Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство сельского хозяйства Российской Федерации

Департамент научно технологической политики и образования

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный аграрный университет»

Факультет: Биотехнологий и ветеринарной медицины

Кафедра: «Ветеринарно санитарная экспертиза, заразные болезни и морфология»

ДОКЛАД

Дисциплина: «Биотехнология»

на тему: «Первичные и вторичные метаболиты микроорганизмов»

Выполнила:

Понышева Е.С.

Проверил:

Спивак Марина Ефимовна

Волгоград 2018 г

Биотехнология получения первичных метаболитов

Первичные метаболиты - низкомолекулярные соединения, необходимые для роста микроорганизмов: одни из них являются строительными блоками макромолекул, другие - участвуют в синтезе коферментов. Среди наиболее важных для промышленности первичных метаболитов можно выделить ферменты, аминокислоты, витамины.

Производство аминокислот

В промышленности аминокислоты получают:

1) гидролизом природного белоксодержащего сырья; 2) химическим синтезом; 3) микробиологическим синтезом; 4) биотрансформацией предшественников аминокислот с помощью микроорганизмов или выделенных из них.

Наиболее перспективен и экономически выгоден микробиологический синтез аминокислот. Преимущество его состоит в возможности получения L-аминокислот на основе возобновляемого сырья. Среди продуцентов аминокислот используются дрожжи (30 %), актиномицеты (30 %), бактерии (20 %). Brevibacterium flavum и Corynebacterium glutamicum более трети сахаров превращают в лизин. Для селекции продуцентов используются микроорганизмы, относящиеся к родам Micrococcus, Brevibacterium, Corynebacterium, Arthrobacter.

Производство витаминов

Витамины - группа незаменимых органических соединений различной химической природы, необходимых любому организму в ничтожных концентрациях и выполняющих в нем каталитические и регуляторные функции. Способностью к синтезу витаминов обладают лишь автотрофные организмы. Микробиологическим способом можно получить практически все известные витамины. Однако экономически более целесообразно получать витамины выделением из природных источников или с помощью химического синтеза. С помощью микроорганизмов целесообразно получать сложные по строению витамины: в-каротин, В2, В12 и предшественники витамина D.

Производство органических кислот

В настоящее время биотехнологическими способами получают в промышленных масштабах ряд органических кислот. Из них лимонную, глюконовую, кетоглюконовую и итаконовую кислоты получают лишь микробиологическим способом, молочную, салициловую и уксусную - как химическим, так и микробиологическим, яблочную - химическим и энзиматическим путем. Уксусную кислоту продуцируют Aсеtobacter и Gluconobacter, лимонную - Aspergillus niger, Aspergillus wentii, молочную - Lactobacillus delbrueckii.

Биотехнология получения вторичных метаболитов

Принципы получения основаны на особенностях их образования клетками микроорганизмов. Биосинтез вторичных метаболитов фазоспецифичен и происходит после завершения стадии роста, в идиофазе, благодаря чему их и называют идиолитами.

Получение антибиотиков

Антибиотики - самый большой класс фармацевтических соединений, синтез которых осуществляется микробными клетками. К классу относятся противогрибковые агенты, противоопухолевые лекарства и алкалоиды. Они используются в растениеводстве, животноводстве, ветеринарии, пищевой промышленности, медицине.

Существует несколько способов получения как природных, так и полусинтетических антибиотиков:

1) ферментация микроорганизма-продуцента с подходящим пред-шественником, что индуцирует синтез антибиотиков в идиофазе;

2) использование блокированных мутантов. У которых блокирован синтез нужного антибиотика. Используя низкую субстратную специфичность ферментов и вводя аналоги предшественников антибиотика, их переводят в аналоги самого антибиотика.

Этот процесс называется биосинтез, или мутасинтез:

а) предполагается последовательность реакций, ведущая к синтезу антибиотика;

б) отсутствие синтеза антибиотика у «блокированного» мутанта; в) синтез модифицированного антибиотика после введения аналога предшественника (D*)

Получение промышленно важных стероидов

Стероиды - большая группа биологически важных соединений, среди которых - половые гормоны, сердечные гликозиды, желчные кислоты, витамины, алкалоиды, регуляторы роста растений. В основе стероидов лежит скелет пергидроциклопентанофенантрена.

Биотрансформация - реакции превращения исходных органических соединений (предшественников) в целевой продукт с помощью клеток живых организмов или ферментов, выделенных из них. Способность клеток микроорганизмов к высокоспецифичной биотрансформации используется в производстве стероидов. Использование абсолютной стереоспецифичности и субстратной специфичности ферментов клеток позволило разработать условия осуществления множества химических реакций для структурных перестроек стероидов. В результате были получены новые соединения с лучшими фармакологическими свойствами.

Ферменты

Ферменты -- биологические катализаторы. Они катализируют тысячи химических реакций, из которых слагается метаболизм микроорганизма. В настоящее время известно около двух тысяч ферментов.

Ферменты представляют собой белки с молекулярной массой от 10000 до нескольких миллионов. Название ферменту дается по веществу, на которое он действует с изменением окончания на «аза». Например, целлюлаза катализирует гидролиз целлюлозы до целлобиозы, уреаза катализирует гидролиз мочевины (urea) до аммиака и СО2 и т. п. Однако чаще фермент получает название, которое указывает на природу катализируемой, им химической реакции.

Современная классификация ферментов также строится с учетом природы катализируемых ими реакций. Согласно разработанной комиссией по ферментам Международного биохимического союза классификации, они подразделяются на шесть главных классов.

Оксидоредуктазы -- это ферменты, катализирующие окислительно-восстановительные реакции. Они играют большую роль в процессах биологического получения энергии. К ним относятся дегидрогеназы (НАД, НАДФ, ФАД), цитохромы (b, с, с1 а, а3)г ферменты, участвующие в переносе водорода, электронов и кислорода, и др.

Трансферазы. Катализируют перенос отдельных радикалов, частей молекул или целых атомных группировок от одних соединений к другим. Например, ацетилтрансферазы переносят остатки уксусной кислоты -- СН3СО, а также молекул жирных кислот; фосфотрансферазы, или киназы, обусловливают перенос остатков фосфорной кислоты Н2Р032-. Известны многие другие трансферазы (аминотраисферазы, фосфорилазы и т. д.).

Гидролазы катализируют реакции расщепления и синтеза таких сложных соединений, как белки, жиры и углеводы, с участием воды. К этому классу относятся протеолитические ферменты (или пептидгидролазы), действующие на белки или пептиды; гидролазы глюкозидов, осуществляющие каталитическое расщепление углеводов и глюкозидов (в-фруктофуранозидаза, б - глюкозидаза, а - и в-амилаза, в-галактозидаза и др.); эстеразы, катализирующие расщепление и синтез сложных эфиров (липазы, фосфатазы).

Лиазы включают в себя ферменты, катализирующие отщепление от субстратов определенных химических групп с образованием двойных связей или присоединение отдельных групп или радикалов к двойным связям. Так, пируватдекарбоксилаза катализирует отщепление С02 от пировиноградной кислоты:

К лиазам относится также фермент альдолаза, расщепляющий шестиуглеродную молекулу фруктозо-1,6-дифосфата на два трехуглеродных соединения. Альдолаза имеет большое значение в процессе обмена веществ.

Изомеразы осуществляют превращение органических соединений в их изомеры. При изомеризации происходит внутримолекулярное перемещение атомов, атомных группировок, различных радикалов и т. п. Изомеризации подвергаются углеводы и их производные, органические кислоты, аминокислоты и т. д. Ферменты этой группы играют большую роль в ряде процессов метаболизма. К ним относятся триозофосфатизомераза, глюкозофосфатизомераза и др.

Лигазы катализируют синтез сложных органических соединений из простых. Например, аспарагинсинтетаза осуществляет синтез амида аспарагина из аспарагиновой кислоты и аммиака с обязательным участием аденозинтрифосфорной кислоты (АТФ), дающей энергию для этой реакции:

Аспарагиновая кислота + NH3 + АТФ -* аспарагин + АДФ + Н3Р04

К группе лигаз относятся также карбоксилазы, катализирующие присоединение С02 к различным органическим кислотам. Например, фермент пируваткарбоксилаза катализирует синтез щавелевоуксусной кислоты из пировиноградной и С02.

В соответствии со строением ферменты делятся на два больших класса:

1) представляющие собой простые белки,

2) являющиеся сложными белками.

К первому классу относятся гидролитические ферменты, ко второму, более многочисленному классу,-- ферменты, осуществляющие функции окисления и участвующие в реакциях переноса различных химических групп. Ферменты второго класса, кроме белковой части, называемой апоферментом, имеют и небелковую группу, определяющую активность фермента, -- кофактор. В отдельности эти части (белковая и небелковая) лишены ферментативной активности. Они приобретают характерные свойства ферментов только после соединения. Комплекс апофермента с кофактором называется холоферментом.

Кофакторами могут быть либо ионы металлов (Fe, Си, Со, Zn, Мо и др.), либо сложные органические соединения, называемые коферментами, либо те и другие. Коферменты обычно играют роль промежуточных переносчиков электронов, атомов, групп, которые в результате ферментативной реакции перемещаются с одного соединения на другое. Некоторые коферменты прочно связаны с ферментным белком; их называют простетической группой фермента. Многие коферменты или идентичны определенным витаминам группы В, или являются их производными.

К коферментам относятся, например, активные группы дегидрогеназ -- никотинамидадениндинуклеотид (НАД) или никотинамидадениндинуклеотидфосфат (НАДФ). В эти коферменты входит никотиновая кислота -- один из витаминов группы В. Витамины имеются в составе и других коферментов. Так, тиамин (витамин В1) входит в состав тиаминпирофосфокиназы, участвующей в обмене пировиноградной кислоты, пантотеновая кислота является составной частью кофермента А, а рибофлавин (витамин В2) представляет собой простетическую группу флавопротеиновых ферментов. Важное значение витаминов в питании живых организмов обусловлено именно тем, что они находятся в составе коферментов.

По современным представлениям, ферменты ускоряют химические реакции, понижая свободную энергию активации (количество энергии, необходимое для перевода при данной температуре всех молекул одного моля вещества в активированное состояние).

Главное свойство ферментов, отличающее их от других катализаторов, -- это специфичность катализируемых ими ферментативных реакций. Каждый фермент катализирует только одну определенную реакцию.

В связи с высокой специфичностью ферментативных реакций полагают, что участок молекулы фермента, называемый каталитическим центром, к которому присоединяется молекула субстрата, обладает определенной пространственной конфигурацией, которая «впору» лишь молекуле субстрата и не соответствует никаким другим молекулам.

Активность ферментов зависит от различных факторов: относительной концентрации фермента и субстрата температуры, pH и др. Для каждого фермента существует свой оптимум температуры и pH. Многие ферментативные реакции обратимы, хотя активность фермента редко бывает одинаковой в обоих направлениях.

Несмотря на незначительные размеры, каждая клетка микроорганизма может производить множество отличных друг от друга ферментов, обладающих различными функциями. Обычно ферменты, участвующие в метаболизме, содержатся в клетке организма и поэтому называются внутриклеточными ферментами, или эндоферментами. Некоторые ферменты выделяются клетками микроорганизмов в окружающую среду и называются внеклеточными ферментами, или экзоферментами. Как правило, во внешнюю среду выделяются гидролитические ферменты, разлагающие соединения с большой молекулярной массой, которые не могут проникнуть в клетку микроорганизма. Продукты же разложения легко поглощаются клеткой и используются ею в качестве питательных веществ.

Ферменты играют значительную роль в питании микроорганизмов. Большое число разнообразных ферментов, синтезируемых клетками микроорганизмов, позволяет им использовать для питания многочисленные соединения (углеводы, белки, жиры, воска, нефть, парафины и т. д.) путем их расщепления.

Производство аминокислот

Производство аминокислот в мире постоянно растет и в настоящее время составляет около 400 тыс. тонн/год, хотя потребность в них оценивается гораздо выше. Как уже отмечалось, недостаток в рационе аминокислот (особенно, незаменимых) отрицательно сказывается на росте и развитии. Так, добавка к кормам животных нескольких долей % дефицитной кислоты может повысить кормовую ценность белка более чем в два раза. Из всех возможных способов получения аминокислот (химическим путем, микробиологическим и др.) предпочтение отдается микробиологическому: хотя организацию микробного производства нельзя назвать простой, ее преимущество состоит в синтезе оптически чистых (L-аминокислот), тогда как при химическом синтезе получается рацемическая смесь L- и D-аминокислот, которую трудно разделить. Микробный синтез аминокислот основан на культивировании строго определенного продуцента целевой кислоты в среде заданного состава при строго определенных параметрах ферментации. Продуцентами являются штаммы бактерий, полученные мутантной селекцией или с помощью методов генной инженерии. Бактерии-мутанты, с одной стороны, утратили способность самостоятельно синтезировать некоторые вещества, а с другой стороны, приобрели способность к сверхсинтезу целевой аминокислоты. Уже к 70-м годам прошлого века были получены микробы-суперпродуценты из родов Brevibacterium,Corynebacterium, Micrococcus и др. с помощью которых возможно производить все известные аминокислоты. В настоящее время имеются суперпродуценты, у которых количество синтезируемого специфического белка достигает 10-50 % (здесь важнейшую роль играют многокопийные плазмиды, несущие встроенные гены).

Технология получения аминокислот базируется на принципах ферментации продуцентов и выделения первичных метаболитов, т. е. размножают маточную культуру вначале на агаризованной среде в пробирках, затем - на жидкой среде в колбах, инокуляторах и посевных аппаратах, а затем - в основных ферментаторах. Если аминокислота предусмотрена в качестве добавки к кормам, то биотехнологический процесс кормового продукта включает следующие стадии: ферментацию, стабилизацию аминокислоты в культуральной жидкости перед упариванием, вакуум-упаривание, стандартизацию упаренного раствора при добавлении наполнителя, высушивание и упаковку готового продукта, в котором должно содержаться не более 10 % основного вещества. Если же аминокислота используется в качестве лекарственного препарата, в этом случае получают изолированные чистые кристаллы, которые высушивают под вакуумом и упаковывают.

Известны два способа получения аминокислот: одноступенчатый и двухступенчатый. Согласно первому способу, например, мутантный ауксотрофный штамм - продуцент аминокислоты - культивируют на оптимальной для биоситеза среде.

В двухступенчатом способе микроб-продуцент культивируют в среде, где он получает и синтезирует все необходимые ингредиенты для последующего синтеза целевого продукта. Схема двухступенчатого процесса может быть представлена в следующем виде: Если ферменты биосинтеза аминокислоты накапливаются внутриклеточно, то после 1-й ступени клетки сепарируют, дезинтегрируют и применяют клеточный сок. В других случаях для целей биосинтеза целевых продуктов применяют непосредственно клетки.

Глутаминовая кислота - это первая аминокислота, полученная микробиологическим путем. Мутантов, обеспечивающих сверхсинтез этой кислоты, не получено, а «перепроизводство» этой аминокислоты связано с особыми условиями, при которых нарушается синтез мембранных фосфолипидов. Глутаминовая кислота синтезируется исключительно культурами Corynebacterium glutamicum и Brevibacterium flavum. Субстратами для ее получения являются глюкоза и уксусная кислота, а в начале 60-х гг. прошлого столетия использовали и н-парафины. Особые условия для роста культур создаются добавлением к культуральной жидкости пенициллина, который подавляет синтез клеточной стенки, или уменьшением (по сравнению с оптимальной) концентрации биотина (витамина В7) в среде, который индуцирует структурно-функциональные изменения в клеточной мембране, благодаря чему увеличивается ее проницаемость для глутаминовой кислоты, выходящей из клетки в культуральную жидкость. Натриевая соль глутаминовой кислоты широко применяется в пищевой промышленности для улучшения вкуса продуктов питания в консервированном и замороженном виде.

Витамины

Витамины - низкомолекулярные органические вещества, которые имеют биологическую активность. В естественной среде источниками этих представителей БАВ являются растения и микроорганизмы. В промышленности витамины получают в основном химическим синтезом. Однако микробиологическое производство этих соединений также имеет место. Так, например, менахиноны и кобаламины - продукт исключительно микробный. Микробиологическим путем получают всего несколько витаминов: В12 (цианокобаламин), В2 (рибофлавин), витамин С и эргостерин.

Довольно перспективным направлением в биотехнологии является микробиологический синтез биотина, который применяется в животноводстве в качестве кормовой добавки. В настоящее время для получения биотина прибегают к химическому синтезу.

Витамин В12

Мировая продукция витамина В12 составляет 9-11 тыс. кг в год. Из них около половины используется на медицинские цели, остальное количество - в животноводстве как кормовые добавки.

Природные продуценты витамина В12 обнаружены среди пропионовокислых бактерий р. Propionibacterium, которые синтезируют от 1 до 8 мг/л этого витамина. С помощью селекционно­генетических методов получен мутант P. shermanii M­82, который дает до 60 мг/л продукта.

Продуцент B. rettgerii также используется для микробиологического синтеза В12. В качестве активных продуцентов витамина В12 используют также актиномицеты и родственные микроорганизмы: путем мутаций и ступенчатого отбора получен штамм Nocardia rugosa, накапливающий до 18 мг/л В12.

Активные продуценты В12 обнаружены среди представителей Micromonospora.

Высокой природной продуктивностью обладают представители метанотрофов Methanosarcina, Methanococcus, среди которых выделен штамм Methanococcus halophilus, обладающий самым высоким среди природных штаммов уровнем продукции - 16 мг на 1 г биомассы.

В значительных количествах В12 синтезируют анаэробные бактерии р. Clostridium, что особенно эффективно для технологии.

Известны активные продуценты В12 среди Pseudomonas. У P. denitricans получен мутант, дающий на оптимизированной среде до 59 мг/л. Штамм запатентован фирмой «Merck» для промышленного получения В12.

В России наиболее широкое применение имеют Propionibacterium freudenreichii. Их культивируют на кукурузном экстракте и глюкозе в анаэробных условиях 72 ч для роста культуры. Во 2­й фазе синтеза в ферментер вносят предшественник - специфическое азотистое основание и проводят ферментацию еще 72 ч. Затем экстрагируют В12 из биомассы бактерий и очищают его химическим способом. Такой витамин применяют в медицинских целях.

Для нужд животноводства В12 получают с использованием смешанной культуры, содержащей бактерии Methanosarcina barkeri, Methanobacterium formicum. Содержание В12 в культуре достигает 6,5 мг/г сухой биомассы.

Рибофлавин

Витамин В2 в природе продуцируется растениями, дрожжами, мицелиальными грибами, а также некоторыми бактериями.

Среди прокариот известными продуцентами флавинов являются микобактерии и ацетобутиловые бактерии. Из актиномицетов - Nocardia eritropolis. метаболит аминокислота витамин фермент

Среди мицелиальных грибов - Aspergillus niger и Eremothecium ashbyi.

Рибофлавин микробиологического производства используется исключительно как кормовая добавка в животноводстве. Основным продуцентом кормового рибофлавина является Eremothecium ashbyi, который культивируют на кукурузной или соевой муке с минеральными добавками. Культивирование ведут до появления спор. Его лучшие продуценты, полученные с помощью мутаций и ступенчатого отбора продуцируют до 600 мг/л продукта. Затем культуральную жидкость выпаривают и используют в виде порошковой добавки к кормам в животноводстве.

Эргостерин

Эргостерин - исходный продукт производства жирорастворимого витамина D2. Эргостерин является также основным стерином дрожжей, поэтому данные микроорганизмы - основной источник для селекционных работ. Так, Saccharomyces carlbergensis дает до 4,3 мг/л, S. ellipsoideus - 1,5 мг/л, Rhodotorula glutinis - 1 мг/л, Candida utilis - 0,5 мг/л продукта.

Наиболее широко в производстве используют дрожжи Saccharomyces carlbergensis, а также S. cerevisiae.

В последние годы появились сообщения о промышленном производстве витамина С. Сообщается о конструировании генно­инженерными методами продуцента: гены Corynebacterium перенесли в Erw. herbicola.

В рекомбинантном штамме объединены способность эрвиний превращать глюкозу в глюконовую кислоту со способностью коринебактерий превращать последнюю в гулоновую кислоту, которую химическим способом превращают в аскорбиновую кислоту.

Каротиноиды

Каротиноиды - обширная группа природных пигментов, которые синтезируют хемо­ и фототрофами: прокариотами, мицелиальными грибами и дрожжами, водорослями и высшими растениями.

Каротиноиды, синтезируемые микроорганизмами, существуют в клетке в свободной форме, а также в виде гликозидов, в виде эфиров жирных кислот и как каротинобелковые комплексы. Ценность этих соединений для млекопитающих заключается в том, что это источник витамина А.

До настоящего времени не созданы истинные продуценты каротиноидов, а каротиноиды микроорганизмов выделяют из микроорганизмов преимущественно путем экстракции.

В настоящее время описано около 500 различных каротиноидов. Структурно каротиноиды представляют собой хромофор (или ядро), соединенное с изопреновыми остатками. Отличительной чертой хромофора является наличие сопряженных двойных связей. От числа этих связей зависит интенсивность окраски каротиноидов. Так, алифатические каротиноиды, содержащие не более 5 сопряженных связей - соединения неокрашенные.

Среди них наибольшее значение имеют фитоин и фитофлуин. Синтезируемые Neurospora crassa каротиноиды имеют 9 сопряженных связей и имеют ярко­желтое окрашивание. С увеличением двойных связей окраска усиливается до красной и фиолетовой.

Высшие каротиноиды имеют в молекуле до 45-50 атомов углерода. К таким каротиноидам относятся сарцинаксантин, продуцируемый Sarcina lutea.

Некоторые каротиноиды могут иметь в своем составе терминальную группировку как алеуреаксантин гриба Aleuria aurantia.

Другие каротиноиды имеют терминальную гидроксигруппу как ­гидроксифлеиксантин Blakeslea trispora.

Расположение каротиноидов в клетках микроорганизмов различно. Так, у фототрофных микроорганизмов каратиноиды сосредоточены в фотосинтезирующем аппарате. У хемотрофных - ассоциированы с клеточной мембраной. У некоторых (Micrococcus radiodurans) - локализованы в клеточной стенке. У грибов - в липидных глобулах цитоплазмы.

Каратиноиды выполняют в клетке роль антиоксидантов и защищают ее от явления перекисного окисления. Кроме того, каратиноиды являются фотоловушками, собирающими световую энергию.

Получение каротиноидов в промышленности

Традиционные методы получения каратиноидов сводятся к гомогенизации биомассы и экстракции каратиноидов полярными растворителями (ацетон, метанол). Индивидуальные каратиноиды получают путем разделения методом тонкослойной хроматографии на силикагеле. Следующим по распространенности является химический синтез каратиноидов.

Традиционными продуцентами микробного синтеза каратиноидов являются бактерии, мицелиальные грибы и дрожжи. Из фототрофных бактерий можно отметить Chloroexus и некоторые виды Rhodopseudomonas. Эта группа бактерий интересна тем, что у них в зависимости от интенсивности освещения можно регулировать выход каратиноидов.

Антибиотики

Традиционные представления об антибиотиках, или антибиотических веществах, связаны с их широким применением в современной медицине и ветеринарии. Некоторые антибиотические препараты применяют как стимуляторы роста животных, в борьбе с болезнями растений, при консервировании пищевых продуктов и в научных исследованиях (в области биохимии, молекулярной биологии, генетике, онкологии).

Современное определение термина «антибиотик» принадлежит М.М. Шемякину и А.С. Хохлову (1961), которые предложили считать антибиотическими веществами все продукты обмена любых организмов, способные избирательно убивать или подавлять рост и развитие микроорганизмов (бактерии, грибы, вирусы и др.), а также некоторых злокачественных новообразований.

В соответствии с классификацией, в основе которой лежит химическое строение, все описанные антибиотики можно разделить на следующие группы:

1) ациклические соединения (исключая жирные кислоты и терпены);

2) алициклические соединения (в том числе тетрациклины);

3) ароматические соединения;

4) хиноны;

5) кислородсодержащие гетероциклы;

7) пептиды.

Полностью химическая структура установлена для одной трети известных антибиотиков, и только половина из них может быть получена химическим путем. Поэтому микробиологический способ получения антибиотических средств очень актуален.

Синтез микроорганизмами антибиотиков - одна из форм проявления антагонизма; связан с определенным характером обмена веществ, возникшим и закрепленным в ходе его эволюции, т. е. это наследственная особенность, выражающаяся в образовании одного и более определенных, строго специфичных для каждого вида антибиотических веществ. Воздействуя на постороннюю микробную клетку, антибиотик вызывает значительные нарушения в ее развитии. Некоторые из антибиотиков способны подавлять синтез оболочки бактериальной клетки в период размножения, другие воздействуют на ее цитоплазматическую мембрану, изменяя проницаемость, часть из них является ингибиторами реакций обмена веществ. Несмотря на интенсивное изучение механизма действия различных антибиотиков, далеко не полностью выявлено их влияние на обмен веществ даже в клетках бактерий, которые являются основными объектами исследования.

В настоящее время описано более 3000 антибиотиков, но только 150 из них нашли практическое применение. Ниже будет рассмотрена технология производства тех из них, которые относятся к продуктам метаболизма микроорганизмов и нашли применение в сельском хозяйстве в виде соответствующих добавок к кормам (кормовые антибиотики) и в качестве средств защиты растений.

В течение многих лет антибиотики используют как стимуляторы роста сельскохозяйственных животных и птицы, как средства борьбы с заболеваниями растений и посторонней микрофлорой в ряде бродильных производств, как консерванты пищевых продуктов. Их применение в сельском хозяйстве приводит к снижению заболеваемости и смертности, прежде всего молодняка, и к ускорению роста и развития животных и птицы, способствует сокращению количества потребляемых кормов в среднем на 5 10 %. При применении антибиотиков в свиноводстве от каждой 1000 свиней дополнительно получают 100 120 ц мяса, от 1000 кур несушек - до 15 тыс. яиц в год. Механизм стимулирующего действия антибиотических веществ также нельзя считать полностью выясненным. Видимо, стимулирующий эффект воздействия низких концентраций антибиотиков на организм животного связан, в основном, с двумя факторами: воздействием на микрофлору кишечника или непосредственным влиянием на организм животного. В первом случае антибиотики способствуют увеличению числа полезных микроорганизмов, синтезирующих витамины и преобладающих над патогенными формами. Они снижают число вредных для организма животного микробов, использующих биологически активные вещества и образующих токсины, имеющие патогенные или условно патогенные формы. Антибиотики оказывают влияние на микроорганизмы, присутствующие в кишечнике, способствуя созданию устойчивых штаммов, менее вредных для животного, изменяют метаболизм присутствующих микробов. Они вызывают перемещение микроорганизмов в кишечнике животного; под их влиянием наблюдается снижение субклинических инфекций, часто замедляющих развитие молодняка, снижение рН содержимого кишечника, уменьшение поверхностного натяжения клеток организма, что способствует ускорению их деления.

Во втором случае в организме животного наблюдается синергизм действия гормонов, растет количество ростовых гормонов, ускоряется процесс потребления пищи, растет приспособляемость организма к неблагоприятным условиям. Под влиянием антибиотиков снижается потребность животного в витаминах, увеличивается синтез витаминов тканями, стимулируется синтез сахаров и витамина А из каротина, растет скорость синтеза ферментов, образуется меньше побочных продуктов. Кроме того, растет абсорбционная способность тканей, стимулируется потребление метаболитов.

Кормовые антибиотики применяют в виде неочищенных препаратов, которые представляют собой высушенную биомассу продуцента, содержащую помимо антибиотика аминокислоты, ферменты, витамины группы В и другие биологически активные вещества. Получаемые препараты стандартизуют по активности или количеству входящего в их состав основного вещества, учитывая или не учитывая присутствие в нем витамина B12. Все производимые кормовые антибиотики:

а) не используются в терапевтических целях и не вызывают перекрестной резистенции бактерий к антибиотикам, применяемым в медицине;

б) практически не всасываются в кровь из пищевого тракта;

в) не меняют своей структуры в организме;

г) не обладают антигенной природой, способствующей возникновению аллергии.

При длительном применении одного и того же препарата существует опасность возникновения антибиотикоустойчивых микроорганизмов. Для ее предупреждения периодически меняют используемые антибиотические вещества или применяют смесь антибиотиков, позволяющую поддерживать первоначально достигнутый эффект на необходимом уровне.

В СССР уже в течение нескольких десятков лет выпускаются кормовые препараты на основе хлортетрациклина - биовит, или биомицин кормовой, с различным начальным содержанием антибиотика и витамина B12. В настоящее время производство кормовых антибиотиков основывается и на других препаратах немедицинского назначения, таких, как бацитрацин, гризин, гигромицин Б и др.

В течение последних 20 лет антибиотики используют как средство борьбы с различными фитопатогенами. Источники заражения растений фитопатогенными микроорганизмами различны. Не составляют исключения и семена самого растения, идущие на посев. Воздействие антибиотического вещества сводится к задержанию роста или гибели фитопатогенных микроорганизмов, находящихся в семенах и вегетативных органах растения.

Получаемые препараты должны быть высокоактивными против возбудителя заболевания в окружающей растение среде, безвредными в применяемых для растения дозах, способными сохранять антибиотическую активность в течение необходимого времени и легко проникать в соответствующие ткани растения.

К числу антибиотических веществ, нашедших наиболее широкое применение в борьбе с фитопатогенами, относятся прежде всего фитобактериомицин, трихотецин и полимицин.

Применение антибиотиков в пищевой промышленности позволяет в значительной степени снизить длительность термообработки различных продуктов питания при их консервировании. А это, в свою очередь, обеспечивает большую сохранность присутствующих в них биологически активных веществ, вкусовых качеств, консистенции продуктов. Используемые антибиотики воздействуют в основном на клостридиальные и термофильные бактерии, устойчивые к нагреванию. Наиболее эффективным антибиотиком при консервировании овощей общепризнан в РФ и за рубежом низин. Он не токсичен для человека и позволяет вдвое уменьшить время термообработки овощей. Технология производства любых антибиотиков немедицинского назначения, кроме тех, что используются в пищевой и консервной промышленности, строится по единой схеме, предусматривающей все стадии асептического промышленного культивирования штамма продуцента и биосинтез антибиотика, предварительную обработку культурной жидкости, ее вакуум упаривание, сушку и стандартизацию готового продукта путем смешения с необходимым количеством наполнителя. В качестве последних обычно используют отруби, жмыхи различных культур и другие вещества органической и неорганической природы.

Динамика накопления антибиотика в культуральной жидкости в подавляющем большинстве случаев имеет типичный вид зависимости, характерный для биосинтеза вторичных метаболитов, т. е. максимум образования биомассы во времени предшествует максимуму антибиотикообразования. Поэтому на первых этапах культивирования целью производства является накопление необходимого количества биомассы (антибиотик при этом практически отсутствует). Биосинтез антибиотика происходит на второй стадии производственного культивирования в основных ферментерах, причем время биосинтеза может в 2-3 раза превышать время, затрачиваемое на культивирование штамма продуцента.

Использованная литература

1. Биотехнология: практикум / С. А. Акимова, Г. М. Фирсов. - Волгоград: ФГБОУ ВПО Волгоградский ГАУ, 2013. - 108 с.

2. Шевелуха В.С., Калашникова Е.А., Воронин Е.С. и др. Сельскохозяйственная биотехнология. - Учебник. М.: Высшая школа, 2008. - 469

3. Калашникова Е.А., Кочиева Е.З., Миронова О.Ю. Практикум по сельскохозяйственной биотехнологии, М.:КолосС, 2006, 149 с.

Размещено на Allbest.ru

Подобные документы

    Биосинтез алкалоидов, изопреноидов и фенольных соединений. Эмпирическая (тривиальная), биохимическая и функциональная классификации вторичных метаболитов, основные группы, закономерности строения. Ацетатно-малонатный путь синтеза фенольных соединений.

    курсовая работа , добавлен 21.10.2014

    Производство продуктов микробного синтеза первой и второй фазы, аминокислот, органических кислот, витаминов. Крупномасштабное производство антибиотиков. Производство спиртов и полиолов. Основные типы биопроцессов. Метаболическая инженерия растений.

    курсовая работа , добавлен 22.12.2013

    Биообъект как средство производства лекарственных, диагностических и профилактических препаратов; требования, классификация. Иммобилизация ферментов, используемые носители. Применение иммобилизованных ферментов. Биологическая роль витаминов, их получение.

    контрольная работа , добавлен 04.11.2015

    Антиоксиданты и ингибиторы радикальных и окислительных процессов. Перекисное окисление липидов. Биологическое действие витаминов. Исследование биологической роли активированных кислородных метаболитов. Определение концентрации белка по методу Бредфорда.

    курсовая работа , добавлен 12.11.2013

    Биотехнология как совокупность методов использования живых организмов и биологических продуктов в производственной сфере. Клонирование как бесполое размножение клеток растений и животных. Использование микроорганизмов для получения энергии из биомассы.

    реферат , добавлен 30.11.2009

    Общая характеристика пищевых кислот. Биолого-химическая характеристика растений. Подготовка растительного материала. Определение содержания органических кислот в сахарной свекле, картофеле, репчатом луке и моркови. Рекомендуемые регионы возделывания.

    курсовая работа , добавлен 21.04.2015

    Антибиотики – продукты жизнедеятельности микроорганизмов, их модификации, обладающие высокой физиологической активностью по отношению к бактериям: классификация, химическое строение, группы. Методы выделения антибиотиков из культуральной жидкости.

    контрольная работа , добавлен 12.12.2011

    Роль дрожжей в природных экосистемах, перспективы их использования в различных разработках. Морфология и метаболизм дрожжей, вторичные продукты. Методы приготовления препаратов микроорганизмов. Биотехнологии, промышленное использование дрожжей.

    курсовая работа , добавлен 26.05.2009

    История открытия витаминов. Влияние на организм, признаки и последствия недостатка, основные источники витаминов А, С, D, Е. Характеристика витаминов группы В: тиамина, рибофлавина, никотиновой и пантотеновой кислот, пиридоксина, биотина, холина.

    презентация , добавлен 24.10.2012

    Изучение функций белков - высокомолекулярных органических веществ, построенных из остатков аминокислот, которые составляют основу жизнедеятельности всех органов. Значение аминокислот - органических веществ, которые содержат амин- и карбоксильную группы.

Продукты (вещества) вторичного метаболизма синтезируются на основе первичных соединений и могут накапливаться в растениях нередко в значительных количествах, обусловливая тем самым специфику их обмена. В растениях содержится огромное количество веществ вторичного происхождения, которые могут быть разделены на различные группы.

Среди биологически активных веществ (БАВ) наиболее известны такие обширные классы соединений, как алкалоиды, изопреноиды, фенольные соединения и их производные.

Алкалоиды - азотсодержащие органические соединения основного характера, преимущественно растительного происхождения. Строение молекул алкалоидов весьма разнообразно и нередко довольно сложно. Азот, как правило, располагается в гетероциклах, но иногда находится в боковой цепи. Чаще всего алкалоиды классифицируют на основе строения этих гетероциклов либо в соответствии с их биогенетическими предшественниками - аминокислотами. Выделяют следующие основные группы алкалоидов: пирролидиновые, пиридиновые, пиперидиновые, пирролизидиновые, хинолизидиновые, хиназолиновые, хинолиновые, изохинолиновые, индольные, дигидроиндольные (беталаины), имидазоловые, пуриновые, дитерпеновые, стероидные (гликоалкалоиды) и алкалоиды без гетероциклов (протоалкалоиды). Многие из алкалоидов обладают специфическим, часто уникальным физиологическим действием и широко используются в медицине. Некоторые алкалоиды - сильные яды (например, алкалоиды кураре).

Антраценпроизводные - группа природных соединений жёлтой, оранжевой или красной окраски, в основе которых лежит структура антрацена. Они могут иметь различную степень окисленности среднего кольца (производные антрона, антранола и антрахинона) и структуру углеродного скелета (мономерные, димерные и конденсированные соединения). Большинство из них являются производными хризацина (1,8-дигидроксиантрахинона). Реже встречаются производные ализарина (1,2-дигидроксиантрахинона). В растениях производные антрацена могут находиться в свободном виде (агликоны) или в виде гликозидов (антрагликозиды).



Витанолиды - группа фитостероидов, получивших свое название от индийского растения Withania somnifera (L.) Dunal (сем. Solanaceae), из которого было выделено первое соединение этого класса - витаферин А. В настоящее время известно несколько рядов этого класса соединений. Витанолиды - это полиоксистероиды, у которых в положении 17 находится шестичленное лактонное кольцо, а в кольце А - кетогруппа у С 1 . В некоторых соединениях обнаружены 4-бета- гидрокси-, 5-бета -, 6-бета -эпоксигруппировки.

Гликозиды - широко распространённые природные соединения, распадающиеся под влиянием различных агентов (кислота, щелочь или фермент) на углеводную часть и агликон (генин). Гликозидная связь между сахаром и агликоном может быть образована с участием атомов О, N или S (О-, N- или S-гликозиды), а также за счёт С-С атомов (С-гликозиды). Наибольшее распространение в растительном мире имеют О-гликозиды. Между собой гликозиды могут отличаться как структурой агликона, так и строением сахарной цепи. Углеводные компоненты представлены моносахаридами, дисахаридами и олигосахаридами, и соответственно гликозиды называются монозидами, биозидами и олигозидами. Своеобразными группами природных соединений являются цианогенные гликозиды и тиогликозиды (глюкозинолаты) . Цианогенные гликозиды могут быть представлены как производные альфа -гидроксинитрилов, содержащих в своём составе синильную кислоту. Широкое распространение они имеют среди растений сем. Rosaceae, подсем. Prunoideae, концентрируясь преимущественно в их семенах (например, гликозиды амигдалин и пруназин в семенах Amygdalus communis L., Armeniaca vulgaris Lam.).

Тиогликозиды (глюкозинолаты) в настоящее время рассматриваются в качестве производных гипотетического аниона - глюкозинолата, отсюда и второе название. Глюкозинолаты найдены пока только у двудольных растений и характерны для сем. Brassicaceae, Capparidaceae, Resedaceae и других представителей порядка Capparales. В растениях они содержатся в виде солей со щелочными металлами, чаще всего с калием (например, глюкозинолат синигрин из семян Brassica juncea (L.) Czern. и В. nigra (L.) Koch).

Изопреноиды - обширный класс природных соединений, рассматриваемых как продукты биогенного превращения изопрена. К ним относятся различные терпены, их производные - терпеноиды и стероиды. Некоторые изопреноиды - структурные фрагменты антибиотиков, некоторых витаминов, алкалоидов и гормонов животных.

Терпены и терпеноиды - ненасыщенные углеводороды и их производные состава (С 5 Н 8) n , где n = 2 или n > 2. По числу изопреновых звеньев их делят нанесколько классов: моно-, сескви-, ди-, три-, тетра- и политерпеноиды.

Монотерпеноиды (С 10 Н 16) и сесквитерпеноиды (С 15 Н 24) являются обычными компонентами эфирных масел. К группе циклопентаноидных монотерпеноидов относятся иридоидные гликозиды (псевдоиндиканы) , хорошо растворимые в воде и часто обладающие горьким вкусом. Название «иридоиды»связано со структурным и, возможно, биогенетическим родством агликона с иридодиалем, который был получен из муравьев рода Iridomyrmex; «псевдоиндиканы» - с образованием синей окраски в кислой среде. По числу углеродных атомов скелета агликоновой части иридоидные гликозиды подразделяются на 4 типа: С 8 , С 9 , С 10 и С 14 . Они присущи лишь покрытосеменным растениям класса двудольных, и к наиболее богатым иридоидами относятся семейства Scrophulariaceae, Rubiaceae, Lamiaceае, Verbenaceae и Bignoniaceae.

Дитерпеноиды (С 20 Н 32) входят главным образом в состав различных смол. Они представлены кислотами (резиноловые кислоты), спиртами (резинолы) и углеводородами (резены). Различают собственно смолы (канифоль, даммара), масло-смолы (терпентин, канадский бальзам), камеде-смолы (гуммигут), масло-камеде-смолы (ладан, мирра, асафетида). Масло-смолы, представляющие собой раствор смол в эфирном масле и содержащие кислоты бензойную и коричную, называют бальзамами. В медицине применяют перувианский, толутанский, стираксовый бальзамы и др.

Тритерпеноиды (С 30 Н 48) по преимуществу встречаются в виде сапонинов, агликоны которых представлены пентациклическими (производные урсана, олеанана, лупана, гопана и др.) или тетрациклическими (производные даммарана, циклоартана, зуфана) соединениями.

К тетратерпеноидам (С 40 Н 64) относятся жирорастворимые растительные пигменты жёлтого, оранжевого и красного цвета - каротиноиды, предшественники витамина А (провитамины А). Они делятся на каротины (ненасыщенные углеводороды, не содержащие кислорода) и ксантофиллы (кислородсодержащие каротиноиды, имеющие гидрокси-, метокси-, карбокси-, кето- и эпоксигруппы). Широко распространены в растениях альфа -, бета - и гамма -каротины, ликопин, зеаксантин, виолаксантин и др.

Последнюю группу изопреноидов состава (С 5 Н 8) n представляют политерпеноиды , к которым относятся природный каучук и гутта.

Кардиотонические гликозиды , или сердечные гликозиды , - гетерозиды, агликоны которых являются стероидами, но отличаются от прочих стероидов наличием в молекуле вместо боковой цепи при С 17 ненасыщенного лактонного кольца: пятичленного бутенолидного (карденолиды ) или шестичленного кумалинового кольца (буфадиенолиды ). Все агликоны кардиотонических гликозидов имеют у С 3 и С 14 гидроксильные группы, а у С 13 - метильную. При С 10 может быть альфа -ориентированная метильная, альдегидная, карбинольная или карбоксильная группы. Кроме того, они могут иметь дополнительные гидроксильные группы у С 1 , С 2 , С 5 , С 11 , С 12 и С 16 ; последняя иногда бывает ацилирована муравьиной, уксусной или изовалериановой кислотой. Кардиотонические гликозиды применяются в медицине для стимуляции сокращений миокарда. Часть из них - диуретики.

Ксантоны - класс фенольных соединений, имеющих структуру дибензо-гамма -пирона. В качестве заместителей содержат в молекуле гидрокси-, метокси-, ацетокси-, метилендиокси- и другие радикалы. Известны соединения, содержащие пирановое кольцо. Особенностью ксантонов является распространение хлорсодержащих производных. Ксантоны находят в свободном виде и в составе О- и С-гликозидов. Из ксантоновых С-гликозидов наиболее известен мангиферин, который одним из первых введен в медицинскую практику.

Кумарины - природные соединения, в основе строения которых лежит 9,10-бензо-альфа -пирон. Их можно также рассматривать как производные кислоты орто -гидроксикоричной (орто -кумаровой). Они классифицируются на окси- и метоксипроизводные, фуро- и пиранокумарины, 3,4-бензокумарины и куместаны (куместролы).

Лигнаны - природные фенольные вещества, производные димеров фенилпропановых единиц (С 6 -С 3), соединенных между собой бета -углеродными атомами боковых цепей. Разнообразие лигнанов обусловлено наличием различных заместителей в бензольных кольцах и характером связи между ними, степенью насыщенности боковых цепей и др. По структуре они делятся на несколько групп: диарилбутановый (кислота гваяретовая), 1-фенилтетрагидронафталиновый (подофиллотоксин, пельтатины), бензилфенилтетрагидрофурановый (ларицирезинол и его глюкозид), дифенилтетрагидрофурофурановый (сезамин, сирингарезинол), дибензоциклооктановый (схизандрин, схизандрол) типы и др.

Лигнины представляют собой нерегулярные трёхмерные полимеры, предшественниками которых служат гидроксикоричные спирты (пара -кумаровый, конифериловый и синаповый), и являются строительным материалом клеточных стенок древесины. Лигнин содержится в одревесневших растительных тканях наряду с целлюлозой и гемицеллюлозами и участвует в создании опорных элементов механической ткани.

Меланины - полимерные фенольные соединения, которые в растениях встречаются спорадически и представляют собой наименее изученную группу природных соединений. Окрашены они в чёрный или чёрно-коричневый цвет и называются алломеланинами. В отличие от пигментов животного происхождения, они не содержат азота (или его очень мало). При щелочном расщеплении образуют пирокатехин, протокатеховую и салициловую кислоты.

Нафтохиноны - хиноидные пигменты растений, которые найдены в различных органах (в корнях, древесине, коре, листьях, плодах и реже в цветках). В качестве заместителей производные 1,4-нафтохинона содержат гидроксильные, метильные, пренильные и другие группы. Наиболее известным является красный пигмент шиконин, обнаруженный в некоторых представителях сем. Boraginaceae (виды родов Arnebia Forrsk., Echium L., Lithospermum L. и Onosma L.).

Сапонины (сапонизиды) - гликозиды, обладающие гемолитической и поверхностной активностью (детергенты), а также токсичностью для холоднокровных животных. В зависимости от строения агликона (сапогенина), их делят на стероидные и тритерпеноидные. Углеводная часть сапонинов может содержать от 1 до 11 моносахаридов. Наиболее часто встречаются D-глюкоза, D-галактоза, D-ксилоза, L-рамноза, L-арабиноза, D-галактуроновая и D-глюкуроновая кислоты. Они образуют линейные или разветвленные цепи и могут присоединяться по гидроксильной или карбоксильной группе агликона.

Стероиды - класс соединений, в молекуле которых присутствует циклопентанпергидрофенантреновый скелет. К стероидам относят стерины, витамины группы D, стероидные гормоны, агликоны стероидных сапонинов и кардиотонических гликозидов, экдизоны, витанолиды, стероидные алкалоиды.

Растительные стерины, или фитостерины, - спирты, содержащие 28-30 углеродных атомов. К ним принадлежат бета -ситостерин, стигмастерин, эргостерин, кампестерин, спинастерин и др. Некоторые из них, например бета -ситостерин, находят применение в медицине. Другие используются для получения стероидных лекарственных средств - стероидных гормонов, витамина D и др.

Стероидные сапонины содержат 27 атомов углерода, боковая цепь их образует спирокетальную систему спиростанолового или фураностанолового типов. Один из стероидных сапогенинов - диосгенин, выделенный из корневищ диоскореи, - является источником для получения важных для медицины гормональных препаратов (кортизона, прогестерона).

Стильбены можно рассматривать как фенольные соединения с двумя бензольными кольцами, имеющие структуру С 6 -С 2 -С 6 . Это сравнительно небольшая группа веществ, которые встречаются в основном в древесине различных видов сосны, ели, эвкалипта, являются структурными элементами таннидов.

Танниды (дубильные вещества) - высокомолекулярные соединения со средней молекулярной массой порядка 500-5000, иногда до 20000, способные осаждать белки, алкалоиды и обладающие вяжущим вкусом. Танниды подразделяют на гидролизуемые, распадающиеся в условиях кислотного или энзиматического гидролиза на простейшие части (к ним относятся галлотаннины, эллаготаннины и несахаридные эфиры карбоновых кислот), и конденсированные, не распадающиеся под действием кислот, а образующие продукты конденсации – флобафены. Структурно они могут рассматриваться как производные флаван-3-олов (катехинов), флаван-3,4-диолов (лейкоантоцианидинов) и гидроксистильбенов.

Фенольные соединения представляют собой один из наиболее распространённых в растительных организмах и многочисленных классов вторичных соединений с различной биологической активностью. К ним относятся вещества ароматической природы, которые содержат одну или несколько гидроксильных групп, связанных с атомами углерода ароматического ядра. Эти соединения весьма неоднородны по химическому строению, в растениях встречаются в виде мономеров, димеров, олигомеров и полимеров.

В основу классификации природных фенолов положен биогенетический принцип. Современные представления о биосинтезе позволяют разбить соединения фенольной природы на несколько основных групп, расположив их в порядке усложнения молекулярной структуры.

Наиболее простыми являются соединения с одним бензольным кольцом - простые фенолы, бензойные кислоты, фенолоспирты, фенилуксусные кислоты и их производные. По числу ОН-групп различают одноатомные (фенол), двухатомные (пирокатехин, резорцин, гидрохинон) и трёхатомные (пирогаллол, флороглюцин и др.) простые фенолы. Чаще всего они находятся в связанном виде в форме гликозидов или сложных эфиров и являются структурными элементами более сложных соединений, в том числе полимерных (дубильные вещества).

Более разнообразными фенолами являются производные фенилпропанового ряда (фенилпропаноиды), содержащие в структуре один или несколько фрагментов С 6 -С 3 . К простым фенилпропаноидам можно отнести гидроксикоричные спирты и кислоты, их сложные эфиры и гликозилированные формы, а также фенилпропаны и циннамоиламиды.

К соединениям, биогенетически родственным фенилпропаноидам, относятся кумарины, флавоноиды, хромоны, димерные соединения - лигнаны и полимерные соединения - лигнины.

Немногочисленные группы фенилпропаноидных соединений составляют оригинальные комплексы, сочетающие в себе производные флавоноидов, кумаринов, ксантонов и алкалоидов с лигнанами (флаволигнаны, кумаринолигнаны, ксантолигнаны и алкалоидолигнаны). Уникальной группой биологически активных веществ являются флаволигнаны Silybum marianum (L.) Gaertn. (силибин, силидианин, силикристин), которые проявляют гепатозащитные свойства.

Фитонциды - это необычные соединения вторичного биосинтеза, продуцируемые высшими растениями и оказывающие влияние на другие организмы, главным образом микроорганизмы. Наиболее активные антибактериальные вещества содержатся в луке репчатом (Allium сера L.) и чесноке (Allium sativum L.), из последнего выделено антибиотическое соединение аллицин (производное аминокислоты аллиина).

Флавоноиды относят к группе соединений со структурой С 6 -С 3 -С 6 , и большинство из них представляют собой производные 2-фенилбензопирана (флавана) или 2-фенилбензо-гамма -пирона (флавона). Классификация их основана на степени окисленности трёхуглеродного фрагмента, положении бокового фенильного радикала, величине гетероцикла и других признаках. К производным флавана принадлежат катехины, лейкоантоцианидины и антоцианидины; к производным флавона - флавоны, флавонолы, флаваноны, флаванонолы. К флавоноидам относятся также ауроны (производные 2-бензофуранона или 2-бензилиден кумаранона), халконы и дигидрохалконы (соединения с раскрытым пирановым кольцом). Менее распространены в природе изофлавоноиды (с фенильным радикалом у С 3), неофлавоноиды (производные 4-фенилхромона), бифлавоноиды (димерные соединения, состоящие из связанных С-С-связью флавонов, флаванонов и флавон-флаванонов). К необычным производным изофлавоноидов относятся птерокарпаны и ротеноиды , которые содержат дополнительный гетероцикл. Птерокарпаны привлекли к себе внимание после того, как было выяснено, что многие из них играют роль фитоалексинов , выполняющих защитные функции против фитопатогенов. Ротенон и близкие к нему соединения токсичны для насекомых, поэтому являются эффективными инсектицидами.

Хромоны - соединения, получающиеся в результате конденсации гамма -пиронового и бензольного колец (производные бензо-гамма -пирона). Обычно все соединения этого класса имеют в положении 2 метильную или оксиметильную (ацилоксиметильную) группу. Классифицируются они по тому же принципу, что и кумарины: по числу и типу циклов, сконденсированных с хромоновым ядром (бензохромоны, фурохромоны, пиранохромоны и др.).

Экдистероиды - полиоксистероидные соединения, обладающие активностью гормонов линьки насекомых и метаморфоза членистоногих. Наиболее известными природными гормонами являются альфа -экдизон и бета -экдизон (экдистерон). В основе строения экдизонов лежит стероидный скелет, где в положении 17 присоединяется алифатическая цепочка из 8 углеродных атомов. Согласно современным представлениям, к истинным экдистероидам относятся все стероидные единения, имеющие цис -сочленение колец А и В, 6-кетогруппу, двойную связь между С 7 и С 8 и 14-альфа -гидроксильную группу, независимо от их активности в тесте на гормон линьки. Число и положение других заместителей, включая ОН-группы, различны. Фитоэкдистероиды относятся к широко распространённым вторичным метаболитам (установлено более 150 различных структур) и более вариабельны, чем зооэкдистероиды. Общее количество углеродных атомов у соединения данной группы может быть от 19 до 30.

Эфирные масла - летучие жидкие смеси органических веществ, вырабатываемых растениями, обусловливающие их запах. В состав эфирных масел входят углеводороды, спирты, сложные эфиры, кетоны, лактоны, ароматические компоненты. Преобладают терпеноидные соединения из подклассов монотерпеноидов, сесквитерпеноидов, изредка дитерпеноидов; кроме того, довольно обычны «ароматические терпеноиды» и фенилпропаноиды. Растения, содержащие эфирные масла (эфироносы), широко представлены в мировой флоре. Особенно богаты ими растения тропиков и сухих субтропиков.

Подавляющее большинство продуктов вторичного метаболизма может быть синтезировано чисто химическим путём в лаборатории, и в отдельных случаях такой синтез оказывается экономически выгодным. Однако не следует забывать, что в фитотерапии значение имеет вся сумма биологических веществ, накапливающихся в растении. Поэтому сама по себе возможность синтеза не является в этом смысле решающей.

Из всех продуктов, получаемых с помощью микробных процессов, наибольшее значение имеют вторичные метаболиты. Вторичные метаболиты, называемые также идиолитами, это низкомолекулярные соединения, не требующиеся для роста в чистой культуре. Они производятся ограниченным числом таксономических групп и часто представляют собой смесь близкородственных соединений, относящихся к одной и той же химической группе. Если вопрос о физиологической роли вторичных метаболитов в клетках-продуцентах был предметом серьезных дискуссий, то их промышленное получение представляет несомненный интерес, так как эти метаболиты являются биологически активными веществами: одни из них обладают антимикробной активностью, другие являются специфическими ингибиторами ферментов, третьи - ростовыми факторами, многие обладают фармакологической активностью. К вторичным метаболитам относятся антибиотики, алкалоиды, гормоны роста растений и токсины. Фармацевтическая промышленность разработала сверхсложные методы скрининга (массовой проверки) микроорганизмов на способность продуцировать ценные вторичные метаболиты.

Получение такого рода веществ послужило основой для создания целого ряда отраслей микробиологической промышленности. Первым в этом ряду стало производство пенициллина; микробиологический способ получения пенициллина был разработан в 1940-х годах и заложил фундамент современной промышленной биотехнологии.

Молекулы антибиотиков очень разнообразны по составу и механизму действия на микробную клетку. При этом в связи с возникновением устойчивости патогенных микроорганизмов к старым антибиотикам постоянно существует потребность в новых. В некоторых случаях природные микробные антибиотические продукты химическим или энзиматическим путем могут быть превращены в так называемые полусинтетические антибиотики, обладающие более высокими терапевтическими свойствами.

Антибиотики -- органические соединения. Они синтезируются живой клеткой и способны в небольших концентрациях замедлить развитие или полностью уничтожить чувствительные к ним виды микроорганизмов. Их продуцируют не только клетки микроорганизмов и растений, но и клетки животных. Антибиотики растительного происхождения называют фитонцидами. Это хлорелин, томатин, сативин, получаемый из чеснока, и алин, выделяемый из лука.

Рост микроорганизмов можно охарактеризовать как S - образную кривую. Первая стадия - стадия быстрого роста, или логарифмическая, для которой характерен синтез первичных метаболитов. Далее наступает фаза медленного роста, когда увеличение биомассы клеток резко замедляется. Микроорганизмы, производящие вторичные метаболиты, вначале проходят стадию быстрого роста, тропофазу, во время которой синтез вторичных веществ незначителен. По мере замедления роста из-за истощения одного или нескольких необходимых питательных веществ в культуральной среде микроорганизм переходит в идиофазу; именно в этот период синтезируются идиолиты. Идиолиты, или вторичные метаболиты, не играют явной роли в процессах метаболизма, они вырабатываются клетками для адаптации к условиям окружающей среды, например, для защиты. Их синтезируют не все микроорганизмы, а в основном нитчатые бактерии, грибы и спорообразующие бактерии. Таким образом, продуценты первичных и вторичных метаболитов относятся к разным таксономическим группам.

Особенности культурального роста этих микроорганизмов необходимо учитывать при производстве. Например, в случае антибиотиков большинство микроорганизмов в процессе тропофазы чувствительно к собственным антибиотикам, однако во время идиофазы они становятся к ним устойчивыми.

Большинство пряностей, приправ, чая и других напитков, таких как кофе и какао обязаны их индивидуальным свойствам (вкусу и аромату) фармакологически активным вторичным метаболитам растений, которые их содержат. Хотя некоторые из этих активных веществ (например, ванилин, эфедрин и кофеин) получают путем полу или полного синтеза, высокие цены по-прежнему выплачиваются в для соединений, выделенных из природных источников, особенно если они предназначены для использования в качестве пищевых добавок и ароматизаторов.

Некоторые биологически активные вторичные метаболиты нашли применение как наркотики или в качестве модельных соединений для синтеза наркотиков и semisyntheses. Однако, часто забывают, что натуральные продукты часто служат химическим моделям для проектирования и полного синтеза новых структур наркотиков. Например, меперидин (демерол), пентазоцин (Talwin) и пропоксифен (Darvon) являются полностью синтетическими анальгетиками для которых опиаты, такие как морфин и кодеин, были моделями, в то время как аспирин является простой производной салициловой кислоты, первоначально полученные из ивы (Salix SPP.).

По сравнению с относительно низкой стоимостью первичных и массовых метаболитов, вторичные метаболиты растений часто оцениваются от нескольких долларов до нескольких тысяч долларов за килограмм. Например, очищенные алкалоиды опия (кодеин и морфин) оцениваются в диапазоне от $ 650 до $ 1250 за килограмм, а редкие летучие (эфирные) масла, например, розовое масло, часто на сумму более $ 2000 до $ 3000 за килограмм. Противоопухолевые алкалоиды Катарантуса имеют оптовую стоимость около $ 5000 за грамм, а их розничная стоимость может достигать $ 20,000 за грамм. Натуральные продукты часто имеют весьма сложные структуры с множеством хиральных центров, которые могут определить биологическую активность. Такие сложные соединения не могут быть синтезированы искусственно. Хорошим примером такого метаболита с высокой степенью структурной сложности является естественный азадирахтин растительный инсектицидам.

Экономически важные характеристики первичных и вторичных метаболитов. Большинство из них может быть получено из растительного сырья путем дистилляции паром или экстракцией органическими растворителями, и (за исключением биополимеров, натурального каучука, конденсированных танинов и веществ с высоким молекулярным весом, полисахариды, такие как десны, пектин и крахмал), у них, как правило, относительно низкая молекулярная масса (как правило, менее чем 2000).

К экономически важным веществам растительного происхождения относятся ферменты папаин и chymopapain (ферменты, полученные из папайи (Carica Papaya), которые используются в лечебных целях, бромелайн (переваривание белков молока и свертывания фермента из ананасового сока) и экстракт солода (продукт из ячменя, который содержит расщепляющий крахмал фермент).

Получение и использование специальных растительных белков из растительных клеток имеет ограниченное значение по нескольким причинам. Во-первых, их химическая структура накладывает определенные ограничения на их использование в качестве биологически активных соединений, которые могут выступать, как наркотики и пестициды. Например, большинство белков не может быть легко, поглощаться через кожу млекопитающих или экзоскелета насекомых, и большинство из них также не могут быть введены в пероральной форме (кроме как для достижения местного эффекта), поскольку они подвержены деградации пищеварительными протеолитическими ферментами. Для воспроизводимых системных эффектов, вызванных, полипептидами (таких, как chymopapain) должны вводиться в виде инъекций. Таким образом, белки не являются биологически доступными также легко, как вторичные метаболиты (белковые продукты), что осложняет разработку из них конечных продуктов и их использование. Например, некоторые потенциально полезные белки могут быстро деградировать из-за физико-химической неустойчивости. В настоящее время уже имеются технологии для вставки и выражение у бактерий и дрожжей генов, кодирующих синтез ценных полипептидов. Однако, и в данном случае возникают трудности для производства сложных вторичных метаболитов в связи из-за характера вторичного биосинтеза метаболитов в растениях. Белки являются непосредственными продуктами генов, тогда как вторичные метаболиты, как правило, синтезированы с помощью совместных действий многих генных продуктов (ферменты) (Y. Aharonowitz). Генов, ответственных за биосинтез экономически важных вторичных метаболитов очень много (для каждого биосинтетического пути, ведущих к производству вторичного метаболита, требуются многие гены). Кроме того, генномодифицированные микроорганизмы имеют множество ферментов в своем пути биосинтеза, которые могут катализировать нежелательные побочные реакции с желаемым метаболитом или полупродуктом. Таким образом, по крайней мере, в ближайшем будущем, растения или растительные клетки, вероятно, будут выступать в качестве источников для большинства биологически активных растительных компонентов.

Рост бактерий – это деление клетки на две дочерние, генетически полностью идентичные исходной материнской клетке. В оптимальных условиях популяция бактерий удваивается каждые 9,8 мин. В среднем рост популяции бактерий описывается экспоненциальным законом.

Рост микроорганизмов-продуцентов (зависимость логарифма числа клеток от времени) имеет вид S – образной кривой. Выделяют четыре фазы роста – 1 – lag-фаза, 2 – фаза экспоненциального роста или log-фаза, 3 – стационарная фаза, 4 – фаза отмирания. Во время 1-ой lag-фазы (привыкание) бактерии адаптируются к новым условиям, идет синтез РНК, ферментов и других биологически важных соединений. 2-я фаза - экспоненциальная фаза – период удвоения клеток, зависимость логарифма числа клеток от времени представляет собой прямую. Очевидно, что рост микроорганизмов не может продолжаться бесконечно из-за истощения питательной среды и накопления токсичных продуктов метаболизма. В период 3-ей, стационарной фазы, скорости роста и отмирания клеток выравниваются, и число клеток остается постоянным. Последняя фаза 4-ая – фаза отмирания - уменьшение числа клеток за счет истощения питательной среды.

Метаболиты, обычно малые молекулы - это промежуточные соединения или продукты метаболизма. Различают первичные и вторичные метаболиты. Первичные метаболиты (аминокислоты, нуклеотиды) непосредственно вовлечены в процессы роста и развития клеток. Вторичные метаболиты (антибиотики, алкалоиды, стероиды, пигменты) не являются необходимыми для роста клеток.

В отличие от синтеза первичного метаболита, который происходит одновременно с ростом и размножением культуры , для продуцента вторичных метаболитов принято говорить о трофофазе (когда культура растет и размножается) и идиофазе (когда рост замедляется или останавливается и начинается синтез продукта). Механизмы переключения путей метаболизма с первичного на вторичный не ясны.

Рис. 1. Сравнительная характеристика кривых роста микроорганизмов.

I - кривая роста микроорганизмов при получении первичных метаболитов: 1 – lag-фаза, 2 – фаза экспоненциального роста или log-фаза, 3 – стационарная фаза, 4 – фаза отмирания. II – кривая роста микроорганизмов при получении вторичных метаболитов (более короткая фаза роста и более длительная стационарная фаза).

Микроорганизмы, производящие вторичные метаболиты, вначале проходят стадию быстрого роста, трофофазу, во время которой синтез вторичных метаболитов незначителен. По мере замедления роста из-за истощения одного или нескольких необходимых питательных веществ в культуральной среде микроорганизм переходит в идиофазу; именно в этот период синтезируются идиолиты (вторичные метаболиты). Так антибиотики наиболее быстро накапливаются в среде в период стационарной фазы, когда биомасса почти не возрастает . Идиолиты не играют явной роли в процессах метаболизма, они вырабатываются клетками для адаптации к условиям окружающей среды, например, для защиты. Их синтезируют не все микроорганизмы, а в основном нитчатые бактерии, грибы и спорообразующие бактерии.

Рис. 2. Особенности ферментационного процесса при получении антибиотиков:

1 – трофофаза, II – идиофаза, 1 – биомасса клеток, 2 – антибиотик, 3 – углеводы, 4 – источники азота.

Особенности культурального роста микроорганизмов-продуцентов необходимо учитывать при производстве. Например, в случае антибиотиков большинство микроорганизмов в процессе трофофазы чувствительно к собственным антибиотикам, однако во время идиофазы они становятся к ним устойчивыми.

Чтобы уберечь микроорганизмы, продуцирующие антибиотики, от самоуничтожения, важно быстро достичь идиофазы и затем культивировать микроорганизмы в этой фазе. Это достигается путем варьирования режимов культивирования и составом питательной среды на стадиях быстрого и медленного роста.

НАЦИОНАЛЬНЫЙ ФАРМАЦЕВТИЧЕСКИЙ УНИВЕРСИТЕТ СПЕЦИАЛЬНОСТЬ «БИОТЕХНОЛОГИЯ»

ДИСЦИПЛИНА «ОБЩАЯ МИКРОБИОЛОГИЯ И ВИРУСОЛОГИЯ» КАФЕДРА БИОТЕХНОЛОГИИ

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ.

БИОСИНТЕЗ ПЕРВИЧНЫХ МЕТАБОЛИТОВ: АМИНОКИСЛОТ, НУКЛЕОТИДОВ, УГЛЕВОДОВ, ЖИРНЫХ КИСЛОТ.

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ

БИОСИНТЕЗ АМИНОКИСЛОТ

ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ АМИНОКИСЛОТ

БИОСИНТЕЗ НУКЛЕОТИДОВ

ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ НУКЛЕОТИДОВ

БИОСИНТЕЗ ЖИРНЫХ КИСЛОТ, УГЛЕВОДО, САХАРОВ

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ

МЕТАБОЛИЗМ

ГЛЮКОЗА*

РИСУНОК 1 – ОБЩАЯ СХЕМА ПУТЕЙ БИОСИНТЕЗА КЛЕТОЧНОГО МАТЕРИАЛА

ИЗ ГЛЮКОЗЫ

АМФИБОЛИЗМ КАТАБОЛИЗМ

ПЕНТОЗОФОСФАТЫ

ФОСФОЭНОЛПИРУВАТ

МОНОМЕРЫ

ПОЛИМЕРЫ

Аминокислоты

АЦЕТИЛ-КОА

Витамины

Полисахариды

Сахарофосфаты

Жирные кислоты

ОКСАЛОАЦЕТАТ

Нуклеотиды

Нуклеиновые

2-ОКСОГЛУТАРАТ

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ

У МИКРООРГАНИЗМОВ

В процессе роста микроорганизмов на глюкозе в аэробных условиях около 50 %

глюкозы окисляются до СО2 для получения энергии. Остальные 50 % глюкозы преобразуется на клеточный материал. Именно на это преобразование и тратится большая часть АТФ, образованная во время окисления субстрата.

МЕТАБОЛИТЫ

МИКРООРГАНИЗМОВ

На разных этапах роста микроорганизмов образуются метаболиты.

В логарифмической фазе роста образуются первичные метаболиты (белки, аминокислоты и др.).

В лаг-фазе и в стационарной фазе образуются вторичные метаболиты, которые являются биологически активными соединениями. К ним относятся различные антибиотики, ингибиторы ферментов и др.

МЕТАБОЛИТЫ

МИКРООРГАНИЗМОВ

Первичные метаболиты – это низкомолекулярные соединения (молекулярная масса менее 1500 дальтон), необходимые для роста микробов; одни из них являются строительными блоками макромолекул, другие участвуют в синтезе коферментов. Среди наиболее важных для промышленности метаболитов можно выделить аминокислоты, органические кислоты, пуриновые и примидиновые нуклеотиды, витамины и др.

Вторичные метаболиты – это низкомолекулярные соединения, образующиеся на более поздних стадиях развития культуры, не требующиеся для роста микроорганизмов. По химическому строению вторичные метаболиты относятся к различным группам соединений. К ним относят антибиотики, алкалоиды, гормоны роста растений, токсины и пигменты.

Микроорганизмы – продуценты первичных и вторичных метаболитов используют в промышленности. Исходными штаммами для промышленных процессов служат природные организмы и культуры с нарушениями регуляции синтеза этих метаболитов, так как обычные микробные клетки не производят7 избытка первичных метаболитов.