Вода является неотъемлемой часть нашей жизни. Ежедневно мы выпиваем определенный объем и часто даже не задумываемся о том, что обеззараживание воды и ее качество важная тема. А зря, тяжелые металлы, химические соединения и болезнетворные бактерии способны вызвать необратимые изменения в человеческом организме. На сегодняшний день гигиене воды уделяется серьезное внимание. Современные методы обеззараживания питьевой воды способны очистить ее от бактерий, грибков, вирусов. Они придут на помощь и в том случае, если вода плохо пахнет, имеет посторонние привкусы, цветность.

Предпочтительные методы повышения качества выбирают в зависимости от содержащихся в воде микроорганизмов, уровня загрязненности, источника водоснабжения и других факторов. Обеззараживание направлено на удаление болезнетворных бактерий, которые разрушающе влияют на организм человека.

Очищенная вода прозрачна, не имеет посторонних привкусов и запахов, а также абсолютно безопасна. На практике для борьбы с вредными микроорганизмами применяют способы двух групп, а также их комбинацию:

  • химические;
  • физические;
  • комбинированные.

Для того, чтобы выбрать эффективные методы дезинфекции необходимо провести анализ жидкости. Среди проводимых анализов выделяют:

  • химический;
  • бактериологический;

Применение химического анализа позволяет определить содержание в воде различных химических элементов: нитратов, сульфатов, хлоридов, фторидов и т.д. Все же показатели, анализируемые данным методом, можно подразделить на 4 группы:

  1. Органолептические показатели. Химический анализ воды позволяет определить ее вкус, запах и цвет.
  2. Интегральные показатели – плотность, кислотность и жесткость воды.
  3. Неорганические – различные металлы, содержащиеся в воде.
  4. Органические показатели – содержание в воде веществ, которые могут изменяться под воздействием окислителей.

Бактериологический анализ направлен на выявление различных микроорганизмов: бактерий, вирусов, грибков. Подобный анализ выявляет источник заражения и помогает определить методы обеззараживания.

Химические методы обеззараживания питьевой воды

Химические способы основаны на добавлении в воду различных реагентов-окислителей, которые убивают вредоносные бактерии. Наибольшую популярность среди таких веществ получили хлор, озон, гипохлорит натрия, диоксид хлора.

Для достижения высокого качества важно правильно рассчитать дозу реагента. Малое количество вещества может не возыметь эффекта, а даже наоборот способствовать увеличению числа бактерий. Реагент необходимо вводить с избытком, это позволит уничтожить как имеющиеся микроорганизмы, так и бактерии, попавшие в воду после обеззараживания.

Избыток нужно рассчитывать очень аккуратно, чтобы он не мог нанести вред людям. Наиболее популярные химические методы:

  • хлорирование;
  • озонирование;
  • олигодинамия;
  • полимерные реагенты;
  • иодирование;
  • бромирование.

Хлорирование

Очистка воды хлорированием является традиционным и одним из самых популярных способов очищения воды. Хлорсодержащие вещества активно используют для очистки питьевой воды, воды в бассейнах, дезинфекции помещений.

Свою популярность данный способ приобрел благодаря простоте использования, низкой стоимости, высокой эффективности. Большинство патогенных микроорганизмов, вызывающих различные заболевания, не устойчивы к хлору, который оказывает бактерицидное действие.

Для создания неблагоприятных условий, препятствующих размножению и развитию микроорганизмов, достаточно ввести хлор в небольшом избытке. Избыток хлора способствуют продлению эффекта обеззараживания.

В процессе обработки воды возможны следующие способы хлорирования: предварительное и конечное. Предварительное хлорирование применяют максимально близко к месту забора воды, на данном этапе использование хлора не только обеззараживают воду, но и способствуют удалению ряда химических элементов, в том числе железа и марганца. Конечное хлорирование – последний этап в процессе обработки, во время которого происходит уничтожение вредоносных микроорганизмов посредством хлора.

Также различают нормальное хлорирование и перехлорирование. Нормальное хлорирование применяют для дезинфекции жидкости из источников с хорошим санитарными показателями. Перехлорирование – в случае сильной зараженности воды, а также если она заражена фенолами, которые в случае нормального хлорирования только усугубляют состояние воды. Остатки хлора в таком случаем удаляют дехлорированием.

Хлорирование, как и другие методы, наряду с достоинствами имеет и свои минусы. Попадая в организм человека в избытке, хлор ведет к проблемам с почками, печенью, ЖКТ. Высокая коррозионная активность хлора влечет быстрый износ оборудования. В процессе хлорирования образуются всевозможные побочные продукты. Например, тригалометаны (соединения хлора с веществами органического происхождения), способны вызвать симптомы астмы.

В силу широты применения хлорирования у ряда микроорганизмов сформировалась устойчивость к хлору, поэтому определенный процент заражения воды все же возможен.

Для дезинфекции воды чаще всего используют газообразный хлор, хлорную известь, диоксид хлора и гипохлорит натрия.

Хлор – самый популярный реагент. Используют его в жидком и газообразном виде. Уничтожая болезнетворную микрофлору, устраняет неприятный вкус и запах. Предотвращает рост водорослей и ведет к улучшению качества жидкости.

Для очищения хлором используют хлораторы, в которых газообразный хлор абсорбируют с водой, а далее полученную жидкость доставляют до места применения. Несмотря на популярность данного метода, он является довольно опасным. Транспортировка и хранение высокотоксичного хлора обязывает к соблюдению техники безопасности.

Хлорная известь – вещество, получаемое под воздействием газообразного хлора на сухую гашеную известь. Для обеззараживания жидкости применяют хлорную известь, процент хлора в которой составляет не менее 32-35%. Данный реагент очень опасен для человека, вызывает сложности при производстве. В силу этих и других факторов хлорная известь теряет свою популярность.

Диоксид хлора оказывает бактерицидное воздействие, практически не загрязняет воду. В отличие от хлора не образует тригалометанов. Основная причина, которая тормозит его использование – высокая взрывоопасность, что затрудняет производство, транспортировку и хранение. В настоящее время освоена технология производства на месте применения. Уничтожает все виды микроорганизмов. К недостаткам можно отнести способность образовывать вторичные соединения – хлораты и хлориты.

Гипохлорит натрия применяют в жидком виде. Процент активного хлора в нем в два раза больше, чем в хлорной извести. В отличие от диоксида титана обладает относительной безопасностью при хранении и использовании. Ряд бактерий устойчив к его воздействию. В случае длительного хранения теряет свои свойства. На рынке присутствует в виде жидкого раствора с различным содержанием хлора.

Стоит отметить, что все хлорсодержащие реагенты обладают высокой коррозионной активностью, в связи с чем их не рекомендуется использовать для очищения воды, поступающей в воду через металлические трубопроводы.

Озонирование

Озон, так же как и хлор, является сильным окислителем. Проникая сквозь оболочки микроорганизмов, он разрушает стенки клетки и убивает ее. как с обеззараживанием воды, так и с ее обесцвечиванием и дезодорированные. Способен окислять железо и марганец.

Обладая высоким антисептическим действием, озон разрушает вредные микроорганизмы в сотни раз быстрее, чем другие реагенты. В отличие от хлора, уничтожает практически все известные виды микроорганизмов.

При распаде реагент преобразуется в кислород, который насыщает организм человека на клеточном уровне. Быстрый распад озона в то же время является и недостатком данного метода, поскольку уже через 15-20 мин. после процедуры, вода может подвергнуться повторному заражению. Существует теория, согласно которой при воздействии озона на воду, начинается разложение фенольных групп гуминовых веществ. Они активируют организмы, который до момента обработки находились в спячке.

Насыщаясь озоном вода становится коррозионно-активной. Это ведет к повреждению труб водопровода, сантехники, бытовой техники. В случае ошибочного количества озона возможно образование побочных элементов, которые обладают высокой токсичностью.

Озонирование имеет и другие минусы, к которым стоит отнести высокую стоимость покупки и установки, большие электрозатраты, а также высокий класс опасности озона. При работе с реагентом необходимо соблюдать осторожность и технику безопасности.

Озонирование воды возможно с помощью системы, состоящей из:

  • озоногенератора, в котором происходит процесс выделения озона из кислорода;
  • системы, которая позволяет ввести озон в воду и смешать его с жидкостью;
  • реактора – емкости, в которой происходит взаимодействие озона с водой;
  • деструктора – устройства, которое удаляет остаточный озон, а также приборов, контролирующих озон в воде и воздухе.

Олигодинамия

Олигодинамия – обеззараживание воды посредством воздействия на нее благородных металлов. Наиболее изучено применение золота, серебра и меди.

Самым же популярным металлом в целях уничтожения вредных микроорганизмов является серебро. Его свойства раскрыли еще в древности, в емкость с водой помещали ложку или монетку из серебра и давали такой воде отстояться. Утверждение, что такой метод эффективен довольно спорное.

Теории влияния серебра на микробы не получили окончательного подтверждения. Существует гипотеза, согласно которой клетку разрушают электростатические силы, возникающие между ионами серебра с положительным зарядом и отрицательно заряженными клетками бактерий.

Серебро – тяжелый металл, который в случае накопления в организме может вызывать ряд заболеваний. Достичь антисептического эффекта можно лишь при высоких концентрациях данного металла, которое губительно для организма. Меньшее количество серебра способно только приостановить рост бактерий.

К тому же, практически не чувствительные к серебру спорообразующие бактерии, не доказано его влияние на вирусы. Поэтому применение серебра целесообразно лишь для продления сроков хранения изначально чистой воды.

Другим тяжелым металлом, способным оказывать бактерицидное воздействие, является медь. Еще в древности заметили, что вода, которая стояла в медных сосудах, гораздо дольше сохраняла свои высоковеществ. На практике данный метод используют в основных в бытовых условиях для очищения небольшого объема воды.

Полимерные реагенты

Использование полимерных реагентов – современный метод обеззараживания воды. Он значительно выигрывает у хлорирования и озонирования за счет своей безопасности. Жидкость, очищенная полимерными антисептиками не имеет вкуса и посторонних запахов, не вызывает коррозию металла, не воздействует на организм человека. Данный метод получил распространение в очистке воды в бассейнах. Вода, очищенная полимерным реагентом, не имеет цвета, постороннего вкуса и запаха.

Иодирование и бромирование

Иодирование – метод обеззараживания, использующий иодсодержащие соединения. Дезинфицирующие свойства йода известны медицине с давних времен. Несмотря на то, что данный метод широко известен и неоднократно предпринимались попытки его использования, использование йода в качестве дезинфектора воды популярности не приобрело. Данный метод имеет существенный недостаток, растворяясь в воде, он вызывает специфический запах.

Бром – довольно эффективный реагент, который уничтожает большую часть известных бактерий. Однако, в силу своей высокой стоимости популярностью не пользуется.

Физические методы обеззараживания воды

Физические способы очистки и дезинфекции работают воду без использования реагентов и вмешательства в химический состав. Наиболее популярные физические методы:

  • УФ-облучение;
  • ультразвуковое воздействие;
  • термическая обработка;
  • электроимпульсный способ;

УФ-излучение

Все большую популярность среди методов обеззараживания воды набирает применение УФ-излучения. В основе методики лежит тот факт, что лучи, длина волны у которых 200-295 нм, могут убивать патогенные микроорганизмы. Проникая сквозь клеточную стенку, они воздействуют на нуклеиновые кислоты (РНД и ДНК), а также вызывают нарушения в структуре мембран и клеточных стенок микроорганизмов, что ведет к гибели бактерий.

Для определения дозы излучения необходимо провести бактериологический анализ воды, это позволит выявить виды патогенных микроорганизмов и их восприимчивость к лучам. На эффективность также влияет мощность используемой лампы и уровень поглощения излучения водой.

Доза УФ-излучения равна произведению интенсивности излучения на его продолжительность. Чем выше устойчивость микроорганизмов, тем дольше на них необходимо воздействовать

УФ-излучение не влияет на химический состав воды, не образует побочных соединений, таким образом исключает возможность нанесения вреда человеку.

При использовании данного метода невозможна передозировка, УФ-облучение отличается высокой скоростью реакции, для обеззараживания всего объема жидкости требуется несколько секунд. Не меняя состав воды, излучение способно уничтожить все известные микроорганизмы.

Однако, не лишен данный метод и недостатков. В отличие от хлорирования, обладающего пролонгирующим эффектом, эффективность облучения сохраняется до тех пор, пока лучи воздействуют на воду.

Хороший результат достижим лишь в очищенной воде. На уровень поглощения ультрафиолета влияют содержащиеся в воду примеси. Например, железо способно служить для бактерий своеобразным щитом и «прятать» их от воздействия лучей. Поэтому целесообразно провести предварительную очистку воды.

Система для УФ-излучения состоит из нескольких элементов: выполненной из нержавеющей стали камеры, в которую помещена лампа, защищенная кварцевыми чехлами. Проходя через механизм такой установки, вода постоянно подвергается действию ультрафиолета и полному обеззараживанию.

Ультразвуковое обеззараживание

Ультразвуковое обеззараживание основано на методе кавитации. За счет того, что под воздействием ультразвука происходят резкие перепады давления, микроорганизмы разрушаются. Эффективен ультразвук и для борьбы с водорослями

Данный метод имеет узкий круг использования и находится на стадии освоения. Преимуществом является нечувствительность к высокой мутности и цветности воды, а также возможность воздействовать на большинство форм микроорганизмов.

К сожалению, данный метод применим только для малых объемов воды. Как и УФ-облучение оказывает эффект только в процессе взаимодействия с водой. Не возымело ультразвуковое обеззараживание популярности и в силу необходимости установки сложного и дорого оборудования.

Термическая обработка воды

В домашних условиях термический способ очистки воды – всем известное кипячение. Высокая температура убивает большинство микроорганизмов. В промышленных условиях данный метод неэффективен в силу его громоздкости, больших временных затрат и низкой интенсивности. К тому же, термическая обработка не способна избавить от посторонних привкусов и болезнетворных спор.

Электроимпульсный способ

В основе электроимпульсного способа лежит применение электрических разрядов, которые формируют ударную волну. Под воздействием гидравлического удара микроорганизмы гибнут. Данный метод эффективен как для вегетативных, так и спорообразующих бактерий. Способен достичь результата даже в мутной воде. Кроме того, бактерицидные свойства обработанной воды сохраняются до четырех месяцев.

Минусом является высокая энергоемкость и дороговизна.

Комбинированные методы обеззараживания воды

Для достижения наибольшего эффекта используют комбинированные способы, как правило, реагентные методы сочетают с безреагентными.

Высокую популярность возымело сочетание УФ-облучения с хлорированием. Так, уф-лучи убивают патогенную микрофлору, а хлор препятствует повторному заражению. Данный метод используют как для очистки питьевой воды, так и очистки воды в бассейнах.

Для обеззараживания бассейнов УФ-излучение преимущественно используют с гипохлоритом натрия.

Заменить хлорирование на первом этапе можно озонированием

Другие методы включает в себя окисление в сочетании с тяжелыми металлами. Окислителями могут выступать как хлорсодержащие элементы, так и озон. Суть комбинирования состоит в том, что окислители обивают вредные микробы, а тяжелые металлы позволяют сохранить воду обеззараженной. Существуют и другие способы комплексной дезинфекции воды.

Очистка и обеззараживание воды в бытовых условиях

Часто необходимо очистить воду в небольших количествах прямо здесь и сейчас. Для этих целей используют:

  • растворимые обеззараживающие таблетки;
  • перманганат калия;
  • кремний;
  • подручные цветы, травы.

Обеззараживающие таблетки могут выручить в походных условиях. Как правило, одну таблетку применяют на 1 л. воды. Этот метод можно отнести к химической группе. Чаще всего в основе таких таблеток лежит активный хлор. Время действия таблетки 15-20 минут. В случае сильного загрязнения количество можно удвоить.

Если вдруг таблеток не оказалось, возможно применение обычной марганцовки из расчета 1-2 г. на ведро воды. После того, как вода отстоится, она готова к использованию.

Также бактерицидное действие оказывают природные растения – ромашку, чистотел, зверобой, бруснику.

Еще один реагент – кремний. Поместите его в воду и дайте ей отстояться в течение суток.

Источники водоснабжения их пригодность для обеззараживания

Источники водоснабжения можно разделить на два вида – поверхностные и подземные воды. К первой группе относится вода из рек и озер, морей и водохранилищ.

При анализе пригодности вод для питья, расположенных на поверхности, проводят бактериологический и химический анализ, оценивают состояние дна, температуру, плотность и соленость морской воды, радиоактивность воды и т.д. Немаловажную роль при выбора источника играет нахождение по близости промышленных объектов. Еще один этап оценки источника водозабора – просчет возможных рисков заражения воды.

Состав воды в открытых водоемах зависит от времени года, такая вода содержит различные загрязнения, среди которых и болезнетворные микроорганизмы. Наиболее высок риск заражения водоемов рядом с городами, заводами, фабриками и другими объектами промышленности.

Речная вода очень мутная, отличается цветностью и жесткостью, а также большим количеством микроорганизмов, заражение которыми чаще всего происходит из стоковых вод. В воде из озер и водохранилищ часто встречается цветение из-за развития водорослей. Также такие воды

Особенность поверхностных источников заключается в большой водной поверхности, которая соприкасается с солнечными лучами. С одной стороны, это способствует самоочищению воды, с другой – служит развитию флоры и фауны.

Несмотря на то, что поверхностные воды могу самоочищаться, это не спасает их от механических примесей, также патогенной микрофлоры, поэтому при водозаборе подвергаются тщательному очищению с дальнейшим обеззараживанием.

Другой вид источников водозабора – подземные воды. Содержание микроорганизмов в них минимально. Для обеспечения населения лучше всего подходит родниковая и артезианская вода. Чтобы определить их качество, эксперты анализируют гидрологию слоев горных пород. Особое внимание уделяют санитарному состоянию территории в районе забора воды, так как этого зависит не только качество воды в здесь и сейчас, но и перспектива заражения вредоносными микроорганизмами в дальнейшем.

Артезианская и родниковая вода выигрывает у воды из рек и озер, она защищена от бактерий, содержащихся в стоковых водах, от воздействия солнечных лучей и других факторах, способствующих развитию неблагоприятной микрофлоры.

Нормативные документы водно-санитарного законодательства

Поскольку вода являет собой источник человеческой жизни, ее качеству и санитарному состоянию уделяется серьезное внимание, в том числе на законодательном уровне. Основными документами в данной сфере являются Водный кодекс и Федеральный закон «О санитарно-эпидемиологическом благополучии населения».

Водный кодекс содержит в себе правила по использования и охраны водных объектов. Приводит классификацию подземных и поверхностных вод, определяет меры наказания за нарушение водного законодательства и др.

ФЗ «О санитарно-эпидемиологическом благополучии населения» регламентирует требования к источникам, вода из которых может быть использована для питья и ведения хозяйства.

Также существуют государственные стандарты качества, которые определяют показатели пригодности и выдвигают требования к способам анализа воды:

ГОСТы качества воды

  • ГОСТ Р 51232-98 Вода питьевая. Общие требования к организации и методам контроля качества.
  • ГОСТ 24902-81 Вода хозяйственно-питьевого назначения. Общие требования к полевым методам анализа.
  • ГОСТ 27064-86 Качество вод. Термины и определения.
  • ГОСТ 17.1.1.04-80 Классификация подземных вод по целям водопользования.

СНиПы и требования к воде

Строительные нормы и правила (СНиП) содержат в себе правила по организации внутреннего водопровода и канализации зданий, регламентируют монтаж систем водоснабжения, отопления и т.д.

  • СНиП 2.04.01-85 Внутренний водопровод и канализация зданий.
  • СНиП 3.05.01-85 Внутренние санитарно-технические системы.
  • СНиП 3.05.04-85 Наружные сети и сооружения водоснабжения и канализации.

СанПиНы на водоснабжение

В санитарно-эпидемиологических правилах и нормах (СанПиН) можно найти, какие существует требования к качеству воды как из центрального водопровода, так и воды из колодцев, скважин.

  • СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.»
  • СанПиН 4630-88 «ПДК и ОДУ вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»
  • СанПиН 2.1.4.544-96 Требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников.
  • СанПиН 2.2.1/2.1.1.984-00 Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов.

Вода – это фактор, который напрямую влияет на качество жизни человека. От ее цвета и запаха зависит настроение человека утром после умывания, а от состава – самочувствие и здоровье организма.

Вода, являясь основой жизни, легко распространяет инфекционные заболевания. Чтобы предотвратить передачу болезнетворных микроорганизмов через питьевую воду, применяют обеззараживание и дезинфекцию жидкости. Эти процессы позволяют уничтожить грибки, бактерии, неприятный привкус и цвет, что обеспечивает безопасность питьевой воды.

Очистка и обеззараживание питьевой воды для подачи в жилые дома проводится на станциях водоподготовки централизованного водоснабжения. Также существуют методы и установки для локального использования – в виде небольших систем очистки воды из скважины или способов, позволяющих очищать воду, набранную в бутылку.

Классификация методов обеззараживания воды

Чтобы правильно выбрать способ обеззараживания, проводят анализ загрязненной воды. Исследуется количество и вид микроорганизмов, степень побочной загрязненности. Также определяется объем воды, которая будет проходить очистку, и экономический фактор.

Вода, прошедшая очистку, прозрачна и бесцветна, не пахнет и не имеет вкуса и привкуса. Чтобы добиться такого эффекта, применяют следующие группы методов:

  • физические;
  • химические;
  • комбинированные.

Каждой группе присущи свои отличительные признаки, но все методы так или иначе позволяют удалить патогенные микроорганизмы из воды. Получить подробную информацию по оборудованию для очистки и обеззараживания воды можно в компании «КВАНТА+» в г. Тюмень.

Химический метод – это работа с реагентами, добавляемыми в воду. Физическое обеззараживание выполняется за счет температуры или различных излучений. Комбинированные методы сочетают работу этих двух групп.

Наиболее эффективные способы

Инфекционная безопасность воды – это важная и актуальная проблема, из-за чего изобретено множество методик для избавления воды от микроорганизмов. Способы дезинфекции не прекращают улучшаться. Они становятся более результативными и доступными. В наше время самыми лучшими считаются следующие методы:

  • термообработка с помощью высоких температур;
  • ультразвуковая обработка;
  • реагентные методы;
  • ультрафиолетовое облучение жидкости;
  • высокомощные электрических разрядов.

Физические методы обеззараживания воды

Перед ними вода обязательно должна проходить очистку от взвесей и примесей. Для этого применяется коагуляция, сорбция, флотация и фильтрация.

К данному виду методов относится применение:

  • ультразвука;
  • ультрафиолета;
  • высоких температур;
  • электричества.

Обеззараживание ультрафиолетом

Дезинфицирующее действие ультрафиолетового излучения известно очень давно. Его работа сходна с солнечным светом, успешно уничтожающим неприспособленные микроорганизмы за пределами озонового слоя Земли. Ультрафиолет воздействует на клетки, создавая поперечные сшивки в ДНК, вследствие чего клетка теряет возможность делиться и погибает (Рис. 2).


Установка состоит из ламп, помещенных в кварцевые чехлы. Лампы производят изучение, мгновенно уничтожающее микроорганизмы, а чехлы не позволяют лампам остывать. Качество обеззараживания при использовании этого метода зависит от прозрачности воды: чем чище поступающая жидкость, тем дальше распространяется свет и тем меньше загрязняется лампа. Для этого перед обеззараживанием вода проходит другие стадии очистки, в том числе механические фильтры.Резервуар, через который протекает вода, обычно оборудован мешалкой. Перемешивание слоев жидкости позволяет процессу дезинфекции проходить более равномерно.


Конструкция установки УФ-обеззараживания

Важно знать, что лампы и чехлы требуют регулярного ухода: конструкцию необходимо разбирать и очищать не менее одного раза в квартал.

Тогда результативность процесса не будет ухудшаться из-за появления накипи и других загрязнений. Сами лампы подлежат замене раз в год.

Установки ультразвукового обеззараживания

Работа таких установок основана на кавитации. Из-за интенсивных колебаний, которым подвергается вода благодаря высокочастотному звуку, в жидкости образуются многочисленные пустоты, она будто «вскипает». Мгновенный перепад давлений приводит к разрыву клеточных оболочек и гибели микроорганизмов.

Оборудование для ультразвуковой обработки воды эффективно, но требует больших затрат и грамотной эксплуатации. Важно, чтобы персонал умел обращаться с устройством – от качества настройки оборудования зависит его результативность.

Термическое обеззараживание

Этот метод крайне распространен среди населения и активно применяется в быту. С помощью высокой температуры, то есть кипячения, вода очищается практически от всех возможных патогенных организмов. В дополнение к этому снижается жесткость воды и уменьшается содержание растворенных газов. Вкусовые качества воды остаются прежними. Однако, у кипячения есть один недостаток: вода считается безопасной около суток, после чего бактерии и вирусы вновь могут в ней обосноваться.


Кипячение воды – надежный и простой метод обеззараживания

Электроимпульсное обеззараживание

Методика заключается в следующем: электрические разряды, поступающие в воду, создают ударную волну, микроорганизмы попадают под гидравлический удар и погибают. Этот способ не требует предварительной очистки и эффективен даже при повышенной мутности. Гибнут не только вегетативные, но и спорообразующие бактерии. Преимуществом является длительное сохранение эффекта (вплоть до 4-х месяцев), а недостатком – немалая стоимость и большое энергопотребление.

Химические методы обеззараживания воды

Они основаны на химических реакциях, которые происходят между загрязнением или микроорганизмом и добавляемым в жидкость реагентом.

При химическом обеззараживании важно контролировать дозу реагента.

Она должна быть точной. Недостаток вещества не сможет исполнить свою цель. К тому же, небольшое количество реагента приведет к повышенной активности вирусов и бактерий.

Чтобы улучшить работу химиката, его добавляют с избытком. В таком случае вредоносные микроорганизмы погибают, а эффект сохраняется продолжительное время. Избыток рассчитывается отдельно: если добавить слишком много, реагент дойдет до потребителя, и он отравится.

Хлорирование

Хлор широко распространен и применяется в водоочистке многих стран мира. Он успешно справляется с любыми объемами микробиологических загрязнений. Хлорирование приводит к гибели большей части патогенных организмов и отличается дешевизной и доступностью. К тому же, использование хлора и его соединений позволяет извлекать из воды металлы и сероводород. Хлорирование применяется в городских системах подачи питьевой воды. Оно также используется в бассейнах, где скапливается большое число людей.


Однако, у этого способа есть ряд недостатков. Хлор крайне опасен, вызывает рак и клеточные мутации, токсичен. Если избыток хлора не исчезнет в трубопроводе, а дойдет до населения, это может привести к серьезным проблемам со здоровьем. Особенно сильна опасность в переходные периоды (осень и весну), когда из-за увеличения загрязненности поверхностных вод повышают дозу реагента при водоподготовке. Кипячение такой воды не поможет избежать негативных последствий, а наоборот – хлор превратится в диоксин, являющийся сильнейшим ядом. Для того, чтобы дать излишку хлора испариться, воду из-под крана набирают в большие емкости и оставляют на сутки в хорошо проветриваемом помещении.

Озонирование

Озон обладает сильным окисляющим воздействием. Он проникает внутрь клетки и разрушает ее стенки, приводя к гибели бактерии. Это вещество не только является сильным антисептиком, но также обесцвечивает и дезодорирует воду, окисляет металлы. Озон работает быстро и избавляется практически от всех микроорганизмов, находящихся в воде, обгоняя по этой характеристике хлор.

Озонирование считается наиболее безопасным и эффективным методом, но и оно имеет несколько минусов. Избыток озона приводит к коррозии металлических частей оборудования и трубопроводов, аппараты изнашиваются и разрушаются быстрее обычного. Кроме того, новейшие исследования отмечают, что озонирование вызывает «пробуждение» микроорганизмов, находившихся в условной спячке.


Схема процесса озонирования

Способ отличается дороговизной установки и большим энергопотреблением. Для работы с озонирующим оборудованием требуется персонал высокой квалификации, ведь газ токсичен и взрывоопасен. Чтобы пустить воду населению, необходимо переждать период распада озона, иначе могут пострадать люди.

Обеззараживание полимерными соединениями

Отсутствие вреда здоровью, уничтожение запахов, вкусов и цветности, большая длительность действия – перечисленные достоинства относятся к обеззараживанию с помощью полимерных реагентов. Такой вид веществ также называют полимерными антисептиками. Они не вызывают коррозию и не портят ткань, не вызывают аллергии и отличаются результативностью.


Олигодинамия

Она основана на способности благородных металлов (таких как золото, серебро и медь) обеззараживать воду.

То, что эти металлы имеют антисептический эффект, известно давно. Медь и её сплавы часто применяют в полевых условиях, когда нужно в индивидуальном порядке обеззаразить небольшой объем жидкости.

Для более обширного воздействия металлов на микроорганизмы используются ионаторы. Это проточные аппараты, работающие на основе гальванической пары и электрофореза.

Обеззараживание серебром

Этот металл принято считать одним из самых древних способов обеззараживания воды. В древности было распространено мнение, что серебро лечит от любых болезней. Сейчас известно, что оно негативно влияет на множество микроорганизмов, однако неизвестно, уничтожает ли серебро простейшие бактерии.

Данное средство дает видимый эффект при очистке воды. Однако оно негативно влияет на организм человека при накоплении в нем. Не зря серебро имеет высокий класс опасности. Обеззараживание воды ионами серебра не считается безопасным методом, а потому практически не используется в промышленности. Серебряные ионаторы используются в единичных случаях в быту для обработки небольших объемов воды.


Компактный бытовой ионатор (осеребритель) воды

Иодирование и бромирование

Йод широко известен и используется в медицине с давних времен. Ученые многократно пытались использовать его обеззараживающее воздействие в водоочистке, однако его применение приводит к возникновению неприятного запаха. Бром отлично справляется практически со всеми известными патогенными микроорганизмами. Но имеет существенный недостаток – высокую стоимость. Из-за своих минусов эти два вещества для обработки сточных и питьевых вод не используются.

Комбинированные методы обеззараживания воды

Комплексные методы основываются на сочетании физических и химических методов для улучшения результативности. Примером является комбинация из ультрафиолетового излучения и хлорирования (иногда хлорирование заменяется на озонирование). УФ-лампы уничтожают микроорганизмы, а хлор или озон предотвращают их повторное возникновение. Кроме того, хорошо сочетаются окисление и обработка тяжелыми металлами. Реагент-окислитель дезинфицирует, а металлы продлевают бактерицидное действие.


Сочетание УФ-обеззараживания и действия ультразвука

Как обеззаразить воду в быту

Существует пять способов быстро продезинфицировать небольшой объем воды:

  • кипячение;
  • добавление перманганата калия;
  • использование обеззараживающих таблеток;
  • использование трав и цветов;
  • настаивание с кремнием.

Перманганат калия прибавляется воду в количестве 1-2 г. на одно ведро воды, после чего загрязнения выпадают в осадок.

Специальные таблетки для уничтожения микроорганизмов применяются при обезвреживании воды из скважины, колодца или родника. Они являются наиболее современным способом, доступным, недорогим и результативным. Многие таблетки, например, марки «Акватабс», могут использоваться для очистки больших объемов жидкости.

Если воду необходимо обеззаразить в походе, можно воспользоваться специальными травами: зверобоем, брусникой, ромашкой или чистотелом.

Также можно использовать кремний: его помещают в воду и оставляют на сутки.

Нормативная документация в области безопасности питьевой воды

Со стороны государства качество воды строго контролируется с помощью нормативных документов, правил и ограничений. Основой законодательных актов в области охраны водных ресурсов и контроля качества используемой воды являются два документа: Федеральный закон «О санитарно-эпидемиологическом благополучии населения» и Водный кодекс.

Первый закон содержит требования к качеству источников водоснабжения, из которых вода поступает в жилые дома и на нужды сельского хозяйства. Второй документ описывает нормы использования водных источников и указания по обеспечению их безопасности, а также определяет меры наказания.

ГОСТы

ГОСТы описывают правила, по которым должен проходить контроль качества сточных и питьевых вод. В них содержатся методики проведения анализов в полевых условиях, а также позволяют разделить воды на группы. Самые важные из ГОСТов представлены в таблице.

СНиПы

Строительные нормы и правила определяют требования к возведению сооружений очистки вод, к монтажу различных видов трубопроводов и систем водоснабжения. Информация содержится в СНиПах под следующими номерами: СНиП 2.04.01-85, СНиП 3.05.01-85, СНиП 3.05.04-85.

СанПиНы

Санитарно-эпидемиологические правила и нормы содержат гигиенические требования к качеству различных групп вод, к составу, к водозаборным сооружениям и месторасположению водозаборов: СанПиН 2.1.4.559-96, СанПиН 4630-88, СанПиН 2.1.4.544-96, СанПиН 2.2.1/2.1.1.984-00.

Таким образом, эффективность обеззараживания водопроводной воды контролируется с установленной регулярностью и в соответствии со множеством правил и нормативов. А большое число различных методов дезинфекции свежей воды позволяют для любых условий подобрать оптимальный вариант. Что делает грамотно очищенную и обработанную воду безопасной для употребления людьми.

Что подразумевают под обеззараживанием питьевой воды? Под этим понимают ряд мероприятий, направленных на полное или частичное уничтожаются в воде вирусов, бактерий, способных вызвать множество инфекционных заболеваний.

Но при этом стоит понимать, что полное очищение воды от всех бактерий сделает ее непригодной для применения с пищей. Вот почему следует со всей внимательностью отнестись как к выбору конкретного метода обеззараживания, так и к проведению химико-биологического анализа пробы воды. Есть несколько методов воздействия на вредоносные микроорганизмы:

  • Химические или реагентные;
  • Физические или безреагентные;
  • Комбинированные.

Микроорганизмы


Каждый из этих методов позволяет избавиться от любых вредоносных микроорганизмов определенным способом. К примеру, химические методы работают с помощью специальных коагулянтов-реагентов, которые добавляют в воду именно с целью обеззараживания. Это хлорирование, озонирование, применение гипохлорита натрия, серебра, кремния и многих других веществ, которые помогают либо избавиться от «вредителей», либо как минимум затормозить их размножение. Безреагентные методы — обеззараживание воды с применением физического безреагентного воздействия на жидкость. Это УФ-излучение, электроимпульсное обеззараживание и прочие подобные способы.

Комбинированные методы применяют с использованием как физического, так и химического воздействия попеременно. Такой подход к обеззараживанию максимально эффективен и, как правило, позволяет добиться не только полного обеззараживания жидкости, но и недопущения вторичного размножения бактерий и вирусов в воде. Кроме того, применение нескольких способов позволяет еще и очистить ее от иных загрязнителей.

Химическое обеззараживание воды


К ним относится обработка жидкости окислителями-коагулянтами: озоном, гипохлорит натрием, хлором и другими. В их числе и ионы тяжелых металлов. Чтобы достичь максимально стойкого эффекта обеззараживания таким методом, нужно максимально точно уметь определять дозу реагента, который будете вводить, и далее обеспечить необходимый промежуток времени для контакта воды с веществом.

Доза определяется расчетными методами, а также пробным обеззараживанием. Примечательно, что очень важно точно рассчитать дозу. Так как малая доза может не просто не подействовать, но еще и обеспечить быстрый рост количества бактерий в растворе. Примером такого эффекта можно считать озон, который в малых количествах убивает часть бактерий, образовывая особые соединения, которые пробуждают ранее спящие бактерии и создает идеальные условия для размножения.

Для того, чтобы обеспечить длительный эффект, дозу реагента рассчитывают, как правило, с избытком, который гарантированно уничтожит микроорганизмы в воде, а в период после обеззараживания воды не даст им размножиться.

Но избыток должен быть ровно такой, чтобы произошло обеззараживание, но при этом люди, потребляющие воду в качестве питья, не отравились, так как большая часть реагентов является довольно токсичной и может образовывать стойкие мутагенные и канцерогенные соединения.

  • Хлорирование

Не смотря на наличие множества современных методов очистки и обеззараживания воды, в нашем государстве продолжают применять в водоснабженческой практике хлорирование. Объясняется это простотой в использовании, обслуживании, а также высокой эффективность и, конечно, дешевизной реагента. Важным плюсом в применении названного метода является в первую очередь его последействие. Даже при небольшом избытке хлора (например, в воде содержится около 0,5 мг/л остаточного хлора) рост микроорганизмов вторично не происходит.

Но есть в данном способе и свои минусы. Хлор при окислении обладает весьма высокой степенью мутагенности, токсичности, канцерогенности. Даже следующая за этим очистка воды при помощи активированного угля не удаляет полностью образованные в процессе хлорирования соединения. Они обладают довольно высокой стойкостью и сильно загрязняют питьевую воду. Затем, как результат, стоки ведут в реки, а далее токсичные вещества уходят вниз по течению. Поэтому пока ведется поиск реагентов, которые будут обладать хорошей способностью обеззараживать питьевую воду, неся при этом меньше «побочных эффектов» в процессе применения.

Пока самых положительных отзывов добилось применение диоксида хлора, у которого способность воздействовать на вирусы и бактерии гораздо выше, чем у простого хлора. У этого же реагента и степень загрязнения воды на порядок меньше. Правда, диоксид хлора достаточно дорогой и его нужно производить сразу же на месте применения. Кроме того, его перспективы не распространяются далее небольших установок с невысокой производительностью.

Пользуются при хлорировании хлором, хлорной известью и иными производными элемента. Помимо главной функции (имеется ввиду дезинфекция), хлор помогает следить также за запахом, вкусовыми качествами, предотвращает рост водорослей, поддерживает чистоту фильтров, удаляет марганец, железо, разрушает сероводород, обесцвечивает и т.д.

Риск применения хлора в большей мере связывают с образованием тригалометанов. Производные метана в любой форме обладают сильно выраженным канцерогенным воздействием на человеческий организм, способствуя тем самым росту раковых клеток. Примечательно, что кипячение хлорированной воды, что многие считают выходом из сложившейся ситуации, только усугубляет ситуацию, так как под влиянием высоких температур происходит образование в хлорированной воде очень сильного яда под названием диоксин.

Исследования показывают, что хлор и иные его производные вызывают болезни ЖКТ, печени, сердечно-сосудистой системы, а также гипертонию, атеросклероз, разные виды аллергии, воздействует на кожу, волосы. Хлор разрушает белок в организме.

Многие считают, чтобы образовывалось после хлорирования как можно меньше вредных соединений, следует предварительно очистить от разнообразных примесей воду, так как соединения образовываются из-за взаимодействия хлора с растворенными в жидкости органическими веществами.

  • Озонирование

Озонирование жидкости позволяет разлагать частицы озона в растворе, образовывая при этом атомарный кислород. Он позволяет разрушить ферментную систему микробной клетки и окислить часть соединений, которые могут придавать воде довольно навязчивый неприятный запах. Данный способ требует точности расчетов, так как при избытке озона в воде может появиться неприятный запах. Кроме того, чересчур большое количество озона может ускорить процесс коррозии металла. Отражается это не только на системе водопровода, но и на бытовой технике и посуде, которая контактирует с этой водой.

С точки зрения гигиены это самый лучший химический метод, который может обеспечить максимально быстрое и, что крайне важно, безопасное для человека и окружающего мира обеззараживание воды без последующего образования канцерогенных, высокотоксичных соединений. Но такой способ требует внушительного расхода электроэнергии, эксплуатации сложной аппаратуры, высококвалифицированного обслуживания. А потому этот способ максимально эффективно работает в основном в системах централизованного водоснабжения. Стоит упомянуть, что он довольно дорогой в применении.

Сам газ довольно опасен в процессе производства, токсичен и даже взрывоопасен. Многие фирмы предлагают стационарные установки для коттеджей, но стоит понимать, что без квалифицированного обслуживания и систем контроля такие аппараты могут отравить воздух и воду и как результат -владельцев. Также всегда существует риск возникновения взрывоопасной ситуации на подобной установке.

По некоторым данным после проведения озонирования может произойти вторичный рост числа бактерий. Связано это с тем, что после такой обработки воды начинается разложение фенольных групп гуминовых веществ. А они способствуют активации других микроорганизмов, которые до обработки находились в «спящем» состоянии. А потому 100% высокого качества очистки от озона ждать не приходится. Но, не в пример хлору, озон относится по опасности к первой категории. Также из-за влияния озона на металлы (коррозия) прежде чем обработанную воду пускать по трубам, необходимо выждать период распада озона. Исключением может послужить транспортировка только что обработанной воды из некоторых видов пластмассы, бетона, асбестоцемента и других подобных материалов.

  • Полимерные реагенты/антисептики

Отдельный реагентный способ очистки воды – это обеззараживание полимерными реагентами, которые относятся к классу полимерных антисептиков. Самым известным представителем данного класса является Биопаг. Если сравнивать с хлором и озоном, то этот препарат не наносит вреда здоровью, не оказывает местное раздражающее действие на слизистые поверхности и кожу, а также не вызывает аллергических реакций. Также среди преимуществ: отсутствие запаха, цвета, вкуса у воды по завершении процесса очищения, отсутствие коррозийного влияния на металлы и вреда для купальных костюмов. Применение подобных антисептиков крайне простое, но не смотря на это они обладают долговременным эффектом дезинфекции. Этот вид обеззараживания воды используется наиболее часто в общественных бассейнах.

  • Иные реагенты

Также в реагентных методах применяют разнообразные соединения тяжелых металлов, йод, бром и т.п. Но они требуют определенных знаний при применении и точности расчетов. С другой стороны, дезинфекцию питьевой воды с их помощью проводят гораздо эффективнее и качественнее. Обеззараживание при помощи ионов тяжелых металлов зачастую выделяют в отдельный метод — олигодинамическое обеззараживание воды. Чаще всего используются ионы благородных металлов. Яркий пример – серебро. Но нужно понимать, что оно не убирает из воды, а лишь сдерживает на время действия рост бактерий. Кроме того, для этого метода нужно определенное количество указанного вещества. Серебро быстро накапливается в организме, а вот выводится очень тяжело и медленно.

К другим реагентам, которые не применяются повсеместно, можно отнести сильные окислители, как, например, гипохлорит натрия. Применяют конкретно этот реагент в тех случаях, когда показатели воды довольно нестабильны и часто меняются. Показанием к применению может стать наличие в жидкости планктона, органических веществ, которые влияют на степень цветности воды. Использование гипохлорида натрия, который получают путем проведения электролиза 2-4% растворов хлорида натрия (это простая поваренная соль) или минерализованных вод, считают одним из наиболее перспективных и безопасных для человека и окружающей среды способов очистки воды. По своему химико-бактерицидному действию гидрохлорид натрия идентичен растворенному хлору, но при этом обладает длительным действием и в большей мере безопасен для здоровья. Также он более безопасен и для окружающей среды.

Из недостатков следует выделить: повышенное потребление реагента из-за низкой степени его конверсии. Остальная часть остается в воде «баластом», повышая солесодержание в растворе. Снижение количества соли после обеззараживания зачастую требует гораздо большего количества затрачиваемой электроэнергии и расхода анодного материала. А это уже намного дороже хлорирования.

Физическое обеззараживание воды


К физическим относят те способы, которые осуществляют воздействие на жидкость УФ-лучами, ультразвуком и иными процессами. Сперва проводится предварительная очистка: воду подвергают фильтрации и коагуляции. Это помогает удалить взвешенные частицы, внушительную часть находящихся в жидкости микроорганизмов, яйца гельминтов.

Во время применения ультрафиолетового излучения нужно подводить к имеющемуся объему воды определенное количество энергии. Высчитывают ее количество так: мощность излучения, которую умножают на время контакта. При этом следует определить зараженность биоорганизмами воды. В данном случае высчитывают число микроорганизмов на 1 мл жидкости. Также определяют в воде наличие индикаторных бактерий, которых относят к группе кишечной палочки (в сокращении БГКП). Е. coly – основной ее представитель – определяется довольно просто.

Вообще следует знать, что БГКП присутствуют в воде, которая загрязнена фекалиями. Эти организмы обладают максимально высокой сопротивляемостью к процессам обеззараживания. E.coly является самой безвредной из группы и помогает определить бактериальное загрязнение воды. Согласно СанПиН 2.1.4.1074-01, общее число бактерий не должно превышать 50 на 100 мл колифомных бактерий.

Но данная норма не всегда может коррелироваться с обеззараживанием воды от вирусов. Так, например, ультрафиолетовое излучение и хлор в отдельности обеспечивают разные уровни очистки и обеззараживания воды по коли-индексу. Таким образом, УФ-лучи лучше воздействуют на биоорганизмы, чем хлор. А вот озон будет примерно по результатам очистки равен УФ-лучам.

  • Очистка воды УФ-лучами

УФ-лучи могут воздействовать на клеточный обмен, на ферментные системы клеток бактерий. Они уничтожают вегетативные и, что достаточно важно, споровые бактерии, которые уничтожить достаточно тяжело. Органолептические свойства воды при этом не меняются. Подобный вид обработки не можетвлиять на образование токсических веществ, а потому и верхнего порога дозы тоже нет. Соответственно, увеличивая дозу УФ-излучения, вы вполне сможете добиться самых лучших результатов очистки и обеззараживания воды. Но есть у этого способа и недостаток – полное отсутствие последействия. Еще такие процессы требуют от заказчика капитальных вложений в сферу: гораздо больших, чем при хлорировании, но ощутимо меньших, чем при озонирование. Потому для индивидуального пользования такие установки будут самым лучшим вариантом, так как меньшие аппараты будут по себестоимости выходить примерно на уровне хлорирования, только со всеми вытекающими плюсами данного вида обеззараживания воды.

Снизить эффективность такой установки может чаще всего один фактор: загрязнение кварцевых ламп минеральными отложениями солей, которые в своей основе имеют минерально-органический состав. Решается данный вопрос просто – либо добавляют пищевые кислоты в воду (уксус отлично справляется с подобной проблемой), циркулирующие через установку, либо проводят механическое очищение поверхности ламп.

Обеззараживание УФ-излучением проводят только после предварительной очистки воды, так как имеющиеся в воде загрязнения могут просто свести весь процесс на нет, экранизируя УФ-лучи. Наиболее оптимальная длина волн – 200-295 нм. Максимально результативной является «золотая середина» — 260 нм. Этот уровень излучения активно разрушает цитоплазму клеток, влияя на белковые коллоиды.

Ультрафиолетовое излучение без преувеличений на сегодня самый эффективный метод обеззараживания воды. Данное средство относится к невидимой коротковолновой части спектра. Срок службы УФ-лампы составляет в среднем несколько тысяч часов.

  • Обеззараживание ультразвуком

Обеззараживание воды с применением ультразвукового оборудования основывается на способности определенных звуковых частот вызывать кавитацию, т.е. образовывать пустоты, которые создают большую разницу в давлении. Подобный диссонанс ведет к разрыву клеточных оболочек и последующей гибели клетки бактерии. Зависит уровень бактерицидного действия от интенсивности колебаний звука. Но данные установки требуют определенного оборудования, квалифицированного обслуживания, также они довольно дорогостоящие.

Ультразвук производится генератором – магнитострикционным или пьезоэлектрическим. Чтобы обеззараживание проводилось максимально эффективно, создается частота звука в 48 тысяч Гц. Говоря об эффективности ультразвука, стоит упомянуть такой факт: частота в 20 тысяч Гц позволяет резать металлы и даже обрабатывать алмазы. Но при низкой частоте ультразвук может спровоцировать рост числа бактерий в воде. А потому знание протекающих процессов и обслуживания недешевой аппаратуры у пользователя подобной установки должно быть обязательно.

  • Кипячение

Но самым популярным и распространенным в народе физическим способом останется еще на очень длительное время кипячение воды, которое дает максимально высокие результаты: уничтожаются практически все вредоносные бактерии, бактериофаги, вирусы, антибиотики и многие другие биологические объекты. Также устраняются растворенные в жидкости газы и заметно уменьшается pH (жесткость) воды. Вкусовые качества воды не подвергаются сильному изменению.

Карикатура на методы очистки воды

Для многих случаев самыми эффективными станут именно комплексные подходы к обеззараживанию воды. Здесь имеется ввиду применение безреагентных и реагентных методов. Примером может стать УФ-обеззараживание и последующее хлорирование. Таким образом, не только устраняются вредоносные микроорганизмы, но и будет гарантированно отсутствие вторичного биозазаражения. Примечательно, что такой комбинированный подход позволит не только уничтожить в воде микроорганизмы, но и снизить содержание реагентов. Это позволит не только сэкономить средства на реагентах, но и в целом улучшить состояние самой воды.

Также часто применяется озонирование с последующим проведением хлорирования. Благодаря этому вторичное биозаражение произойти в принципе не должно. Также резко снижается после процедуры образование в воде токсичных хлорсодержащих соединений.

Стоит упомянуть такой способ обеззараживания и очистки воды, как фильтрование. Но в данном случае полная очистка будет возможна лишь тогда, когда у фильтрующих элементов ячейки по размерам будут меньше, чем фильтруемые микроорганизмы, а это приблизительно 1 микрон. Но даже в этом случае из воды таким образом можно удалить лишь бактерии. Вирусы, как известно, обладают гораздо меньшими габаритами. Для таких случаев применяют фильтры с порами в 0,1-0,2 мкм.

Сейчас постепенно набирает популярность новая система фильтрации под названием «Пурифайер». По заявлениям производителей такая очистка воды довольно эффективна, так как в аппарате используются несколько систем обеззараживания воды. Наиболее распространенными пурифайерами являются те, которые используют максимально эффективную систему фильтрации.

Представляет собой данный агрегат очиститель и нагреватель воды с последующей поставкой. Отдельные модели могут не только нагревать воду до 95 градусов, но и охлаждать до 4 градусов. Подключают установку к трубам с холодным водоснабжением с помощью специальной пластиковой трубки, которую укладывают под навесной потолок, плинтус или кабель-канал.

Этот аппарат рассчитан на офисы или для домашнего пользования. Изготовитель также заявляет, что полученная таким образом вода будет обходиться гораздо дешевле, чем бутилированная. Данный факт подтвердить или опровергнуть сложно, так как статистика применения пока еще на отечественных просторах не была озвучена.

Новые способы обеззараживания воды

Последнее время появляются более «молодые» способы очистки и обеззараживания воды: электроимпульсный и электрохимический. Самыми яркими отечественными представителями данной техники являются «Сапфир», «Изумруд», «Аквамарин». Они работают с помощью диафрагменного электрохимического реактора, через который пропускают воду. Реактор разделен металлокерамической мембраной со способностью проводить ультрафильтрафию на анодную и катодную области. Когда в катодные и анодные камеры подают ток, то в них начинают образовываться кислый и щелочной растворы, а далее – электролитическое образование (которое еще называют активным хлором). В подобной среде довольно быстро гибнут почти все вредоносные микроорганизмы, а также происходит разрушение некоторых соединений, которые растворены в воде.

Производительность такого аппарата зависит в целом от конструкции проточного элемента и определенного количества элементов. Также могут использоваться в отдельных агрегатах анолиты и католиты. Их чаще всего применяют в медицинской сфере. Но стоит понимать, что вода лишь обеззараживается и очищается. Заявления изготовителей о том, что полученный раствор становится чудодейственным и целительным из-за изменения структуры – лишь рекламный ход. Этот метод назван ЭХА-технологией.

Электроимпульсное воздействие подразумевает под собой электрический заряд в воде, из-за чего возникает определенная степень ударной волны сверхвысокого давления, затем световое излучение и, как результат – образование озона, который, как мы уже узнали ранее, крайне губителен для микроорганизмов и биологических объектов в воде в целом. Такой способ обеззараживания жидкости при правильном обслуживании устройства и проведении всех процедур поможет сделать воду максимально чистой, а благодаря образовавшемуся озону – некоторые элементы-загрязнители будут устранены из обеззараживаемой жидкости.

Но перечисленные выше новые способы воздействия на микроорганизмы в бытовых условиях не могут применяться ввиду сложности протекающих процессов и необходимых знаниях, которые нужно будет применять на практике. Кроме того такое оборудование потребует основательных капиталовложений.

Стоит упомянуть, что изначально санитарными нормами не подразумевается полное уничтожение всех вредоносных микроорганизмов, которые находятся в воде. Целью обеззараживания на самом деле стало удаление или инактивация самых опасных для здоровья человека бактерий, вирусов и иных биологических элементов, так как полностью стерильная вода может нанести вред здоровью человека.

Учитывая необходимость очищения воды в первую очередь для здоровья человека, стоит выбирать самые оптимальные варианты дезинфекции. Но прежде чем предпринимать те или иные решения, необходимо определить уровень загрязнения воды не только биологическими и минеральными соединениями, но и микроорганизмами. Правильное выявление причин поможет подобрать максимально верный вариант.

Обеззараживание (дезинфекция) питьевой воды осуществляется с целью обеспечения эпидемической безопасности питьевой и предотвращения передачи через воду возбудителей инфекционных заболеваний. Обеззараживание направлено на уничтожение патогенных и условно-патогенных микроорганизмов. В целях обеззараживания применяют реагентные (химические) и безреагентные (физические) методы.

Реагентные методы основаны на использовании сильных окислителей (хлора, хлорсодержащих веществ, озона), ионов серебра и других веществ.

К безреагентным методам относятся: ультрафиолетовое облучение, воздействие ультразвука, вакуума, радиоактивное излучение то есть физические методы, а также термическая обработка. На водопроводах обычно обеззараживание воды осуществляется на последнем этапе ее очистки перед поступлением в резервуары чистой воды и разводящую водопроводную сеть. Выбор конкретного метода обеззараживания зависит от качества и количества исходной воды, методов ее предварительной очистки, условий поставки реагентов и других факторов.

Хлорирование - обработка питьевой воды водным раствором хлора с целью ее обеззараживания. Этот метод стал наиболее широко распространен среди всех методов обеззараживания воды. Это связано с относительной дешевизной хлора, несложностью используемого оборудования и надежностью обеззараживающего действия.

При обычных температуре и давлении хлор - газ желто-зеленого цвета с резким специфическим запахом. Раздражает слизистые оболочки, глаза, относится к сильнодействующим ядовитым веществам (СДЯВ) и при выбросе в воздух способен вызвать отравления людей.

Хлор можно использовать для обеззараживания воды на различных сооружениях - от шахтного колодца до крупного водопровода. В целях обеззараживания воды могут применяться газообразный хлор (доставляется в баллонах в жидком состоянии), хлорная известь, гипохлорит кальция, хлорамины, двуокись хлора и другие хлорсодержащие вещества.

Основными условиями действия хлора являются: тщательное освобождение воды от взвешенных веществ, достаточная доза хлора, полное и быстрое перемешивание хлора со всем объемом обеззараживаемой воды и контакт хлора с водой не менее 30-60 мин времени, необходимого для проявления бактерицидного действия. Для обеспечения надежного обеззараживания необходимо ввести его такое количество, чтобы покрыть всю хлорпоглощаемость воды и получить некоторый избыток свободного активного хлора. Об успешности хлорирования воды судят по остаточному активному хлору. Установлено, что дозы хлора в воде 1-3 мг/л обычно обеспечивают достаточный бактерицидный эффект. При этом содержание остаточного свободного хлора в воде после резервуаров чистой воды должно быть в пределах 0,3-0,5 мг/л. Такое хлорирование называется обычным, или хлорированием с учетом хлорпотребности.

Хлорпоглощаемость воды - количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 минут.

Из физических способов обеззараживания воды наиболее распространенным и надежным (в частности, в домашних условиях) является кипячение.

При кипячении происходит уничтожение большинства бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, которые часто содержатся в открытых водоисточниках, а как следствие и в системах центрального водоснабжения.

Кроме того, при кипячении воды удаляются растворенные в ней газы и уменьшается жесткость. Вкусовые качества воды при кипячении меняются мало. Правда для надежной дезинфекции рекомендуется кипятить воду в течение 15 - 20 минут, т.к. при кратковременном кипячении некоторые микроорганизмы, их споры, яйца гельминтов могут сохранить жизнеспособность (особенно если микроорганизмы адсорбированы на твердых частицах). Однако применение кипячения в промышленных масштабах, конечно же, не представляется возможным ввиду высокой стоимости метода.

Ультрафиолетовое излучение

Обработка УФ-излучением - перспективный промышленный способ дезинфекции воды. При этом применяется свет с длиной волны 254 нм (или близкой к ней), который называют бактерицидным. Дезинфицирующие свойства такого света обусловлены их действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. При этом бактерицидный свет уничтожает не только вегетативные, но и споровые формы бактерий.

Современные установки УФ-обеззараживания имеют производительность от 1 до 50 000 м3/ч и представляют собой выполненную из нержавеющей стали камеру с размещенными внутри УФ-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, непрерывно подвергается облучению ультрафиолетом, который убивает все находящиеся в ней микроорганизмы. Наибольший эффект обеззараживания питьевой воды достигается при расположении УФ-установок после всех других систем очистки, как можно ближе к месту конечного потребления.

Этот способ приемлем как в качестве альтернативы, так и дополнения к традиционным средствам дезинфекции, поскольку абсолютно безопасен и эффективен.

Важно отметить, что в отличие от окислительных способов при УФ-облучении не образуются вторичные токсины, и поэтому верхнего порога дозы ультрафиолетового облучения не существует. Увеличением дозы почти всегда можно добиться желаемого уровня обеззараживания.

Кроме того УФ-облучение не ухудшает органолептические свойства воды, поэтому может быть отнесено к экологически чистым методам ее обработки.

Вместе с тем, и этот способ имеет определенные недостатки. Подобно озонированию, УФ-обработка не обеспечивает пролонгированного действия. Именно отсутствие последействия делает проблематичным ее применение в случаях, когда временной интервал между воздействием на воду и ее потреблением достаточно велик, например в случае централизованного водоснабжения. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Кроме того, возможны реактивация микроорганизмов и даже выработка новых штаммов, устойчивых к лучевому поражению.

Этот способ требует строжайшего соблюдения технологии,

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззараживание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки.

Фактором, снижающим эффективность работы установок УФ-обеззараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Другим фактором, снижающим эффективность УФ-обеззараживания, является мутность исходной воды. Рассеивание лучей значительно ухудшает эффективность обработки воды.