• 1)в начале XIX в. Ф.А. Галль высказал предположение, что субстратом различных психических "способностей"(честность, бережливость, любовь и т.д))) являются небольшие участки н. тк. КБП, которые разрастаются при развитии этих способностей. Галль считал, что различные способности имеют четкую локализацию в ГМ и что их можно определять по выступам на черепе, где якобы разрастается соответствующая данной способности н. тк. и начинает выпирать, образуя при этом на черепе бугорок.
  • 2)В 40-е годы XIX в. против Галля выступает Флуранс, который на основании опытов экстирпации (удаления) частей ГМ, выдвигает положение об эквипотенциальности (от лат. эквус - "равный") функций КБП. По его мнению, ГМ является однородной массой, функционирующей как единый цельный орган.
  • 3)Основу современного учения о локализации функций в КБП заложил французский ученый П.Брока, выделивший в 1861 г. двигательный центр речи. В последующем немецкий психиатр К. Вернике в 1873 г. обнаружил центр словесной глухоты (нарушение понимания речи).

Начиная с 70-х гг. изучение клинических наблюдений показало, что поражение ограниченных участков КБП приводит к преимущественному выпадению вполне определенных психических функций. Это дало основание выделить в КБП отдельные участки, которые стали рассматриваться как нервные центры, несущие ответственность за определенные психические функции.

Обобщив наблюдения, проводимые над ранеными с повреждениями мозга во время первой мировой войны, в 1934 г. немецкий психиатр К. Клейст составил так называемую локализационную карту, в которой даже наиболее сложные психические функции соотносились с ограниченными участками КБП. Но подход прямой локализации сложных психических функций в определенных участках КБП - несостоятелен. Анализ фактов клинических наблюдений свидетельствовал, что нарушения таких сложных психических процессов, как речь, письмо, чтение, счет, могут возникать при совершенно различных по местоположению поражениях КБП. Поражение ограниченных участков мозговой коры, как правило, приводит к нарушению целой группы психических процессов.

4) возникло новое направление, рассматривающее психические процессы как функцию всего ГМ в целом ("антилокализационизм"), но несостоятельно.

Трудами И. М. Сеченова, а затем и И. П. Павлова -- учение о рефлекторных основах психических процессов и рефлекторных законах работы КБП, оно привело к коренному пересмотру понятия «функции»- стала рассматриваться как совокупность комплексных временных связей. Были заложены основы новых представлений о динамической локализации функций в КБП.

Подводя итог, можно выделить основные положения теории системной динамической локализации высших психических функций:

  • - каждая психическая функция представляет собой сложную функциональную систему и обеспечивается мозгом как единым целым. При этом различные мозговые структуры вносят свой специфический вклад в реализацию этой функции;
  • - различные элементы функциональной системы могут находиться в достаточно удаленных друг от друга участках мозга и при необходимости замещают друг друга;
  • - при повреждении определенного участка мозга возникает "первичный" дефект - нарушение определенного физиологического принципа работы, свойственного данной мозговой структуре;
  • - как результат поражения общего звена, входящего в разные функциональные системы, могут возникать "вторичные" дефекты.

В настоящее время теория системной динамической локализации высших психических функций является основной теорией, объясняющей взаимосвязь психики и мозга.

Гистологические и физиологические исследования показали, что КБП - высоко дифференцированный аппарат. Различные области мозговой коры имеют неодинаковое строение. Нейроны коры часто оказываются настолько специализированными, что из их числа можно выделить такие, которые реагируют только на очень специальные раздражения или на очень специальные признаки. В коре головного мозга установлены целый ряд сенсорных центров.

Твердо установленной является локализация в так называемых «проекционных» зонах -- корковых полях, непосредственно связанных своими путями с нижележащими отделами НС и периферией. Функции КБП более сложные, филогенетически более молодые, не могут быть узко локализованными; в осуществлении сложных функций участвуют весьма обширные области коры, и даже вся кора в целом. Вместе с тем, в пределах КБП имеются участки, поражение которых вызывает различную степень, например речевых расстройств, нарушений гнозии и праксии, топодиагностическое значение которых также является значительным.

Вместо представления о КБП как, в известной мере, изолированной надстройке над другими этажами НС с узко локализованными, связанными по поверхности (ассоциационными) и с периферией (проекционными) областями, И.П. Павлов создал учение о функциональном единстве нейронов, относящихся к различным отделам нервной системы -- от рецепторов на периферии до коры головного мозга -- учение об анализаторах. То, что мы называем центром, является высшим, корковым, отделом анализатора. Каждый анализатор связан с определенными областями коры головного мозга

3) Учение о локализации функций в коре большого мозга развивалось во взаимодействии двух противоположных концепций -- анти-локализационизма, или эквипонтециализма (Флуранс, Лешли), отрицающего локализованность функций в коре, и узкого локали-зационного психоморфологизма, пытавшегося в своих крайних вариантах (Галль) локализовать в ограниченных участках мозга даже такие психические качества, как честность, скрытность, любовь к родителям. Большое значение имело открытие Фритчем и Гитцигом в 1870 г. участков коры, раздражение которых вызывало двигательный эффект. Другими исследователями также были описаны области коры, связанные с кожной чувствительностью, зрением, слухом. Клиницисты-неврологи и психиатры свидетельствуют также о нарушении сложных психических процессов при очаговых поражениях мозга. Основы современного взгляда на локализацию функций в головном мозге заложены Павловым в его учении об анализаторах и учении о динамической локализации функций. По Павлову, анализатор -- это сложный, функционально единый нейронный ансамбль, служащий для разложения (анализа) внешних или внутренних раздражителей на отдельные элементы. Он начинается рецептором на периферии и оканчивается в коре большого мозга. Корковые центры являются корковыми отделами анализаторов. Павлов показал, что корковое представительство не ограничивается зоной проекции соответствующих проводников, далеко выходя за ее пределы, и что корковые зоны различных анализаторов перекрывают друг друга. Итогом исследований Павлова явилось учение о динамической локализации функций, предполагающее возможность участия одних и тех же нервных структур в обеспечении различных функций. Под локализацией функций сподразумевается формирование сложных динамических структур или комбинационных центров, состоящих из мозаики возбужденных и заторможенных далеко отстоящих пунктов нервной системы, объединенных в общей работе в соответствии с характером необходимого конечного результата. Свое дальнейшее развитие учение о динамической локализации функций получило в трудах Анохина, создавшего концепцию функциональной системы как круга определенных физиологических проявлений, связанных с выполнением какой-либо определенной функции. Функциональная система включает каждый раз в разных сочетаниях различные центральные и периферические структуры: корковые и глубинные нервные центры, проводящие пути, периферические нервы, исполнительные органы. Одни и те же структуры могут входить во множество функциональных систем, в чем и выражается динамичность локализации функций. И. П. Павлов считал, что отдельные области коры имеют разное функциональное значение. Однако между этими областями не существует строго определенных границ. Клетки одной области переходят в соседние области. В центре этих областей находятся скопления наиболее специализированных клеток-так называемые ядра анализатора, а на периферии-менее специализированные клетки. В регуляции функций организма принимают участие не строго очерченные какие-то пункты, а многие нервные элементы коры. Анализ и синтез поступающих импульсов и формирование ответной реакции на них осуществляются значительно большими областями коры. По Павлову, центр-это мозговой конец так называемого анализатора. Анализатор - это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтезирование анализаторов друг с другом и с разными деятельностями организма.

На основании многочисленных исследований с определенной точностью установлено функциональное значение различных областей коры полушарий большого мозга.

Участки коры полушарий, имеющие характерную цитоархитектонику, и нервные связи, участвующие в выполнении определенных функций, являются нервными центрами. Поражение таких участков коры проявляется в утрате присущих им функций. Нервные центры коры полушарий большого мозга могут быть разделены на проекционные и ассоциативные.

Проекционные центры – это участки коры полушарий большого мозга, представляющие собой корковую часть анализатора, имеющие непосредственную морфофункциональную связь через афферентные или эфферентные проводящие пути с нейронами подкорковых центров. Они осуществляют первичную обработку поступающей сознательной афферентной информации и реализацию осознанной эфферентной информации (произвольные двигательные акты).

Ассоциативные центры – это участки коры полушарий большого мозга, не имеющие непосредственной связи с подкорковыми образованиями, а связанные временной двусторонней связью с проекционными центрами. Ассоциативные центры играют первостепенную роль в осуществлении высшей нервной деятельности (глубокая обработка сознательной афферентной информации, мыслительная деятельность, память и т.д.).

В настоящее время достаточно точно выяснена динамическая локализация некоторых функций коры полушарий большого мозга.

Участки коры полушарий большого мозга, не являющиеся проекционными или ассоциативными центрами, участвуют в выполнении межанализаторной интегративной деятельности головного мозга.

Проекционные нервные центры коры полушарий большого мозга развиваются как у человека, так и у высших позвоночных животных. Они начинают функционировать сразу же после рождения. Формирование этих центров завершается гораздо раньше, чем ассоциативных. В практическом отношении важными являются следующие проекционные центры.

1. Проекционный центр общей чувствительности (тактильной, болевой, температурной и сознательной проприоцептивной) также называют кожным анализатором общей чувствительности. Он локализуется в коре постцентральной извилины (поля 1, 2, 3). В нем заканчиваются волокна, идущие в составе таламо-коркового пути. Каждый участок противоположной половины тела имеет отчетливую проекцию в корковом конце кожного анализатора (соматотопическая проекция). В верхнем отделе постцентральной извилины проецируются нижняя конечность и туловище, в среднем – верхняя конечность и в нижнем – голова (сенсорный гомункулюс Пенфилда). Размеры проекционных зон соматосенсорной коры прямо пропорциональны количеству рецепторов, находящихся в кожных покровах. Этим объясняется наличие наиболее крупных соматосенсорных зон, соответствующих лицу и кисти (рис. 3.25). Поражение постцентральной извилины вызывает утрату тактильной, болевой, температурной чувствительности и мышечно-суставного чувства на противоположной половине тела.

Рис. 3.25.

  • 1 – половые органы; 2 – стопа; 3 – бедро; 4 – туловище; 5 – кисть; 6 – указательный и большой пальцы кисти; 7 – лицо; 8 – зубы; 9 – язык; 10 – глотка и внутренние органы
  • 2. Проекционный центр двигательных функций (кинестетический центр), или двигательный анализатор, располагается в двигательной области коры, включающей пред- центральиую извилину и околоцентральную дольку (поля 4, 6). В 3–4-м слоях коры двигательного анализатора заканчиваются волокна, идущие в составе таламо-коркового пути.

Здесь осуществляется анализ проприоцептивных (кинестетических) раздражений. В пятом слое коры располагается ядро двигательного анализатора, от нейроцитов которого берут начало корково-спинномозговой и корково-ядерный пути. В предцентральной извилине также имеется четкая соматотопическая локализация двигательных функций. Мышцы, выполняющие сложные и тонко дифференцированные движения, имеют большую проекционную зону в коре предцентральной извилины. Наибольшую площадь занимает проекция мышц языка, лица и кисти, наименьшую – проекция мышц туловища и нижних конечностей. Соматотопическая проекция на предцентральную извилину носит название "моторный гомункулюс Пенфилда". Тело человека проецируется на извилине "вверх ногами", причем проекция осуществляется на кору противоположного полушария (рис. 3.26).

Афферентные волокна, заканчивающиеся в чувствительных слоях коры кинестетического центра, первоначально проходят в составе путей Голля, Бурдаха и ядерно-таламического тракта, проводящих импульсы сознательной проприоцептивной чувствительности. Поражение предцентральной извилины приводит к нарушению восприятия раздражений от скелетных мышц, связок, суставов и надкостницы. Корково-спинномозговой и корково-ядерный пути проводят импульсы, обеспечивающие сознательные движения, и оказывают тормозное воздействие на сегментарный аппарат ствола головного и спинного мозга. Корковый центр двигательного анализатора через систему ассоциативных волокон имеет многочисленные связи с различными корковыми сенсорными центрами (центром общей чувствительности, центром зрения, слуха, вестибулярных функций и т.д.). Указанные связи необходимы для выполнения интегративных функций при выполнении произвольных движений.

3. Проекционный центр схемы тела располагается в области внутритеменной борозды (поле 40s). В нем представлены соматотопические проекции всех частей тела. В центр схемы тела поступают импульсы преимущественно сознательной проприоцептивной чувствительности. Основное функциональное назначение данного проекционного центра – определение положения тела и отдельных его частей в пространстве и оценка тонуса мускулатуры. При поражении верхней теменной дольки наблюдается нарушение таких функций, как узнавание частей собственного тела, ощущение лишних конечностей, нарушения определения положения отдельных частей тела в пространстве.

Рис. 3.26.

  • 1 – стопа; 2 – голень; 3 – колено; 4 – бедро; 5 – туловище; 6 – кисть; 7 – большой палец кисти; 8 – шея; 9 – лицо; 10 – губы; 11 – язык; 12 – гортань
  • 4. Проекционный центр слуха, или ядро слухового анализатора, располагается в средней трети верхней височной извилины (поле 22). В этом центре заканчиваются волокна слухового пути, происходящие от нейронов медиального коленчатого тела (подкорковый центр слуха) своей и, преимущественно, противоположной сторон. В конечном счете волокна слухового пути проходят в составе слуховой лучистости.

При поражении проекционного центра слуха с одной стороны отмечается понижение слуха на оба уха, причем с противоположной стороны от очага поражения слух снижается в большей степени. Полная глухота наблюдается только при двустороннем поражении проекционных центров слуха.

5. Проекционный центр зрения, или ядро зрительного анализатора, локализуется на медиальной поверхности затылочной доли, по краям шпорной борозды (поле 17). В нем заканчиваются волокна зрительного пути со своей и противоположной сторон, происходящие от нейронов латерального коленчатого тела (подкорковый центр зрения). На шпорную борозду имеется определенная соматотопическая проекция различных участков сетчатки.

Одностороннее поражение проекционного центра зрения сопровождается частичной слепотой на оба глаза, но в различных участках сетчатки. Полная слепота наступает только при двустороннем поражении.

  • 6. Проекционный центр обоняния, или ядро обонятельного анализатора, располагается на медиальной поверхности височной доли в коре парагиппокампальной извилины и в крючке. Здесь заканчиваются волокна обонятельного пути со своей и противоположной сторон, происходящие от нейронов обонятельного треугольника. При одностороннем поражении проекционного центра обоняния отмечаются снижение обоняния и обонятельные галлюцинации.
  • 7. Проекционный центр вкуса, или ядро вкусового анализатора, располагается там же, где и проекционный центр обоняния, т.е. в лимбической области мозга (крючок и парагиппокампальная извилина). В проекционном центре вкуса заканчиваются волокна вкусового пути своей и противоположной сторон, происходящие от нейронов базальных ядер таламуса. При поражении лимбической области наблюдаются расстройства вкуса, обоняния, нередко появляются соответствующие галлюцинации.
  • 8. Проекционный центр чувствительности от внутренних органов, или анализатор висцероцепции, располагается в нижней трети постцентральной и предцентральной извилин (поле 43). В корковую часть анализатора висцероцепции поступают афферентные импульсы от гладкой мускулатуры и слизистых оболочек внутренних органов. В коре данной области заканчиваются волокна интероцептивного пути, происходящие от нейронов вентролатеральных ядер таламуса, в которые информация поступает по ядерно-таламическому тракту. В проекционном центре висцероцепции анализируются главным образом болевые ощущения от внутренних органов и афферентные импульсы от гладкой мускулатуры.
  • 9. Проекционный центр вестибулярных функций, несомненно, имеет свое представительство в коре полушарий большого мозга, однако сведения о его локализации неоднозначны. Принято считать, что проекционный центр вестибулярных функций располагается в области средней и нижней височных извилин (поля 20, 21). Определенное отношение к вестибулярному анализатору имеют также прилежащие отделы теменной и лобной долей. В коре проекционного центра вестибулярных функций заканчиваются волокна, происходящие от нейронов срединных ядер таламуса. Поражения указанных корковых центров проявляются спонтанным головокружением, ощущением неустойчивости, чувством проваливания, ощущением движения окружающих предметов и деформации их контуров.

Завершая рассмотрение проекционных центров, следует отметить, что корковые анализаторы общей чувствительности получают афферентную информацию с противоположной стороны тела, поэтому поражение центров сопровождается расстройствами определенных видов чувствительности только на противоположной стороне тела. Корковые анализаторы специальных видов чувствительности (слуховой, зрительной, обонятельной, вкусовой, вестибулярной) связаны с рецепторами соответствующих органов своей и противоположной сторон, поэтому полное выпадение функций данных анализаторов наблюдается только при поражении соответствующих зон коры полушарий большого мозга с обеих сторон.

Ассоциативные нервные центры. Эти центры формируются позже, чем проекционные, причем сроки кортикализации, т.е. созревания коры головного мозга, в данных центрах неодинаковы. Ассоциативные центры отвечают за мыслительные процессы, память и реализацию словесной функции.

  • 1. Ассоциативный центр "стереогнозии ", или ядро кожного анализатора (центр узнавания предметов на ощупь). Этот центр располагается в верхней теменной дольке (поле 7). Он двусторонний: в правом полушарии – для левой кисти, в левом – для правой. Центр "стереогнозии" связан с проекционным центром общей чувствительности (постцентральная извилина), из которого нервные волокна проводят импульсы болевой, температурной, тактильной и проприоцептивной чувствительности. Поступающие импульсы в ассоциативном корковом центре анализируются и синтезируются, в результате чего происходит узнавание ранее встречавшихся предметов. На протяжении всей жизни центр "стереогнозии" постоянно развивается и совершенствуется. При поражении верхней теменной дольки больные теряют способность с закрытыми глазами создавать общее целостное представление о предмете, т.е. не могут узнать этот предмет на ощупь. Отдельные свойства предметов, такие как форма, объем, температура, плотность, масса, определяются правильно.
  • 2. Ассоциативный центр "праксии", или анализатор целенаправленных привычных движений. Данный центр располагается в нижней теменной дольке в коре надкраевой извилины (поле 40), у правшей – в левом полушарии большого мозга, у левшей – в правом. У некоторых людей центр "праксии" формируется в обоих полушариях, такие люди в одинаковой мере владеют правой и левой руками и называются амбидекстрами.

Центр "праксии" развивается в результате многократного повторения сложных целенаправленных действий. В результате закрепления временных связей формируются привычные навыки, например работа на пишущей машинке, игра на рояле, выполнение хирургических манипуляций и т.д. По мере накопления жизненного опыта центр праксии постоянно совершенствуется. Кора в области надкраевой извилины имеет связи с задней и передней центральными извилинами.

После осуществления синтетической и аналитической деятельности из центра "праксии" информация поступает в прецентральную извилину к пирамидным нейронам, откуда по корково-спинномозговому пути достигает двигательных ядер передних рогов спинного мозга.

3. Ассоциативный центр зрения, или анализатор зрительной памяти, располагается на верхнелатеральной поверхности затылочной доли (поля 18–19), у правшей – в левом полушарии, у левшей – в правом. В нем обеспечивается запоминание предметов по их форме, внешнему виду, цвету. Считают, что нейроны поля 18 обеспечивают зрительную память, а нейроны поля 19 – ориентацию в непривычной обстановке. Поля 18 и 19 имеют многочисленные ассоциативные связи с другими корковыми центрами, благодаря чему происходит интегративное зрительное восприятие.

При поражении центра зрительной памяти развивается зрительная агнозия. Чаще наблюдается частичная агнозия (нс узнает знакомых, свой дом, себя в зеркале). При поражении поля 19 отмечается искаженное восприятие предметов, больной не узнает знакомых предметов, но он их видит, обходит препятствия.

Нервной системе человека присущи специфические центры. Это центры второй сигнальной системы, обеспечивающие способность общения между людьми посредством членораздельной человеческой речи. Человеческая речь может воспроизводиться в виде исполнения членораздельных звуков ("артикуляция") и изображения письменных знаков ("графика"). Соответственно в коре головного мозга формируются ассоциативные речевые центры – акустический и оптический центры речи, центр артикуляции и графический центр речи. Названные ассоциативные речевые центры закладываются вблизи соответствующих проекционных центров. Они развиваются в определенной последовательности, начиная с первых месяцев после рождения, и могут совершенствоваться до глубокой старости. Рассмотрим ассоциативные речевые центры в порядке их формирования в головном мозге.

4. Ассоциативный центр слуха, или акустический центр речи (центр Вернике), расположен в коре задней трети верхней височной извилины. Здесь заканчиваются нервные волокна, происходящие от нейронов проекционного центра слуха (средняя треть верхней височной извилины). Ассоциативный центр слуха начинает формироваться на втором-третьем месяце после рождения. По мере формирования центра ребенок начинает различать среди окружающих звуков членораздельную речь, вначале отдельные слова, а затем словосочетания и сложные предложения.

При поражении центра Вернике у больных развивается сенсорная афазия. Она проявляется в виде утраты способности понимать свою и чужую речь, хотя больной хорошо слышит, реагирует на звуки, по ему кажется, что окружающие разговаривают на незнакомом ему языке. Отсутствие слухового контроля за собственной речью приводит к нарушению построения предложений, речь становится непонятной, насыщенной бессмысленными словами и звуками. При поражении центра Вернике, поскольку он имеет прямое отношение к речеобразованию, страдает не только понимание слов, но и их произношение.

5. Ассоциативный двигательный центр речи (речедвигательный), или центр артикуляции речи (центр Брока), расположен в коре задней трети нижней лобной извилины (поле 44) в непосредственной близости от проекционного центра двигательных функций (предцентральная извилина). Речедвигательный центр начинает формироваться на третьем месяце после рождения. Он односторонний – у правшей он развивается в левом полушарии, у левшей – в правом. Информация из речедвигательного центра поступает в предцентральную извилину и далее по корково-ядерному пути – к мышцам языка, гортани, глотки, мышцам головы и шеи.

При поражении речедвигательного центра возникает моторная афазия (утрата речи). При частичном поражении речь может быть замедлена, затруднена, скандирована, бессвязна, нередко характеризуется лишь отдельными звуками. Речь окружающих больные понимают.

6. Ассоциативный оптический центр речи, или зрительный анализатор письменной речи (центр лексии, или центр Дежерина), находится в угловой извилине (поле 39). К нейронам оптического центра речи поступают зрительные импульсы от нейронов проекционного центра зрения (поля 17). В центре "лексии" происходит анализ зрительной информации о буквах, цифрах, знаках, буквенном составе слов и понимании их смысла. Центр формируется с трехлетнего возраста, когда ребенок начинает узнавать буквы, цифры и оценивать их звуковое значение.

При поражении центра "лексии" наступает алексия (расстройство чтения). Больной видит буквы, но не понимает их смысла и, следовательно, не может прочесть текст.

7. Ассоциативный центр письменных знаков, или двигательный анализатор письменных знаков (центр графин), располагается в заднем отделе средней лобной извилины (поле 8) рядом с предцентральной извилиной. Центр "графин" начинает формироваться на пятом-шестом году жизни. В этот центр поступает информация из центра "праксии", предназначенная для обеспечения тонких, точных движений руки, необходимых для написания букв, цифр, для рисования. От нейронов центра "графин" аксоны направляются в среднюю часть предцентральной извилины. После переключения информация по корково-спинномозговому пути направляется к мышцам верхней конечности. При поражении центра "графин" теряется способность написания отдельных букв, возникает "аграфия".

Таким образом, речевые центры имеют одностороннюю локализацию в коре полушарий большого мозга. У правшей они располагаются в левом полушарии, у левшей – в правом. Следует отметить, что ассоциативные речевые центры развиваются на протяжении всей жизни.

8. Ассоциативный центр сочетанного поворота головы и глаз (кортикальный центр взора) располагается в средней лобной извилине (поле 9) кпереди от двигательного анализатора письменных знаков (центр графин). Он осуществляет регуляцию сочетанного поворота головы и глаз в противоположную сторону за счет импульсов, поступающих в проекционный центр двигательных функций (предцентральная извилина) от проприоцепторов мышц глазных яблок. Кроме того, в этот центр поступают импульсы от проекционного центра зрения (кора в области шпорной борозды – поле 17), происходящие от нейронов сетчатки глаза.

  • Глава 2. Анализаторы
  • 2.1. Зрительный анализатор
  • 2.1.1. Структурно-функциональная характеристика
  • 2.1.2. Механизмы, обеспечивающие ясное видение в различных условиях
  • 2.1.3. Цветовое зрение, зрительные контрасты и последовательные образы
  • 2.2. Слуховой анализатор
  • 2.2.1. Структурно-функциональная характеристика
  • 2.3. Вестибулярный и двигательный (кинестетический) анализаторы
  • 2.3.1. Вестибулярный анализатор
  • 2.3.2. Двигательный (кинестетический) анализатор
  • 2.4. Внутренние (висцеральные) анализаторы
  • 2.5. Кожные анализаторы
  • 2.5.1. Температурный анализатор
  • 2.5.2. Тактильный анализатор
  • 2.6. Вкусовой и обонятельный анализаторы
  • 2.6.1. Вкусовой анализатор
  • 2.6.2. Обонятельный анализатор
  • 2.7. Болевой анализатор
  • 2.7.1. Структурно-функциональная характеристика
  • 2.7.2. Виды боли и методы ее исследования
  • 1 _ Легкие; 2 – сердце; 3 – тонкая кишка; 4 – мочевой пузырь;
  • 2.7.3. Обезболивающая (антиноцицептивная) система
  • Глава 3. Системный механизм восприятия
  • ЧастьIii. Высшая нервная деятельность Глава 4. История. Методы исследования
  • 4.1. Развитие концепции рефлекса. Нервизм и нервный центр
  • 4.2. Развитие представлений о внд
  • 4.3. Методы исследования внд
  • Глава 5. Формы поведения организма и память
  • 5.1. Врожденные формы деятельности организма
  • 5.2. Приобретенные формы поведения (научение)
  • 5.2.1. Характеристика условных рефлексов
  • Отличия условных рефлексов от безусловных рефлексов
  • 5.2.2. Классификация условных рефлексов
  • 5.2.3. Пластичность нервной ткани
  • 5.2.4. Стадии и механизм образования условных рефлексов
  • 5.2.5. Торможение условных рефлексов
  • 5.2.6. Формы научения
  • 5.3. Память*
  • 5.3.1. Общая характеристика
  • 5.3.2. Кратковременная и промежуточная память
  • 5.3.3. Долговременная память
  • 5.3.4. Роль отдельных структур мозга в формировании памяти
  • Глава 6. Типы внд и темперамент в структуре индивидуальности
  • 6.1. Основные типы внд животных и человека
  • 6.2. Типологические варианты личности детей
  • 6.3. Основные положения по формированию типа вид и темперамента индивидуальности
  • 6.4. Влияние генотипа и среды на развитие нейрофизиологических процессов в онтогенезе
  • 6.5. Роль генома в пластических изменениях нервной ткани
  • 6.6. Роль генотипа и среды в формировании личности
  • Глава 7. Потребности, мотивации, эмоции
  • 7.1. Потребности
  • 7.2. Мотивации
  • 7.3. Эмоции (чувства)
  • Глава 8. Психическая деятельность
  • 8.1. Виды психической деятельности
  • 8.2. Электрофизиологические корреляты психической деятельности
  • 8.2.1. Психическая деятельность и электроэнцефалограмма
  • 8.2.2. Психическая деятельность и вызванные потенциалы
  • 8.3. Особенности психической деятельности человека
  • 8.3.1. Деятельность и мышление человека
  • 8.3.2. Вторая сигнальная система
  • 8.3.3. Развитие речи в онтогенезе
  • 8.3.4. Латерализация функций
  • 8.3.5. Социально-детерминированное сознание*
  • 8.3.6. Осознаваемая и подсознательная деятельность мозга
  • Глава 9. Функциональное состояние организма
  • 9.1. Понятия и нейроанатомия функционального состояния организма
  • 9.2. Бодрствование и сон. Сновидения
  • 9.2.1. Сон и сновидения, оценка глубины сна, значение сна
  • 9.2.2. Механизмы бодрствования и сна
  • 9.3. Гипноз
  • Глава 10. Организация поведенческих реакций
  • 10.1. Уровни интегративной деятельности мозга
  • 10.2. Концептуальная рефлекторная дуга
  • 10.3. Функциональная система поведенческого акта
  • 10.4. Основные структуры мозга, обеспечивающие формирование поведенческого акта
  • 10.5. Активность нейронов и поведение
  • 10.6. Механизмы управления движением
  • Приложение. Практикум по физиологии сенсорных систем и высшей нервной деятельности
  • 1. Физиология сенсорных систем*
  • Работа 1.1. Определение поля зрения
  • Границы полей зрения
  • Работа 1.2. Определение остроты зрения
  • Работа 1.3. Аккомодация глаза
  • Работа 1.4. Слепое пятно (опыт Мариотта)
  • Работа 1.5. Исследование цветового зрения
  • Работа 1.6. Определение критической частоты слияния мельканий (кчсм)
  • Работа 1.7. Стереоскопическое зрение. Диспарантность
  • Работа 1.8. Исследование слуховой чувствительности к чистым тонам у человека (тональная аудиометрия)
  • Работа 1.9. Исследование костной и воздушной проводимости звука
  • Работа 1.10. Бинауральный слух
  • Работа 1.11. Эстезиометрия кожи
  • Показатели пространственной тактильной чувствительности кожи
  • Работа 1.12. Определение порогов вкусовой чувствительности (густометрия)
  • Показатели порогов вкусовой чувствительности
  • Работа 1.13. Функциональная мобильность сосочков языка до и после приема пищи
  • Показатели функциональной мобильности вкусовых сосочков языка
  • Работа 1.14. Термоэстезиометрия кожи
  • Определение плотности расположения терморецепторов
  • Изучение функциональной мобильности холодовых рецепторов кожи
  • Показатели функциональной мобильности холодовых рецепторов кожи
  • Работа 1.15. Определение чувствительности обонятельного анализатора (ольфактометрия)
  • Пороги обоняния различных пахучих веществ
  • Работа 1.16. Изучение состояния вестибулярного анализатора с помощью функциональных проб у человека
  • Работа 1.17. Определение порогов различения
  • Пороги различения ощущения массы
  • 2. Высшая нервная деятельность
  • Работа 2.1. Выработка мигательного условного рефлекса на звонок у человека
  • Работа 2.2. Образование условного зрачкового рефлекса на звонок и на слово «звонок» у человека
  • Работа 2.3. Исследование биоэлектрической активности коры большого мозга – электроэнцефалография
  • Работа 2.4. Определение объема кратковременной слуховой памяти у человека
  • Набор цифр для исследования кратковременной памяти
  • Работа 2.5. Связь реактивностис личностными чертами – экстраверсией, интроверсией и нейротизмом
  • Работа 2.6. Роль словесных раздражителей в возникновении эмоций
  • Работа 2.7. Исследование изменений ээг и вегетативных показателей при эмоциональном напряжении человека
  • Изменения ээг и вегетативных показателей при эмоциональном напряжении человека
  • Работа 2.8. Изменение параметров вызванного потенциала (вп) на вспышку света
  • Влияние произвольного внимания на вызванные потенциалы
  • Работа 2.9. Отражение семантики зрительного образа в структуре вызванных потенциалов
  • Параметры вп при семантической нагрузке
  • Работа 2.10. Влияние цели на результат деятельности
  • Зависимость результата деятельности от поставленной цели
  • Работа 2.11. Влияние обстановочной афферентации на результат деятельности
  • Зависимость результата деятельности от обстановочной афферентации
  • Работа 2.12. Определение устойчивости и переключаемости произвольного внимания
  • Работа 2.13. Оценка трудоспособности человека при выполнении работы, требующей внимания
  • Корректурная таблица
  • Показатели функционального состояния испытуемого
  • Результаты трудовой деятельности испытуемого
  • Работа 2.14. Значение памяти и доминирующей мотивации в целенаправленной деятельности
  • Результаты суммирования цифр
  • Работа 2.15. Влияние умственного труда на функциональные показатели сердечно-сосудистой системы
  • Работа 2.16. Роль обратной афферентации в оптимизации режима деятельности оператора у компьютера
  • Работа 2.17. Автоматический анализ показателей сердечно-сосудистой системы на разных стадиях образования двигательного навыка
  • Работа 2.18. Анализ скорости обучения оператора в детерминированных средах
  • Работа 2.19. Применение компьютера для изучения кратковременной памяти
  • Рекомендуемая литература
  • Содержание
  • 2. Высшая нервная деятельность 167
  • Локализация функций в коре большого мозга

    Общая характеристика. В определенных участках коры большого мозга сосредоточены преимущественно нейроны, воспринимающие один вид раздражителя: затылочная область – свет, височная доля – звук и т. д. Однако после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются. Согласно теории И. П. Павлова в коре большого мозга имеется «ядро» анализатора (корковый конец) и «рассеянные» нейроны по всей коре. Современная концепция локализации функций базируется на принципе многофункциональности (но не равноценности) корковых полей. Свойство мультифункциональности позволяет той или иной корковой структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей, функцию (О.С. Адрианов). Степень мультифункциональности различных корковых структур неодинакова. В полях ассоциативной коры она выше. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытия афферентных возбуждений, особенно на таламическом и корковом уровнях, модулирующее влияние различных структур, например неспецифических ядер таламуса, базальных ганглиев на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения. С помощью микроэлектродной техники удалось зарегистрировать в различных областях коры большого мозга активность специфических нейронов, отвечающих на стимулы только одного вида раздражителя (только на свет, только на звук и т. п.), т. е. имеется множественное представительство функций в коре большого мозга.

    В настоящее время принято подразделение коры на сенсорные, двигательные и ассоциативные (неспецифические) зоны (области).

    Сенсорные зоны коры. Сенсорная информация поступает в проекционную кору, корковые отделы анализаторов (И.П. Павлов). Эти зоны расположены преимущественно в теменной, височной и затылочной долях. Восходящие пути в сенсорную кору поступают в основном от релейных сенсорных ядер таламуса.

    Первичные сенсорные зоны – это зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма (ядра анализаторов по И. П. Павлову). Они состоят из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

    Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни – на оттенки цвета, другие – на направление движения, третьи – на характер линий (край, полоса, наклон линии) и т.п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных, или модулирующих) систем.

    Вторичные сенсорные зоны расположены вокруг первичных сенсорных зон, менее локализованы, их нейроны отвечают на действие нескольких раздражителей, т.е. они полимодальны.

    Локализация сенсорных зон. Важнейшей сенсорной областью является теменная доля постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий. Эту зону обозначают как соматосенсорную область I . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата – от мышечных, суставных, сухожильных рецепторов (рис. 2).

    Рис. 2. Схема чувствительного и двигательного гомункулусов

    (по У. Пенфильду, Т. Расмуссену). Разрез полушарий во фронтальной плоскости:

    а – проекция общей чувствительности в коре постцентральной извилины; б – проекция двигательной системы в коре предцентральной извилины

    Кроме соматосенсорной области I выделяют соматосенсорную область II меньших размеров, расположенную на границе пересечения центральной борозды с верхним краем височной доли, в глубине латеральной борозды. Точность локализации частей тела здесь выражена в меньшей степени. Хорошо изученной первичной проекционной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах.

    В затылочной доле расположена первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеется топическое представительство рецепторов сетчатки. Каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет сравнительно большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные и слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности, возникают более сложные зрительные образы и их опознание.

    Во вторичных зонах ведущими являются 2-й и 3-й слои нейронов, для которых основная часть информации об окружающей среде и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору, после чего инициируется (в случае необходимости) поведенческая реакция с обязательным участием двигательной коры.

    Двигательные зоны коры. Выделяют первичную и вторичную моторные зоны.

    В первичной моторной зоне (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела (см. рис. 2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Раздражение первичной моторной коры вызывает сокращение мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям конечностями, особенно пальцами рук.

    Вторичная моторная зона (поле 6) расположена как на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора), так и на медиальной поверхности, соответствующей коре верхней лобной извилины (дополнительная моторная область). Вторичная двигательная кора в функциональном плане имеет главенствующее значение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, связанные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть импульсации от базальных ганглиев и мозжечка, участвует в перекодировании информации о плане сложных движений.

    Раздражение коры поля 6 вызывает сложные координированные движения, например поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной речи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающие речевой праксис, а также музыкальный моторный центр (поле 45), обеспечивающий тональность речи, способность петь. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, от базальных ганглиев и мозжечка. Основным эфферентным выходом двигательной коры на стволовые и спинальные моторные центры являются пирамидные клетки V слоя. Основные доли коры большого мозга представлены на рис. 3.

    Рис. 3. Четыре основные доли коры головного мозга (лобная, височная, теменная и затылочная); вид сбоку. В них расположены первичная двигательная и сенсорная области, двигательные и сенсорные области более высокого порядка (второго, третьего и т.д.) и ассоциативная (неспецифичная) кора

    Ассоциативные области коры (неспецифическая, межсенсорная, межанализаторная кора) включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций, поэтому им нельзя приписывать преимущественно сенсорные или двигательные функции, нейроны этих зон обладают большими способностями к обучению. Границы этих областей обозначены недостаточно четко. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и у человека. У человека она составляет около 50% всей коры или 70 % неокортекса. Термин «ассоциативная кора» возник в связи с существовавшим представлением о том, что эти зоны за счет проходящих через них кортико-кортикальных соединений связывают двигательные зоны и одновременно служат субстратом высших психических функций. Основными ассоциативными зонами коры являются: теменно-височно-затылочная, префронтальная кора лобных долей и лимбическая ассоциативная зона.

    Нейроны ассоциативной коры являются полисенсорными (полимодальными): они отвечают, как правило, не на один (как нейроны первичных сенсорных зон), а на несколько раздражителей, т. е. один и тот же нейрон может возбуждаться при раздражении слуховых, зрительных, кожных и др. рецепторов. Полисенсорность нейронов ассоциативной коры создается кортико-кортикальными связями с разными проекционными зонами, связями с ассоциативными ядрами таламуса. В результате этого ассоциативная кора представляет собой своеобразный коллектор различных сенсорных возбуждений и участвует в интеграции сенсорной информации и в обеспечении взаимодействия сенсорных и моторных областей коры.

    Ассоциативные области занимают 2-й и 3-й клеточные слои ассоциативной коры, на которых происходит встреча мощных одномодальных, разномодальных и неспецифических афферентных потоков. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации, т. е. для оперирования значениями слов и использования их для отвлеченного мышления, для синтетического характера восприятия.

    С 1949 г. широкую известность получила гипотеза Д. Хебба, постулирующая в качестве условия синаптической модификации совпадение пресинаптической активности с разрядом пост-синаптического нейрона, поскольку не всякая активность синапса ведет к возбуждению постсинаптического нейрона. На основании гипотезы Д. Хебба можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д.Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль.

    Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга, которую часто называют лимбико-ретикулярный комплекс, или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифические системы мозга с активирующими и инактивируюшими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, голубое пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

    В настоящее время по таламокортикальным проекциям предлагают выделять три основные ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

    Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, в моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др. К гностическим функциям относится оценка пространственных отношений, например, взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса, обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»). Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкорковой извилине левого полушария, он обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

    Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса, других подкорковых ядер. Основная роль лобной ассоциативной коры сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (П. К.Анохин). Префронтальная область играет главную роль в выработке стратегии поведения. Нарушение этой функции особенно заметно, когда необходимо быстро изменить действие и когда между постановкой задачи и началом ее решения проходит некоторое время, т.е. успевают накопиться раздражители, требующие правильного включения в целостную поведенческую реакцию.

    Таламовисочная система. Некоторые ассоциативные центры, например, стереогнозиса, праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины левого полушария. Этот центр обеспечивает речевой гнозис: распознание и хранение устной речи как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения, обеспечивающий распознание и хранение образов.

    Существенную роль в формировании поведенческих актов играет биологическое качество безусловной реакции, а именно ее значение для сохранения жизни. В процессе эволюции это значение было закреплено в двух противоположных эмоциональных состояниях – положительном и отрицательном, которые у человека составляют основу его субъективных переживаний -- удовольствия и неудовольствия, радости и печали. Во всех случаях целенаправленное поведение строится в соответствии с эмоциональным состоянием, возникшим при действии раздражителя. Во время поведенческих реакций отрицательного характера напряжение вегетативных компонентов, особенно сердечно-сосудистой системы, в отдельных случаях, особенно в непрерывных так называемых конфликтных ситуациях, может достигать большой силы, что вызывает нарушение их регуляторных механизмов (вегетативные неврозы).

    В этой части книги рассмотрены основные общие вопросы аналитико-синтетической деятельности мозга, которые позволят перейти в последующих главах к изложению частных вопросов физиологии сенсорных систем и высшей нервной деятельности.

    "

    В дальнейшем усилия физиологов оказались направленными на поиск «критических» участков мозга, разрушение которых приводило к нарушению рефлекторной деятельности того или иного органа. Постепенно складывалось представление о жесткой анатомической локализации «рефлекторных дуг», а соответственно и сам рефлекс стал мыслиться как механизм работы только низших отделоз мозга (спинномозговых центров).

    Вместе с тем разрабатывался вопрос о локализации функций в высших отделах мозга. Представления о локализации элементов психической деятельности в головном мозге зародились давно. Практически в каждую эпоху выдвигались те или

    Иные гипотезы представительства в головном мозге высших психических функций и сознания в целом.

    Австрийский врач и анатом Франц Йозеф Галль (1758- 1828) составил подробное описание анатомии и физиологии нервной системы человека, снабженное прекрасным атласом.

    : Целое поколение исследователей основывалось на этих данных. К числу анатомических открытий Галля следует отнести сле- „дующие: выявление основных различий между серым и белым веществом мозга; определение начала нервов в сером веществе; окончательное доказательство перекреста пирамидных путей и зрительных нервов; установление различий между «конвергентными» (по современной терминологии «ассоциативными») и «дивергентными» («проекционными») 1волокнами (1808); первое четкое описание комиссур мозга; доказательство начала черепномозговых нервов в продолговатом мозге (1808) и др. Галль был одним из первых, кто придавал решающую роль коре больших полушарий в функциональной деятельности мозга. Так, он считал, что складчатость мозговой поверхности является прекрасным решением природой и эволюцией важной задачи: обеспечения максимального увеличения площади поверхности мозга при сохранении более или менее постоянным его объема. Галль ввел термин «дуга», знакомый каждому физиологу, и описал ее четкое деление на три части.

    Однако в основном имя Галля известно в связи с его довольно сомнительным (а подчас и скандальным!) учением о локализации высших психических функций в головном мозге. Придавая большое значение соответствию функции и структуры, Галль еще в 1790 г. выступил с заявкой на введение в арсенал знаний новой науки - френологии (от греч. phren - душа, ум, сердце), которая получила также иное название - психоморфология, или узкий локализационизм. Будучи врачом, Галль наблюдал больных с различными расстройствами мозговой деятельности и заметил, что специфика заболевания во многом зависит от того, какой именно участок мозгового вещества поврежден. Это привело его к идее, что каждой психической функции соответствует особый участок мозга. Видя бесконечное разнообразие характеров и индивидуальных психических качеств людей, Галль предположил, что усиление (или большее преобладание) в поведении человека какой-либо черты характера или психической функции влечет за собой и преимущественное развитие определенного участка коры мозга, где эта функция представлена. Таким образом, был выдвинут тезис: функция делает структуру. В результате разрастания этого гипертрофированного участка коры («мозговой шишки») повышается давление на кости черепа, что, в свою очередь, обусловливает появление над соответствующей зоной мозга наружного черепного бугра. В случае недоразвития функции, наоборот.

    На поверхности черепа возникнет заметное углубление («ям- »ка»). Используя созданный Галлем метод «краниоскопии» - исследования рельефа черепа с помощью пальпации - и подробные «топографические» карты поверхности головного мозга, где указывались места локализации всех способностей (считавшихся врожденными), Галль и его последователи ставили диагноз, т. е. делали заключение о характере и наклонностях человека, о его умственных и нравственных качествах. Были выделены 2? участков мозга, где локализованы те или иные способности индивида (причем 19 из них были признаны общими для человека и животных, а 8 -чисто человеческими). Кроме «шишек», ответственных за реализацию физиологических функций, были и такие, которые свидетельствовали о зрительной и слуховой памяти, ориентировке в пространстве, чувстве времени, инстинкте продолжения рода; таких личностных качествах. как смелость, честолюбие, набожность, остроумие, скрытность, влюбчивость, осторожность, самооценка, утонченность, надежда, любознательность, податливость воспитанию, самолюбие, независимость, исполнительность, агрессивность, верность, любовь к жизни, любовь к животным.

    В ошибочных и лженаучных представлениях Галля (которые были, впрочем, чрезвычайно популярны в свое время) содержалось рациональное зерно: признание теснейшей связи проявлений психических функций с деятельностью коры головного мозга. На повестку дня ставилась проблема поиска дифференцированных «мозговых центров» и привлечения внимания к функциям головного мозга. Галля поистине можно считать основоположником «мозговой локализации». Безусловно, что для дальнейшего прогресса психофизиологии постановка такой проблемы была более перспективной, чем старинный поиск местонахождения «общего чувствилища».

    Решению вопроса о локализации функций в коре головного мозга способствовали данные, накапливающиеся в клинической практике и в экспериментах на животных. Немецкий врач, анатом и физик Юлиус Роберт Майер (1814-1878), практиковавший в течение долгого времени в парижских клиниках, а также служивший в должности судового врача, наблюдал у больных с черепно-мозговыми травмами зависимость нарушения (или полного выпадения) той или иной функции от повреждения определенного участка мозга. Это позволило ему предположить, что в коре больших полушарий локализована память (надо отметить, что еще в XVII в. к подобному вывоту пришел Т. Виллис), в белом веществе головного мозга-воображение и суждения, в базальных ганглиях-апперцепция, и воля. Своеобразный «интегральный орган» поведения и психики представляют, по мнению Майера, мозолистое тело и мозжечок.

    Со временем клиническое изучение последствий повреждения мозга дополнилось лабораторным методом искусственной экстирпации (от лат. ex(s)tirpatio-удаление с корнем), позволяющим частично или полностью разрушать (удалять) участки мозга животных для определения их функциональной роли в мозговой деятельности. В начале XIX в. проводили преимущественно острые опыты на животных (лягушки, птицы), позже, с развитием методов асептики, стали осуществлять хронические эксперименты, которые давали возможность наблюдать поведение животных в течение более или менее продолжительного времени после операции. Удаление различных участков мозга (в том числе коры больших полушарий) у млекопитающих (кошки, собаки, обезьяны) позволяло выяснить- структурно-функциональные основы сложных поведенческих реакций.

    Оказалось, что лишение животных высших отделов головного мозга (птиц-переднего мозга, млекопитающих - коры головного мозга) в целом не вызывало нарушения основных функций: дыхания, пищеварения, выделения, кровообращения, обмена веществ и энергии. Животные сохраняли способность двигаться, реагировать на те или иные внешние воздействия. Следовательно, регуляция этих физиологических проявлений жизнедеятельности происходит на нижележащих (по сравнению с корой больших полушарий) уровнях головного мозга. Однако при удалении высших отделов мозга происходили глубокие изменения поведения животных: они становились практически слепыми и глухими, «глупели»; теряли ранее приобретенные навыки и не могли выработать новые, не могли адекватно ориентироваться в среде, не различали и не могли дифференцировать предметы в окружающем пространстве. Одним словом, животные становились «живыми автоматами» с однообразными и довольно примитивными способами реагирования.

    В экспериментах с частичным удалением областей коры больших полушарий обнаружилось, что мозг функционально неоднороден и разрушение той или иной области приводит к нарушению определенной физиологической функции. Так, выяснилось, что затылочные области коры связаны со зрительной функцией, височные - со слуховой, область сигмовидной извилины- с двигательной функцией, а также с кожной и мышечной чувствительностью. Более того, эта дифференциация- функций в отдельных участках высших отделов мозга совершенствуется по мере эволюционного развития животных.

    Стратегия научных поисков в изучении функций мозга привела к тому, что дополнительно к методу экстирпации ученые стали использовать и метод искусственного раздражения определенных областей мозга с помощью электрической стимуляции, который также позволял оценивать функциональную роль важнейших отделов мозга. Данные, полученные с помощью этих методов лабораторных исследований, а также результаты клинических наблюдений наметили одно из основных направлений психофизиологии XIX в. - определение локализации нервных центров, отвечающих за высшие психические функции и поведение организма в целом. Так. в 1861 г. французский ученый, антрополог и хирург Поль Брока (1824- 1880) на основании клинических фактов решительно высказался против физиологической равноценности коры большого мозга. При вскрытии трупов больных, страдающих расстройством речи в форме двигательной афазии (больные понимали чужую речь, но сами разговаривать не могли), он обнаружил изменения в задней части нижней (третьей) лобной извилины левого полушария или в белом веществе под этим участком коры. Таким образом, в результате этих наблюдений Брока установил, положение двигательного (моторного) центра речи, позже названного его именем. В 1874 г. немецким психиатром и невропатологом К? Вернике (1848-1905) был описан сенсорный центр речи (сегодня носящий его имя) в задней трети первой височной извилины левого полушария. Поражение этого центра приводит к утрате способности понимать человеческую речь (сенсорная афазия). Еще раньше, в 1863 г., при помощи метода электрического раздражения определенных участков коры (прецентральной извилины, прецентральной области, переднего отдела околоцентральной дольки, задних отделов верхней и средней лобных извилин) немецкими исследователями Густавом Фричем и Эдуардом Гитцигом были установлены двигательные центры (двигательные корковые поля), раздражение которых вызывало определенные сокращения скелетной мускулатуры," а разрушение приводило к глубоким расстройствам двигательного поведения. В 4874 г. киевским анатомом и врачом Владимиром Алексеевичем Бецом (1834- 1894) были обнаружены эфферентные нервные клетки двигательных центров - гигантские пирамидные клетки V слоя коры, названные в честь него клетками Беца. Немецкий исследователь Герман Мунк (ученик И. Мюллера и Э. Дюбуа-Реймона) открыл не только двигательные корковые поля, с помощью метода экстирпации он нашел центры чувственных восприятий. Ему удалось показать, что центр зрения находится в задней доле мозга, центр слуха - в височной доле. Удаление затылочной доли мозга приводило к потере животйым способности видеть (при полной сохранности зрительного аппарата). Уже в

    начале XX в. выдающимся австрийским неврологом Константином Экономо (1876-1931) были установлены центры глотания и жевания в так называемом черном веществе головного" мозга (1902), центры, управляющие сном, -в среднем мозге (1917). Забегая немного вперед, скажем, что Экономо дал прекрасное описание строения коры мозга взрослого человека и в 1925 г. уточнил цитоархитектоническую карту корковых полей мозга, нанеся на нее 109 полей.

    Вместе с тем надо отметить, что в XIX в. против позиции узких локализационистов, согласно взглядам которых двигательные и сенсорные функции приурочены к различным областям коры головного мозга, выдвигались серьезные доводы. Так, возникла теория равноценности участков коры, утверждающая представление о равном значении кортикальных образований для осуществления любой деятельности организма,- эквипотенциализм. В этой связи френологические взгляды Галля - одного из самых яростных сторонников локализацио- низма - подверг критике французский физиолог Мари Жан Пьер Флуранс (1794-1867). Еще в 1822 г. он указал на наличие в продолговатом мозге дыхательного центра (названного им «жизненным узлом»); связывал координацию движений с деятельностью мозжечка, зрение - с четверохолмием; основную функцию спинного мозга видел в проведении возбуждения по нервам. Однако, несмотря на столь, казалось бы, локализационистские взгляды, Флуранс считал, что основные- психические процессы (в том числе интеллект и воля), лежащие в основе целенаправленного поведения человека, осуществляются в результате деятельности головного мозга как целостного образования и поэтому целостная поведенческая функция не может быть приурочена к какому-либо отдельному анатомическому образованию. Большую часть своих экспериментов Флуранс проводил на голубях и курах, удаляя у них отдельные участки мозга и наблюдая за изменением в поведении птиц. Обычно через некоторое время после операции поведение птиц восстанавливалось независимо от того, какие районы мозга были повреждены, поэтому Флуранс сделал вывод, что степень нарушения разных форм поведения определяется прежде всего тем, какой объем мозговой ткани был извлечен во время операции. Усовершенствовав технику операций, он первый сумел полностью удалить у животных полушария переднего мозга и сохранить им жизнь для дальнейших наблюдений.

    На основании экспериментов Флуранс пришел к заключению, что полушария переднего мозга играют определяющую роль в реализации поведенческого акта. Их полное удаление приводит к выпадению всех «интеллектуальных» функций. Более того, особо тяжелые нарушения поведения наблюдались у кур после разрушения серого вещества поверхности полушарий мозга - так называемой кортикоидной пластинки, аналога коры головного мозга млекопитающих. Флуранс предпо - ложил, что эта область мозга является местом обитания души, или «управляющего духа», и поэтому действует как единое целое, имея однородную и равноценную массу (подобную, например, тканевой структуре печени). Несмотря на несколько^ фантастические представления эквипотенциалистов, следует отметить прогрессивный элемент в их взглядах. Во-первых, сложные психофизиологические отправления признавались результатом совокупной деятельности мозговых образований. Во-вторых, была выдвинута идея высокой динамической пластичности мозга, выражающейся во взаимозамещаемости его частей.

    • Галлю удалось достаточно точно определить «центр речи», но «официально» его открыл французский исследователь Поль Брока (1861).
    • В 1842 г. Майер, работая над определением механического эквивалента теплоты, пришел к обобщающему закону сохранения энергии.
    • В отличие от своих предшественников, наделяющих нерв способностью ощущать (т. е. признающих за ним некое психическое качество), Холлсчитал нервное окончание (в органе чувств) «апсихическим» образованием.

    В настоящее время принято делить кору на сенсорные, двигательные, или моторные, и ассоциативные зоны. Такое деление было получено благодаря экспериментам на животных с удалениями различных участков коры, наблюдениями за больными, име­ющими патологический очаг в мозге, а также с помощью прямого электрического раздражения коры и периферических структуре регистрацией электрической активности в коре.

    В сенсорных зонах представлены корковые концы всех анали­заторов. Для зрительного он располагается в затылочной доле мозга (поля 17, 18, 19). В поле 17 заканчивается центральный зрительный путь, информирующий о наличии и интенсивности зрительного сигнала. Поля 18 и 19 анализируют цвет, форму, размеры и качество предмета. При поражении поля 18 больной видит, но не узнает предмета и не различает его цвета (зрительная агнозия).

    Корковый конец слухового анализатора локализуется в ви­сочной доле коры (извилина Гешля), поля 41, 42, 22. Они участвуют в восприятии и анализе слуховых раздражений, организации слу­хового контроля речи. Больной, имеющий повреждение поля 22 теряет способность понимать значение произносимых слов.

    В височной доле располагается также корковый конец вести булярного анализатора.

    Кожный анализатор, а также болевая и температурная чув ствительность проецируются на заднюю центральную извилину, в верхней части которой представлены нижние конечности, в средней - туловище, в нижней - руки и голова.

    В коре теменной доли заканчиваются пути соматической чув­ ствительности, относящиеся к речевой функции, связанной с оценкой воздействия на рецепторы кожи, веса и свойств поверх­ности, формы и размера предмета.

    Корковый конец обонятельного и вкусового анализаторов расположен в гиппокампальной извилине. При раздражении этой области возникают обонятельные галлюцинации, а ее по­вреждение приводит к аносмии (потере способности ощущать за­пахи).

    Моторные зоны находятся в лобных долях в области перед­ней центральной извилины мозга, раздражение которой вызы­вает двигательную реакцию. Кора прецентральной извилины (поле 4) представляет первичную двигательную зону. В пятом слое этого поля находятся очень крупные пирамидные клетки (гигантские клетки Беца). Лицо проецируется на нижнюю треть прецентральной извилины, рука занимает ее среднюю треть, ту­ловище и таз - верхнюю треть извилины. Двигательная зона коры для нижних конечностей находится на медиальной по­верхности полушария в области передней части парацентральной дольки.

    Премоторная область коры (поле 6) располагается кпереди от первичной двигательной зоны. Поле 6 называют вторичной мо­ торной областью. Ее раздражение вызывает вращение туловища и глаз с подниманием контралатеральной руки. Аналогичные дви­жения наблюдаются у больных во время приступа эпилепсии, ес­ли эпилептический очаг локализуется в этой области. Недавно до­казана ведущая роль поля 6 в реализации двигательных функций. Поражение поля 6 у человека вызывает резкое ограничение дви­гательной активности, с трудом выполняются сложные комплек­сы движений, страдает спонтанная речь.

    К полю 6 примыкает поле 8 (лобное глазодвигательное), раз­дражение которого сопровождается поворотом головы и глаз в сторону, противоположную раздражаемой. Стимуляция различ­ных участков двигательной коры вызывает сокращение соответ­ствующих мышц на противоположной стороне.

    Передние отделы лобной коры связывают с «творческим» мышлением. С клинической и функциональной точек зрения ин­тересной областью является нижняя лобная извилина (поле 44). В левом полушарии она связана с организацией двигательных ме­ханизмов речи. Раздражение этой области может вызвать вока­лизацию, но не членораздельную речь, а также прекращение ре­чи, если человек говорил. Поражение этой области приводит к моторной афазии - больной понимает речь, но сам говорить не может.

    К ассоциативной коре относят теменно-височно-затылочную, префронтальную и лимбическую области. Она занимает около 80% всей поверхности коры больших полушарий. Ее нейро­ны обладают мультисенсорными функциями. В ассоциативной коре происходит интеграция различной сенсорной информации и формируется программа целенаправленного поведения, ассо­циативная кора окружает каждую проекционную зону, обеспечи­вая взаимосвязь, например, между сенсорными и моторными об­ластями коры. Нейроны, расположенные в этих областях, облада­ют полисенсорностью, т.е. способностью отвечать как на сенсор­ную, так и моторную информацию.

    Теменная ассоциативная область коры больших полушарий участвует в формировании субъективного представления об ок­ружающем пространстве, о нашем теле.

    Височная область коры участвует в речевой функции посред­ством слухового контроля речи. При поражении слухового цент­ра речи больной может говорить, правильно излагать свои мысли, но не понимает чужой речи (сенсорная слуховая афазия). Эта об­ласть коры играет определенную роль в оценке пространства. По­ражение зрительного центра речи приводит к потере способнос­ти читать и писать. С височной корой связывают функцию памя­ти и сновидений.

    Лобные ассоциативные поля имеют прямое отношение к лимбическим отделам мозга, они принимают участие в формирова­нии программы сложных поведенческих актов в ответ на воздей­ствие внешней среды на основе сенсорных сигналов всех модаль­ностей.

    Особенностью ассоциативной коры является пластичность нейронов, способных к перестройкам в зависимости от поступа­ющей информации. После операции удаления какой-либо облас­ти коры в раннем детстве утраченные функции этой области пол­ностью восстанавливаются.

    Кора больших полушарий способна, в отличие от нижележа­щих структур мозга, длительно, в течение всей жизни сохранять следы поступившей информации, т.е. участвовать в механизмах долговременной памяти.

    Кора больших полушарий - регулятор вегетативных функ­ций организма («кортиколизация функций»). В ней представле­ны все безусловные рефлексы, а также внутренние органы. Без коры невозможно выработать условные рефлексы на внутрен­ние органы. При раздражении интерорецепторов методом вы­званных потенциалов, электростимуляции и разрушения опреде­ленных участков коры доказано ее влияние на деятельность раз­личных органов. Так, разрушение поясной извилины изменяет акт дыхания, функции сердечно-сосудистой системы, желудоч­но-кишечного тракта. Кора тормозит эмоции - «умейте властво­вать собой».