосрочных полевых опытов свидетельствуют о том, что нет достаточно веских оснований для рекомендации постепенно углублять пахотный слой до 25-30 см и более. Углубление целесообразно лишь на хорошо окультуренных пахотных землях в условиях интенсивного применения удобрений, периодического известкования и возделывания культур, хорошо отзывающихся на глубокие обработки.

В среднем за ротацию семипольного севооборота без углубления получено 59,1 ц/га к.ед., по углублению на 5 см - 59,8 ц/га, т. е. продуктивность практически одинаковая. Однако углубление пахотного слоя за счет припашки подзолистого приводит к большим затратам ГСМ на его проведение, а на почвах, засоренных камнями, и к поломке плугов.

В большинстве хозяйств республики гумусовый слой пахотных почв составляет 20 см и более, углублять его за счет припашки подзолистого неэффективно, а следует его окультуривать и только на переуплотненных участках разуплотнять подпахотные слои безотвальными орудиями, лучше с наклонными стойками. На дерновоподзолистых легкосуглинистых почвах с мощностью гумусового слоя 20-22 см можно получать зерновых 4,5-6,0 т/га, картофеля - 35-40, корнеплодов - 60-80, сена многолетних трав - 10-12 т/га.

Спб.: Политехника, 2004. - 679 c.
ISBN 5-7325-0236-Х
Скачать (прямая ссылка): spravochniktehnologaoptika2004.djvu Предыдущая 1 .. 113 > .. >> Следующая
Окончательное полирование монокорунда и граната с требованиями по форме N (0,1-4,0) и ЛN (0,1-0,4) и чистоте Р IV продолжают на полировальниках из дюралюминия или меди алмазом АСМ1/0; АСМО,5/0,1; АСМО,3/0 последовательно на станках типа ПД. При доводке поверхностей менее 1N снижают давление до 50 кПа и менее (особенно на блоках диаметром более 0,1 м).
Окончательное полирование граната, фианита и кварца с указанными точностями осуществляют на полировальниках из смол СП с наполнителями (оксидом хрома, полиритом и т. п.).
Окончательное полирование монокорунда без требований по отступлению от формы, но с повышенными требованиями по шероховатости (Rz < 0,01) и чистоте (Р III, без сетки царапин) продолжают алмазом АСМ1/0, АСМО,5/0,1 либо оксидом хрома на полировальнике из полировочных смол СП4-СП6 с наполнителями или без них (см. табл. 5.12). Полирование ОД с целью получения максимального пропускания в ВУФ- и УФ-областях спектра продолжают алмазом до АСМО,5/0,1 на полировальниках из дюралюминия и затем на искусственной замше, натянутой на тот же полировальник, субмикронными порошками а-А1203 зернистостью
0,5/0 с водой или этиловым спиртом [а. с. СССР 1663063, 1593307].
Полирование монокорунда для последующего просветляющего покрытия пленками Si02 продолжают на искусственной замше водной суспензией коллоидного кремнезема с а-А1203 зернистостью
294
0,5/0 в концентрации Т: Ж = 1: 4. Считается, что полученная поверхность наиболее приготовлена для эпитаксиального покрытия .
5.5. МЕТОДЫ ИССЛЕДОВАНИЯ СТРОЕНИЯ И ГЛУБИНЫ НАРУШЕННОГО СЛОЯ
Существующие методы, которые применяются для изучения нарушенного слоя, можно условно разделить на две группы: методы, с помощью которых непосредственно наблюдают макро- и микро-структурные изменения в поверхностном слое; методы, с помощью которых исследуют изменение физико-механических или химических свойств материала по мере удаления поверхностного слоя, возникшего в результате механической обработки. Методы 1-й и 2-й групп характеризуются различной сложностью постановки экспериментов, но каждый из них предусматривает последовательное изучение отдельных слоев, все более отстоящих от поверхности. Послойное удаление нарушенного слоя производят полированием или химическим травлением.
1. В методе, основанном на изменении скорости травления поверхности в зависимости от степени ее разрушения, самая высокая скорость отмечается при травлении наружного рельефного слоя. По мере удаления нарушенного слоя скорость травления уменьшается и приближается к скорости травления монокристалла. Толщина слоя, который нужно удалить до получения постоянной скорости травления, принимается за глубину поврежденного слоя. Однако результаты зависят от ряда факторов: типа травите-ля, температуры, скорости перемещения в объеме травителя, освещенности поверхности и т. д. .
2. В методе экзоэлектронной эмиссии поток электронов возникает в запрещенной зоне кристалла с локальных энергетических уровней, соответствующих дефектам структуры. Регистрация экзоэлектронов может осуществляться на воздухе счетчиком типа Гейгера-Мюллера либо в вакууме вторично-электронными умножителями. Наиболее четко зависимость экзоэмиссии от глубины нарушенного слоя выражена в диапазоне 0,3-6,0 мкм .
3. Рентгеновский метод аномального прохождения рентгеновских лучей (АПРЛ) состоит в том, что совершенный кристалл в положении брэгговского отражения пропускает рентгеновские лучи, почти не поглощая их, в то время как в неотражающем положении сильно их поглощает. Поэтому реальные кристаллы, имеющие несовершенства кристаллической решетки, вызывают уменьшение АПРЛ. Таким же образом на АПРЛ влияют нарушения кристаллической решетки, возникающие в результате механической обработки. Эффект АПРЛ можно регистрировать по изме-
295
нению интегральной интенсивности или фотографическим путем (снятием топограмм) .
Методика определения глубины нарушенного слоя по полуширине кривой качания приведена в работе . Как известно, полуширина кривой качания зависит от внутризеренной структуры кристалла - размера блоков мозаики и их разориентации. Механическая обработка приводит к нарушению монокристаллического строения, в частности, к интенсивному дроблению кристалла на блоки и их разориентации. Появление разориентированных блоков приводит к уширению кривой качания ftfeZ-отражения по сравнению с кривой для кристалла без подобных разрушений. Между величиной нарушенного слоя и полушириной кривой качания существует линейная зависимость.
4. В методе, основанном на эффекте Тваймана , пластину, одинаково обработанную с обеих сторон, полируют с одной стороны и измеряют стрелу прогиба. По кривой, характеризующей зависимость стрелы прогиба от толщины слоя, удаленного с другой стороны пластины, определяют глубину поврежденного слоя.
5. В методе, основанном на зависимости микротвердости от глубины нагружения индентора, измерения производят на приборе ПМТ-3. С постепенным удалением нарушенного слоя значения микротвердости повышаются и достигают постоянного значения, не зависящего от нагружения индентора .

О П:И;.C"À.",3 и E изоб итиния

Союз Советских

Соцмалмстммескмх

2 (5l) М. Кл.

Государстаеккый комитет

Совета Мкнкстроа СССР ко делам кзооретенкй и открыткй (43) Опублыковано25.10.78.Бюллетень № 38 (53) уд (@pl 382 (088.8) (45} Дата опубликования описания28.08.78

Ж. А. Веревкина, В. С. Кулешов, И. С. Суровцев и B. Ф. Сыноров (72) Авторы нзобретеыыя (тт) даявытель Воронежский ордена Ленина государственный университет им. Ленинского комсомола (54) СПОСОБ.ОПРЕДЕЛЕНИЯ ГЛУБИНЫ НАРУШЕННОГО СЛОЯ

ПОЛУПРОВОДНИКОВОЙ ПЛАСТИ НЫ

Изобретение относится к области производства полупроводниковых приборов.

Известные способы определения глубины нарушенного слоя основаны на изменении физических или електрофизнческих параметров полупроводникового материала при последовательном механическом либо химическом удалении нарушенного слоя.

Гак, метод плоскопараллельных (косых) сечений с подтравливанием состоит в последовательном удалении частей нарушенного слоя, химическом травлении оставшегося материала и визуальном контроле следов трешин. 15

Метод циклического травления основан на различии в скоростях травления поверхностного нарушенного слоя и объема полупроводникового материала и заключается в точном определении обьема 20 стравленного материала за определенный промежуток времени.

Метод микротвердости основан на разнице величины микротвердости нарушенного слоя и обьема полупроводникового ма- 25 териала и заключается в послойном химическом стравливании приповерхностных слоев материала и измерении микротвердости оставшейся части полупроводниковой пластины.

Метод инфракрасной микроскопии основан на различном поглощении излучения

ИК-диапазона полупроводниковыми пластинами с разной глубиной нарушенного слоя и заключается в измерении интегрального пропускания ИК-излучения полупроводниковой пластиной после каждого химического удаления слоя материала.

Электронографический метод определе ния глубины нарушенного слоя основан на приготовлении косого шлифа из полупроводниковой пластины и сканировании злектроннoFo луча IIо шлифу от поверхности монокристалла до той точки, начиная с которой дифракционная картина не меняется, с последующим замером пройденного расстояния.

Однако в известных методах контроля следует отметить либо наличие дорогостояшего и громоздкого оборудования, либо

599662 применение агрессивных н токсичных реактивов, а также длительность получения результата.

Известен способ определения глубины нарушенного слоя в полупроводниковой S йнастине путем нагрева полупроводника, Qrm его заключается s том, что попу проводннковую пластину с нарушенным слоем помещают в вакуумную камеру перед входным окном приемника экзоэпек- 1о тронов, с помощью которого измеряют экзоэпектроееееую эмиссию с поверхности полупроводника.

Для создания тянущего экэоэпектронов электрического поля над поверхно- 33 стью попупроводника помещают сетку, на которую подают отрицатепьньей потеяциап. Далее при нагреве полулроводешка с его поверхности возникает экэоэпектрониая эмиссия измеряем%я С пОмОщью при» емнике1 и дОпопнительной аппаратурье (ши» (еокополостного усилителя и импульсного счетчиKа), При этом температурноe по» пожение и интенсивность ликов эмиссии определяется глубиной нарушенного слоя. 25

При этом способе необходимо наличие вакуумного Оборудования, причем для получения эмиссионных спектров необходимо в камере создавать разряжеееие не хуже 10 торр. Создание таких условий ЗО перед собственно процессом определения гееу%нье нарушенного слоя приводит к по пучению конечного результата лишь через

40-60 миеЕ„Кроме тое о, по данному спо сабу нельзя одновременно определить 35 кристаппографическую ориентацию полупроводниковой пластины.

Цель настоящего изобретения — упрощение процесса определения глубины нарушенного слоя, одновременное Опредепе 40 ние кристаплографической ориентации попупроводниковой пластины.

Зто достигается тем, что пластину нагреваеот B высокочастотном лопе до появпения скеенэффекта и выдерживают в течение 2-5 с, после чего по средней максимапьной протяженности следов ориентированных каналов проппавпения и их форме определяют глубину нарушенного слоя и ориентацию монокристалпической пластины.

На чертеже приведена зависимость средней максимальной площади следов ориентироваиееых каналов проплавпения на поверкности кремния ориентации (100} от глубины нарушенного слоя„

При индукционном нагреве полупровод ннковой пластины (с одновременной инициацией собственной проводимости в полупроводнике) на периферии последнего возникает скин-эффект, обнаруживаемый по появлению ярко светящегося ободка на пластине. Прн вьедерживаееии пластины в указанных успоьиях в течение 2-5 с обнаружено, что на обеих сторонах периферии полупроводниковой пластины образуются фигуры в виде треугольников дпя попупроводников, ориентированных в плоскости, и прямоугольников - дпя ориентации (100).

Зти фигуры являются следами ориентированных каналов проппавпения.

Образование каналов, по-видимому, обусловлено взаимодействием пондермоторных сип электрического поли с трещинами и прочими дефектами в приповерхностном слое полупроводника, приводящим к разрыву межатомных связей в зоне де фекта, Зпектроны далее ускоряются в сильном электрическом поле, ионнэируют на пути атомы, вызывая павину, и, таким образом, проппавияют мояокристалл вдоль дефекта.

ЗкспереЕментапьным путем обнаружено, Р чтО максимаен эиая протяженность {ппощадьэ) поверхностных следов ориентированных каналов проппавления зависит от размера (протяженности) самого дефекта в структуре попупроводника. Причем зависимость эта нииейная, т. е. чем больше размер дефекта, например, длина трещин, тем большую ппощадь имеет след ориен тированного канапа проппавпения, возник» шего на этом дефекте.

Пример При полировании кремниевых пластин алмазными пастами с после довательно уменьшающимся диаметром зерна предварительно строят градуировоч ную кривую. По оси ординат откпадывают значения глубины нарушенного слоя в кремнии, определенные любым из извест. ных методов, например, циклическим травлением. По оси абсцисс» среднюю мак- симальную протяженность (площадь) сле дов проппавления, соответствующую определенной глубине нарушенного слоя. Для этого пластины диаметром 40 мм, иэъя-1 тые с различных стадий полирования, по-. мещают на графитовой подложке в ципиндрический ВЧ индуктор днаметррм 50мм установки мощностью ЗИВТ и рабочейчастотой 13,56 МГц. Пластину выдерживают в ИЧ-поле 3 с, после чего на микроскопе типа МИИ-4 по 10 полям зрения опредепяют среднюю максимальную протяженность (площадь) следа канала проплави $> " >

Составитель Н. Хлебников

Редактор Т. Колодцева ТехредА. АлатыревКорректор С. Патрушева

Заказ 6127/52 Тираж 918 Подписное

UHHHfIH Государственного комитета Совета Министров СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д, 4/5

Филиал ППП Патент, г. Ужгород, ул. Проектная, 4 пения. В дальнейшем при частичном изменении технологии, т. е. например, при смене типа станка, материала полировальнкка

> зернистости алмазной пасты и т, д. изымают одну из пластин с определенной стадии техпроцесса и подвергают ВЧ-об работке, как это описано выше. Далее, воспользовавшись градуировочной кривой, определяют глубину нарушенного слоя и вносят коррективы s технологию. Ориен тацию также контролируют визуально пос ле ВЧ обработки.

Хронометрирование процесса определе ния глубины нарушенного слоя и ориента ции полупроводника, согласно предложен ному техническому решению, показывает, что весь процесс от его начала (помещен ния пластины в ВЧ-индуктор) и до получения конечного результата занимает

Реализация описанного способа в полупроводниковом производстве даст возмоиэность производить экспресс-контроль my

29 бины нарушенного слоя на обеих поверхностях полупроводниковой пластины с од» повременным определением ее крирталлографической ориентации, уменьшить при менение агрессивных и токсичных реактивов и>тем самым, улучшить беэопасносуь и условия труда.

Формула изобретения

Способ определения глубины нарушен ного слоя полупроводниковой пластины путем нагрева полупроводника, о т л и -е ч а ю шийся тем, что, с целью уп рощения процесса и одйовременного опре деления кристаллографической ориентации пластину нагревают в высокочастот ном ноле до, появления скин-эффекта и выдерживают таким образом в течение

2-5 с, после чего по средней максималь ной протяженности следов ориентирован-. ных каналов процлавления и их форме определяют глубину нарушенного слоя и ориентацию монокристаллической пластиBbK