1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона.

2. Ньютоновские и неньютоновские жидкости. Кровь.

3. Ламинарное и турбулентное течения, число Рейнольдса.

4. Формула Пуазейля, гидравлическое сопротивление.

5. Распределение давления при течении реальной жидкости по трубам различного сечения.

6. Методы определения вязкости жидкостей.

7. Влияние вязкости на некоторые медицинские процедуры. Ламинарность и турбулентность газового потока при наркозе. Введение жидкостей через капельницу и шприц. Риноманометрия. Фотогемотерапия.

8. Основные понятия и формулы.

9. Задачи.

Гидродинамика - раздел физики, в котором изучают вопросы движения несжимаемых жидкостей и их взаимодействие с окружающими телами.

8.1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона

В реальной жидкости вследствие взаимного притяжения и теплового движения молекул имеет место внутреннее трение, или вязкость. Рассмотрим это явление на следующем опыте (рис. 8.1).

Рис. 8.1. Течение вязкой жидкости между пластинами

Поместим слой жидкости между двумя параллельными твердыми пластинами. «Нижняя» пластина закреплена. Если двигать «верхнюю» пластину с постоянной скоростью v 1 , то c такой же скоростью будет двигаться самый «верхний» 1-й слой жидкости, который считаем «прилипшим» к верхней пластине. Этот слой влияет на нижележащий непосредственно под ним 2-й слой, заставляя его двигаться со скоростью v 2 , причем v 2 < v 1 . Каждый слой (выделим n слоев) передает движение нижележащему слою с меньшей скоростью. Слой, непосредственно «прилипший» к «нижней» пластине, остается неподвижным.

Слои взаимодействуют друг с другом: n-й слой ускоряет (п+1)-й слой, но замедляет (п-1)-й слой. Таким образом, наблюдается изменение скорости течения жидкости в направлении, перпендикулярном поверхности слоя (ось х). Такое изменение характеризуют производной dv/dx, которую называют градиентом скорости.

Силы, действующие между слоями и направленные по касательной к поверхности слоев, называются силами внутреннего трения или вязкости. Эти силы пропорциональны площади взаимодействующих слоев S и градиенту скорости. Для многих жидкостей силы внутреннего трения подчиняются уравнению Ньютона:

Коэффициент пропорциональности η называют коэффициентом внутреннего трения или динамической вязкостью (размерность η в СИ: Пас).

8.2. Ньютоновские и неньютоновские жидкости.

Кровь

Ньютоновская жидкость

Жидкость, которая подчиняется уравнению Ньютона (8.1), называют ньютоновской. Коэффициент внутреннего трения ньютоновской жидкости зависит от ее строения, температуры и давления, но не зависит от градиента скорости.

Ньютоновская жидкость - жидкость, вязкость которой не зависит от градиента скорости.

Свойствами ньютоновской жидкости обладают большинство жидкостей (вода, растворы, низкомолекулярные органические жидкости) и все газы.

Вязкость определяется с помощью специальных приборов - вискозиметров. Значения коэффициента вязкости η для некоторых жидкостей представлены в таблице.

Значение вязкости крови, представленное в таблице, относится к здоровому человеку в спокойном состоянии. При тяжелой физической работе вязкость крови увеличивается. На величину вязкости крови влияют и некоторые заболевания. Так, при сахарном диабете вязкость крови увеличивается до 23?10 -3 Пас, а при туберкулезе уменьшается до 1*10 -3 Пас. Вязкость сказывается на таком клиническом параметре, как скорость оседания эритроцитов (СОЭ).

Неньютоновская жидкость

Неньютоновская жидкость - жидкость, вязкость которой зависит от градиента скорости.

Свойствами неньютоновской жидкости обладают структурированные дисперсные системы (суспензии, эмульсии), растворы и расплавы некоторых полимеров, многие органические жидкости и др.

При прочих равных условиях вязкость таких жидкостей значительно больше, чем у ньютоновских жидкостей. Это связано с тем, что благодаря сцеплению молекул или частиц в неньютоновской жидкости образуются пространственные структуры, на разрушение которых затрачивается дополнительная энергия.

Кровь

Цельная кровь (суспензия эритроцитов в белковом растворе - плазме) является неньютоновской жидкостью вследствие агрегации эритроцитов.

Эритроцит в норме имеет форму двояковогнутого диска диаметром около 8 мкм. Он может существенно менять свою форму, например при различной осмолярности среды (рис. 8.2).

В неподвижной крови эритроциты агрегируют, образуя так называемые «монетные столбики», состоящие из 6-8 эритроцитов. Электронно-микроскопическое исследование тончайших срезов монетных столбиков выявило параллельность поверхностей прилежащих эритроцитов и постоянное межэритроцитарное расстояние при агрегации (рис. 8.3).

На рисунке 8.4 показана (зарисовка) агрегация цельной крови во влажных мазках, которая представляет собой большие конгломераты, состоящие из многих монетных столбиков. При перемешивании крови агрегаты разрушаются, а после прекращения перемешивания вновь восстанавливаются.

При протекании крови по капиллярам агрегаты эритроцитов распадаются и вязкость падает.

Вживление специальных прозрачных окошек в кожные складки позволило сфотографировать течение крови в капиллярах. На рисунке 8.5, выполненном по такой фотографии, отчетливо видна деформация кровяных клеток.

Рис. 8.2. Усредненное поперечное сечение эритроцита при различной осмолярности среды

Рис. 8.3. Схема электроннограммы агрегата из нормальных эритроцитов

Рис. 8.4. Агрегация цельной крови

Рис. 8.5. Деформация эритроцитов в капиллярах

Деформируясь, эритроциты могут продвигаться один за другим в капиллярах диаметром всего 3 мкм. Именно в таких тонких капиллярных сосудах и происходит газообмен между кровью и тканями.

Вблизи стенки капилляра образуется очень тонкий слой плазмы, который играет роль смазки. Благодаря этому сопротивление движению эритроцитов уменьшается.

8.3. Ламинарное и турбулентное течения, число Рейнольдса

В жидкости течение может быть ламинарным или турбулентным. На рисунке 8.6 это показано для одной окрашенной струи жидкости, текущей в другой.

В случае (а) струя окрашенной жидкости сохраняет неизменную форму и не смешивается с остальной жидкостью. В случае (б) окрашенная струя разрывается случайными завихрениями, картина которых меняется с течением времени. К турбулентному течению понятие «трубка тока» неприменимо.

Рис. 8.6. Ламинарное (а) и турбулентное (б) течения струи жидкости

Ламинарное (слоистое) течение - такое течение, при котором слои жидкости текут, не перемешиваясь, скользя друг относительно друга. Ламинарное течение является стационарным - скорость течения в каждой точке пространства остается постоянной.

Рассмотрим ламинарное течение ньютоновской жидкости в трубе радиуса R и длины L, давления на концах которой постоянны (Р 1 и Р 2). Выделим цилиндрическую трубку тока радиуса r (рис. 8.7).

На жидкость внутри этой трубки действуют сила давления F д = πг 2 (Р 1 - Р 2) и сила вязкого трения F тр = 2πrLηdv/dr (2πrL - пло-

Рис. 8.7. Трубка тока и действующая на нее сила трения

щадь боковой поверхности). Так как течение стационарное, сумма этих сил равна нулю:

В соответствии с приведенным выражением имеет место параболическая зависимость скорости v слоев жидкости от расстояния от них до оси трубы r (огибающая всех векторов скорости есть парабола) (рис. 8.8).

Наибольшую скорость имеет слой, текущий вдоль оси трубы (r = 0), слой, «прилипший» к стенке (r = R), неподвижен.

Рис. 8.8. Скорости слоев текущей через трубку жидкости распределены по параболе

Турбулентное (вихревое) течение - такое течение, при котором скорости частиц жидкости в каждой точке беспорядочно меняются. Такое движение сопровождается появлением звука. Турбулентное течение - это хаотическое, крайне нерегулярное, неупорядоченное течение жидкости. Элементы жидкости совершают движение по сложным неупорядоченным траекториям, что приводит к перемешиванию слоев и образованию местных завихрений.

Структура турбулентного течения представляет собой нестационарную совокупность очень большого числа малых вихрей, наложенных на основное «среднее течение».

При этом говорить о течении в ту или иную сторону можно только в среднем за какой-то промежуток времени.

Турбулентное течение связано с дополнительной затратой энергии при движении жидкости: часть энергии расходуется на беспорядочное движение, направление которого отличается от основного направления потока, что в случае крови приводит к дополнительной работе сердца. Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболевания. Этот шум прослушивается, например, на плечевой артерии при измерении давления крови.

Турбулентное движение крови может возникнуть вследствие неравномерного сужения просвета сосуда (или локального выпирания). Турбулентное течение создает условия для оседания тромбоцитов и образования агрегатов. Этот процесс часто является пусковым

в формировании тромба. Кроме того, если тромб слабо связан со стенкой сосуда, то под действием резкого перепада давления вдоль него вследствие турбулентности он может начать двигаться.

Число Рейнольдса

Понятия ламинарности и турбулентности применимы как к течению жидкости по трубам, так и к обтеканию ею различных тел. В обоих случаях характер течения зависит от скорости течения, свойств жидкости и характерного линейного размера трубы или обтекаемого тела.

Английский физик и инженер Осборн Рейнольдс (1842-1912) составил безразмерную комбинацию, величина которой и определяет характер течения. Впоследствии эта комбинация была названа числом Рейнольдса (Re):

Число Рейнольдса используют при моделировании гидро- и аэродинамических систем, в частности кровеносной системы. Модель должна иметь такое же число Рейнольдса, как и сам объект, в противном случае соответствия между ними не будет.

Важным свойством турбулентного течения (по сравнению с ламинарным) является высокое сопротивление потоку. Если бы удалось «погасить» турбулентность, то удалось бы достичь огромной экономии мощности двигателей кораблей, подводных лодок, самолетов.

8.4. Формула Пуазейля, гидравлическое сопротивление

Рассмотрим, от каких факторов зависит объем жидкости, протекающей по горизонтальной трубе.

Формула Пуазейля

При ламинарном течении жидкости по трубе радиуса R и длины L объем Q жидкости, протекающей через горизонтальную трубу за одну секунду, можно вычислить следующим образом. Выделим тонкий цилиндрический слой радиуса r и толщины dr (рис. 8.9).

Рис. 8.9. Сечение трубы с выделенным слоем жидкости

Площадь его поперечного сечения равна dS = 2πrdr. Так как выделен тонкий слой, жидкость в нем перемещается с одинаковой скоростью v. За одну секунду слой перенесет объем жидкости

Подставив сюда формулу для скорости цилиндрического слоя жидкости (8.4), получим

Это соотношение справедливо для ламинарного течения ньютоновской жидкости.

Формулу Пуазейля можно записать в виде, справедливом для труб переменного сечения. Заменим выражение (Р 1 - Р 2)/L на градиент давления dP/d/, тогда получим

Как видно из (8.8), при заданных внешних условиях объем жидкости, протекающей по трубе, пропорционален четвертой степени ее радиуса. Это очень сильная зависимость. Так, например, если при атеросклерозе радиус сосудов уменьшится в 2 раза, то для поддержания нормального кровотока перепад давлений нужно увеличить в 16 раз, что практически невозможно. В результате возникает кислородное голодание соответствующих тканей. Этим объясняется возникновение «грудной жабы». Облегчения можно достичь, вводя лекарственное вещество, которое расслабляет мышцы артериальных стенок и позволяет увеличить просвет сосуда и, следовательно, поток крови.

Поток крови, проходящей через сосуды, регулируется специальными мышцами, окружающими сосуд. При их сокращении просвет сосуда уменьшается и соответственно убывает поток крови. Таким образом, незначительным сокращением этих мышц очень точно контролируется поступление крови в ткани.

В организме путем изменения радиуса сосудов (сужения или расширения) за счет изменения объемной скорости кровотока регулируется кровоснабжение тканей, теплообмен с окружающей средой.

Причины движения крови по сосудам

Главная движущая сила кровотока - разность давлений в начале и в конце сосудистой системы: в большом круге кровообращения - разность давлений в аорте и правом предсердии, в малом круге - в легочной артерии и левом предсердии.

Дополнителные факторы, способствующие движению крови по венам в сторону сердца:

1) полулунные клапаны вен конечностей, которые открываются под напором крови только в сторону сердца;

2) присасывающее действие грудной клетки, связанное с отрицательным давлением в ней при вдохе;

3) сокращение мышц конечностей, например, при хотьбе. При этом происходит надавливание на стенки вен, и кровь, благодаря клапанам и присасывающему действию грудной клетки при вдохе, выжимается в участки, расположенные ближе к сердцу.

Гидравлическое сопротивление

Проведем аналогию между формулой Пуазейля и формулой закона Ома для участка цепи тока: I = ΔU /R. Для этого перепишем формулу (8.8) в следующем виде: Q = (P 1 - Р 2)/. Если сравнить эту формулу с законом Ома для электрического тока, то объем жидкости, протекающей через сечение трубы за одну секунду, соответствует силе тока; разность давлений на концах трубы соответствует разности потенциалов; а величина 8ηL/(πR 4) соответствует электрическому сопротивлению. Ее называют гидравлическим сопротивлением:

Гидравлическое сопротивление трубы прямо пропорционально ее длине и обратно пропорционально четвертой степени радиуса.

Если изменением кинетической энергии жидкости на некотором участке можно пренебречь, то рассмотренная аналогия применима и к потоку переменного сечения:

гидравлическим сопротивлением участка называется отношение перепада давлений к объему жидкости, протекающему за 1 секунду:

Наличие гидравлического сопротивления связано с преодолением сил внутреннего трения.

Законы гидродинамики значительно сложнее законов постоянного тока, поэтому и законы соединения труб (кровеносных сосудов) сложнее законов соединения проводников. Так, например, места резкого сужения потока (даже при небольшой длине) обладают большим собственным гидравлическим сопротивлением. Этим и объясняется значительное увеличение гидравлического сопротивления кровеносного сосуда при образовании небольшой бляшки.

Наличие собственного сопротивления у мест резкого сужения потока необходимо учитывать при расчете сопротивления участка, состоящего

Рис. 8.10. Трубы, соединенные последовательно (а) и параллельно (б)

из труб различного диаметра. На рис. 8.10,а показано последовательное сопротивление трех труб. Места сужения обладают собственным сопротивлением Х 12 и Х 23 . Поэтому сопротивление участка равно

Электрический аналог (8.13) формулы для расчета гидродинамического сопротивления параллельного соединения (рис 8.10, б) также требует учета сопротивлений мест соединения труб.

8.5. Распределение давления при течении реальной жидкости по трубам различного сечения

При течении по горизонтальной трубе реальной жидкости работа внешних сил расходуется на преодоление внутреннего трения. Поэтому статическое давление вдоль трубы постепенно падает. Этот эффект может быть продемонстрирован на простом опыте. Установим в разных местах горизонтальной трубы, по которой течет вязкая жидкость, манометрические трубки (рис. 8.11).

Рис. 8.11. Падение давления вязкой жидкости в трубах различного сечения

Из рисунка видно, что при постоянном сечении трубы давление падает пропорционально длине. При этом скорость падения давления (dP/dl ) увеличивается при уменьшении сечения трубы. Это объясняется ростом гидравлического сопротивления при уменьшении радиуса.

В кровеносной системе человека на капилляры приходится до 70 % падения давления.

8.6. Методы определения вязкости жидкостей

Совокупность методов измерения вязкости жидкости называется вискозиметрией. Прибор для измерения вязкости называется вискозиметром. В зависимости от метода измерения вязкости используют следующие типы вискозиметров.

1. Капиллярный вискозиметр Оствальда основан на использовании формулы Пуазейля. Вязкость определяется по результату измерения времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном перепаде давлений.

2. Медицинский вискозиметр Гесса с двумя капиллярами, в которых движутся две жидкости (например, дистиллированная вода и кровь). Вязкость одной жидкости должна быть известна. Учитывая, что перемещение жидкостей за одно и то же время обратно пропорционально их вязкости, вычисляют вязкость второй жидкости.

3. Вискозиметр, основанный на методе Стокса, согласно которому при движении шарика радиуса R в жидкости с вязкостью η при небольшой скорости v сила сопротивления пропорциональна вязкости этой жидкости: F = 6πηRv (формула Стокса). Эритроциты перемещаются в вязкой жидкости - плазме крови. Так как эритроциты имеют дискообразную форму и оседают в вязкой жидкости, то скорость их оседания (СОЭ) можно определить приближенно по формуле Стокса. О скорости оседания судят по количеству плазмы над осевшими эритроцитами. В норме скорость оседания эритроцитов равна: 7-12 мм/ч для женщин и 3-9 мм/ч для мужчин.

4. Вискозиметр ротационный (рис. 8.12) состоит из двух коаксиальных (соосных) цилиндров. Радиус внутреннего цилиндра - R, радиус внешнего цилиндра - R+ΔR (ΔR << R). Пространство между цилин-

Рис. 8.12. Ротационный вискозиметр (сечения вдоль и перпендикулярно оси)

драми заполняют исследуемой жидкостью до некоторой высоты h. Затем внутренний цилиндр приводят во вращение, прикладывая определенный момент сил М, и измеряют установившуюся частоту вращения ν.

Вязкость жидкости вычисляют по формуле

Применяя ротационный вискозиметр, можно измерять вязкость при разных угловых скоростях вращения ротора. Данный метод позволяет установить зависимость между вязкостью и градиентом скорости, что важно для неньютоновских жидкостей.

8.7. Влияние вязкости на некоторые медицинские

процедуры

Наркоз

В некоторых медицинских мероприятиях используется наркоз. При этом необходимо по возможности уменьшить усилия, затрачиваемые больным на дыхание через эндотрахеальные и другие дыхательные трубки, посредством которых подается дыхательная смесь из аппаратов для наркоза (рис. 8.13).

Для обеспечения плавного газового потока используются плавно изогнутые соединительные трубки. Неровности внутренних стенок трубки, резкие изгибы и изменения внутреннего диаметра трубок

Рис. 8.13. Дыхание больного через эндотрахеальную трубку

Рис. 8.14. Возникновение турбулентности газового потока в трубке с резкими неоднородностями по сечению

и соединений часто являются причинами перехода ламинарного потока в турбулентный (рис. 8.14), что затрудняет процесс дыхания у больного.

На рисунке 8.15 приведен рентгеновский снимок головы больного, показывающий, что эндотрахеальная трубка перегнулась в глотке. В данном случае у больного обязательно возникнут затруднения дыхания.

Введение жидкостей через шприц и капельницу

Шприц - очень простой прибор (рис. 8.16), который используют для инъекций. И тем не менее при описании его работы часто допускается ошибка, связанная с нахождением перепада давлений (ΔР) на игле, которая приводит к неверному результату. Считают, что

Рис. 8.15. Рентгеновский снимок, на котором виден перегиб дыхательной трубки

Рис. 8.16. Работа шприца

ΔP = F/S, где F - сила, действующая на поршень, а S - его площадь. При этом исходят из следующих соображений: поршень движется медленно и динамическим давлением жидкости в цилиндре можно

пренебречь. Это неверно - на входе в иглу линии тока сгущаются и скорость движения жидкости резко возрастает.

Строгий расчет (см. задачу 8.12) приводит к следующему результату. Перепад давления на игле (ΔР) является решением квадратного уравнения

Значения всех величин подставляются в СИ.

Ниже приводятся результаты расчетов для двух игл длины 4 см, диаметры которых отличаются в 1,5 раза.

Из результатов, представленных в нижней таблице, видно, что АР вовсе не равно F/S! При этом увеличение диаметра иглы в 1,5 раза приводит к увеличению объемной скорости всего в 3,5 раза, а не в 5 раз (1,5 4 = 5,06), как этого можно было ожидать. Ламинарный характер течения имеет место в обоих случаях.

Другим прибором для внутривенного вливания является капельница (рис. 8.17), которая позволяет вводить жидкость самотеком за счет разности давлений, создаваемой при подъеме камеры с препаратом на определенную высоту (~60 см).

Формулы 8.14, 8.15 применимы и здесь, если заменить величину F/S на гидростатическое давление столба жидкости pgh. При этом S - площадь сечения трубки, а u - скорость движения жидкости в ней. Ниже приведены результаты расчетов для h = 60 см.

Полученные значения являются правильными, но не соответствуют тому, что происходит на самом деле. В данном случае получается завышенное значение для объемной скорости ввода препарата - 0,827 см 3 /с. Реальная скорость Q = 0,278 см 3 /с (из расчета 500 мл за 30 минут). Расхождение получается из-за того, что не учтено гидравлическое сопротивление, создаваемое устройством, пережимающим трубку.

Риноманометрия

Полноценное носовое дыхание является необходимой предпосылкой для нормальной функции слуховой трубы, которая во многом зависит от степени аэрации носоглотки и правильного прохождения воздушных потоков в полости носа. Причиной нарушения носового дыхания часто являются некоторые врожденные патологии, например расщелина верхней губы и неба. Часто при лечении этой патологии

Рис. 8.17. Введение препарата через капельницу

используются хирургические методы, например реконструктивная ринохейлопластика (ринопластика - операции восстановления носа). Для объективной характеристики результатов оперативного вмешательства используется риноманометрия - метод определения объема носового дыхания и сопротивления. Скорость воздушного потока характеризуется формулой Пуазейля, при этом учитывается градиент давления, обусловленный изменением давления в носоглоточном пространстве; диаметр и длина носовой полости; характеристики воздушного потока в носоглотке (ламинарность или турбулентность). Данный метод реализуется с помощью прибора - риноманометра, который позволяет регистрировать давление в одной половине носа, пока пациент дышит через другую. Это осуществляется с помощью катетера, который специально крепится в носу. Компьютерная схема риноманометра позволяет автоматически измерить общий объем и сопротивление воздуха на вдохе и выдохе, раздельно проанализировать поток и сопротивление воздуха в каждой половине носа и рассчитать их соотношение. Это позволяет определить носовое дыхание до и после операции и оценить степень восстановления носового дыхания.

Фотогемотерапия

При заболеваниях, сопровождающихся повышением вязкости крови, для уменьшения вязкости крови применяется метод фотогемотерапии. Он заключается в том, что у больного берут небольшое количество крови (примерно 2 мл/кг веса), подвергают ее УФ-облучению и вводят обратно в кровеносное русло. Примерно через 5 мин после введения больным 100-200 мл облученной крови наблюдается значительное снижение вязкости во всем объеме (около 5 л) циркулирующей крови. Исследования зависимости вязкости от скорости движения крови показали, что при фотогемотерапии вязкость сильнее всего снижается (примерно на 30 %) в медленно движущейся крови и совсем не меняется в быстро движущейся крови. УФ-облучение вызывает снижение способности эритроцитов к агрегации и увеличивает деформируемость эритроцитов. Помимо этого происходит снижение образования тромбов. Все эти явления приводят к значительному улучшению как макро-, так и микроциркуляции крови.

8.8. Основные понятия и формулы

Окончание таблицы

8.9. Задачи

1. Вывести формулу для определения вязкости ротационным вискозиметром. Дано: R, ΔR, h, ν, M.

2. Определить время протекания крови через капилляр вискозиметра, если вода протекает через него за 10 с. Объемы воды и крови одинаковы. Плотность воды и крови равны p 1 = 1 г/см 3 , ρ 2 = 1,06 г/см 3 . Вязкость крови относительно воды равна 5 (η 2 /η 1 = 5).

3. Допустим, что в двух кровеносных сосудах градиент давления одинаков, а поток крови (объемный расход) во втором сосуде на 80% меньше, чем в первом. Найти отношение их диаметров.

4. Какова должна быть разность давлений АР на концах капилляра радиуса r = 1 мм и длины L = 10 см, чтобы за время t = 5 с через него можно было пропустить объем V = 1 см 3 воды (коэффициент вязкости η 1 = 10 -3 Пас) или глицерина (η 2 = 0,85 Пас)?

5. Падение давления в кровеносном сосуде длины L = 55 мм и радиуса r = 1,5 мм равно 365 Па. Определить, сколько миллилитров крови протекает через сосуд за 1 минуту. Коэффициент вязкости крови η = 4,5 мПа-с.

6. При атеросклерозе, вследствие образования бляшек на стенках сосуда, критическое значение числа Рейнольдса может снизиться до 1160. Определить для этого случая скорость, при которой возможен переход ламинарного течения крови в турбулентное в сосуде диаметром 2,5 мм. Плотность крови равна ρ = 1050 кг/м 3 , вязкость крови равна η = 5х10 -3 Пас.

7. Средняя скорость крови в аорте радиусом 1 см равна 30 см/с. Выяснить, является ли данное течение ламинарным? Плотность крови ρ = 1,05х10 3 кг/м 3 .

η = 4х10 -3 Па-с; Rе кр = 2300.

8. При большой физической нагрузке скорость кровотока иногда увеличивается вдвое. Пользуясь данными примера задачи (7), определить характер течения в этом случае.

Решение

Re = 2x1575 = 3150. Течение турбулентное.

Ответ: число Рейнольдса больше критического значения, поэтому течение может стать турбулентным.


10. Определить максимальную массу крови, которая может пройти за 1 с через аорту при сохранении ламинарного характера течения. Диаметр аорты D = 2 см, вязкость крови η = 4x10 -3 Па-с.

11. Определить максимальную объемную скорость протекания жидкости по игле шприца с внутренним диаметром D = 0,3 мм, при которой сохраняется ламинарный характер течения.

12. Найти объемную скорость жидкости в игле шприца. Плотность жидкости - ρ; ее вязкость - η; диаметр и длина иглы D и L соответственно; сила, действующая на поршень, - F; площадь поршня - S.

Интегрируя по r, получим:

Пусть поршень шприца движется под действием силы F со скоростью u. Тогда мощность внешней силы N F = Fu.

Суммарная работа всех сил равна изменению кинетической энергии. Следовательно,

Подставив найденное значение A P во второе уравнение, получим все интересующие нас величины: скорость поршня и, объемную скорость кровотока Q, скорость жидкости в игле v.

В промышленности, научной деятельности часто необходимо вычислить коэффициент вязкости жидкости. Работа с обычными или дисперсными средами в виде аэрозолей, газовых эмульсий требует знаний о физических свойствах этих веществ.

Что такое вязкость жидкости?

Еще Ньютон положил начало такой науке, как реология. Эта отрасль занимается изучением сопротивления вещества при движении, т. е. вязкости.

В жидкостях и газах происходит непрерывное взаимодействие молекул. Они ударяются друг о друга, отталкиваются или просто пролетают мимо. В итоге слои вещества как бы взаимодействуют друг с другом, придавая скорость каждому из них. Явление подобного взаимодействия молекул жидкостей/газов и называется вязкостью, или внутренним трением.

Чтобы лучше рассмотреть этот процесс, необходимо продемонстрировать опыт с двумя пластинками, между которыми находится жидкая среда. Если двигать верхнюю пластинку, то «прилипший» к ней слой жидкости также начнет двигаться с определенной скоростью v1. Через короткий промежуток времени замечаем, что нижележащие слои жидкости также начинают двигаться по той же траектории со скоростью v2, v3…vn и т. д., причем v1>v2, v3…vn. Скорость самого нижнего из них остается равна нулю.

На примере газа такой опыт провести практически невозможно, т. к. силы взаимодействия молекул друг с другом очень малы, и визуально это зарегистрировать не удастся. Здесь тоже говорят о слоях, о скорости движения этих слоев, поэтому в газообразных средах также существует вязкость.

Ньютоновские и неньютоновские среды

Ньютоновская жидкость - это такая жидкость, вязкость которой можно высчитать с помощью формулы Ньютона.

К таким средам относятся вода и растворы. Коэффициент вязкости жидкости в таких средах может зависеть от таких факторов, как температура, давление или строение атома вещества, однако градиент скорости всегда останется неизменным.

Неньютоновские жидкости - это такие среды, в которых упомянутое выше значение может изменяться, а значит, формула Ньютона здесь действовать не будет. К таким веществам относятся все дисперсные среды (эмульсии, аэрозоли, суспензии). Сюда же относится и кровь. Об этом более подробно поговорим далее.

Кровь как внутренняя среда организма

Как известно, 80 % крови составляет плазма, которая имеет жидкое агрегатное состояние, а остальные 20 % - это эритроциты, тромбоциты, лейкоциты и различные включения. Эритроциты человека имеют диаметр 8 нм. В неподвижном состоянии они формируют агрегаты в виде монетных столбиков, при этом существенно повышают вязкость жидкости. Если ток крови активен, эти «конструкции» распадаются, а внутреннее трение, соответственно, уменьшается.

Коэффициенты вязкости среды

Взаимодействие слоев среды друг на друга сказывается на характеристиках всей системы жидкости или газа. Вязкость - это один из примеров такого физического явления, как трение. Благодаря ей верхние и нижние слои среды постепенно выравнивают скорости своего тока, и в конечном итоге она приравнивается к нулю. Также вязкость можно характеризовать как сопротивление одного слоя среды другому.

Для описания таких явлений выделяют две качественные характеристики внутреннего трения:

  • динамический коэффициент вязкости (динамическая вязкость жидкости);
  • кинетический коэффициент вязкости (кинетическая вязкость).

Обе величины связаны уравнением υ = η / ρ, где ρ - плотность среды, υ - кинетическая вязкость, а η - динамическая вязкость.

Методы определения вязкости жидкости

Вискозиметрия - это измерение вязкости. На современном этапе развития науки найти значение вязкости жидкости практическим путем можно четырьмя способами:

1. Капиллярный метод. Для его проведения необходимо иметь два сосуда, соединенных стеклянным каналом небольшого диаметра известной длины. Также нужно знать значения давления в одном сосуде и в другом. Жидкость помещается в стеклянный канал, и за определенный промежуток времени она перетекает из одной колбы в другую.

Дальнейшие подсчеты производятся с помощью формулы Пуазейля для нахождения значения коэффициента вязкости жидкости.

На практике жидкие среды могут представлять собой раскаленные до 200-300 градусов смеси. Обычная стеклянная трубка в таких условиях просто бы деформировалась или даже лопнула, что недопустимо. Современные капиллярные вискозиметры собраны из качественного и стойкого материала, который легко переживает такие нагрузки.

2. Медицинский метод по Гессе. Чтобы рассчитать вязкость жидкости таким способом, необходимо иметь не одну, а две идентичные капиллярные установки. В одну из них помещают среду с заранее известным значением внутреннего трения, а в другую - исследуемую жидкость. Далее измеряют два значения времени и составляют пропорцию, по которой выходят на нужное число.

3. Ротационный метод. Для его проведения необходимо иметь конструкцию из двух соосных цилиндров. Это значит, что один из них должен быть внутри другого. В промежуток между ними заливают жидкость, а затем придают скорость внутреннему цилиндру. Эта угловая скорость также сообщается жидкости. Разница в силе момента позволяет вычислить вязкость среды.

4. Определение вязкости жидкости методом Стокса. Для проведения этого опыта необходимо иметь вискозиметр Гепплера, который представляет собой цилиндр, заполненный жидкостью. Перед началом эксперимента делают две пометки на цилиндре и измеряют длину между ними. Затем берут шарик определенного радиуса R и опускают его в жидкую среду. Чтобы определить скорость его падения, находят время передвижения объекта от одной метки до другой. Зная скорость движения шарика, можно вычислить вязкость жидкости.

Практическое применение вискозиметрам

Определение вязкости жидкости имеет большое практическое значение в нефтеперерабатывающей промышленности. При работе с многофазными, дисперсными средами важно знать их физические свойства, особенно внутреннее трение. Современные вискозиметры сделаны из прочных материалов, при их производстве задействуются передовые технологии. Все это в совокупности позволяет работать с высокой температурой и давлением без вреда для самого оборудования.

Вязкость жидкости играет большую роль в промышленности, потому что транспортировка, переработка и добыча, например, нефти зависят от значений внутреннего трения жидкостной смеси.

Какую роль играет вязкость в медицинском оборудовании?

Поступление газовой смеси через эндотрахеальную трубку зависит от внутреннего трения этого газа. Изменение значений вязкости среды здесь по-разному отражается на проникновении воздуха через аппарат и зависит от состава газовой смеси.

Введение лекарственных препаратов, вакцин через шприц тоже является ярким примером действия вязкости среды. Речь идет о перепадах давления на конце иголки при впрыскивании жидкости, хотя изначально полагали, что этим физическим явлением можно пренебречь. Возникновение высокого давления на наконечнике - это результат действия внутреннего трения.

Заключение

Вязкость среды - это одна из физических величин, которая имеет большое практическое применение. В лаборатории, промышленности, медицине - во всех этих сферах понятие внутреннего трения фигурирует очень часто. Работа простейшего лабораторного оборудования может зависеть от степени вязкости среды, которая используется для исследований. Даже перерабатывающая промышленность не обходится без знаний в области физики.

1

Физико-химические и кристаллизационные процессы в керамических массах с минерализующими добавками определяют характер изменения вязкости образующейся жидкой фазы, а также соотношения кристаллической и жидкой фазы, что находит отражение на изменение вязкости системы в целом. Применение минерализующих добавок является во многих случаях определяющим фактором улучшения и направленного регулирования свойств керамических материалов широкой номенклатуры. Установлено, что минерализующее действие ряда минерализующих веществ приведет к ускорению термических превращений в глинистых системах. Эффективность воздействия минерализаторов находится в зависимости от их реологических характеристик в температурном интервале обжига керамических масс. Нашли экспериментальное подтверждение предположения об эффективности и целесообразности использования комплексных минерализующих добавок, сочетающих минерализаторы с низкой температурой плавления и ускорители спекания с низкой динамической вязкостью для регулирования процесса образования жидкой фазы с оптимальными реологическими характеристиками.

вязкость

минерализующий компонент

реологические свойства

спекание

скорость нагрева

1. Безбородов М.А. Вязкость силикатных стекол. - Минск: Наука и техника. - 1975. -163 с.

2. Будников П.П. Влияние минерализаторов на процесс муллитизации глин, каолинов и синтетических масс / П.П. Будников, Х.О. Говоркян // ЖПХ. - 1946. - Т. XIX. - № 10-11. - С. 1029-1035.

3. Будников П.П. Реакции в смесях твердых веществ / П.П. Будников, А.М. Гинстлинг. - М. : Изд-во лит. по стр-ву, 1971. - 487 с.

4. Никифорова Э.М. Минерализаторы в керамической промышленности. - Красноярск: ГУЦМиЗ, 2004. - 108 с.

5. Chandhuri S.P. Influence of mineraliers on the constitution of hard porcelain. Part II. Microstructures // Amer. Ceran. Soc. Bull. - 1974, 53. - № 3. - Р. 251-254.

Введение

Физико-химические и кристаллизационные процессы в керамических массах с минерализующими добавками определяют характер изменения вязкости образующейся жидкой фазы, а также соотношения кристаллической и жидкой фазы, что отражается на изменении вязкости системы в целом .

Применение минерализующих добавок является во многих случаях определяющим фактором улучшения и направленного регулирования свойств керамических материалов широкой номенклатуры. Механизм действия минерализаторов во время реакций минералообразования в керамических дисперсных системах требует дальнейшего серьезного изучения .

Выбор минерализующих добавок сводится к эмпирическому подбору состава ускорителя спекания. Данный подход не обеспечивает оптимизации принимаемых технических решений. Отсутствуют технологические критерии и объективная оценка эффективности действия минерализаторов, что сдерживает их применение, в том числе и отходов промышленности. Нет общепризнанного объяснения механизма действия минерализаторов в реакциях минералообразования керамических материалов, протекающих при образовании и присутствии жидкой фазы.

Положительное действие минерализаторов нельзя относить только к ускорению образования жидкой фазы, так как необходимо учитывать изменение и других факторов (вязкости, строения расплава и др.). Как отмечают многие исследователи , положительное действие минерализаторов определяется не только ускорением образования жидкой фазы в керамических дисперсных системах, но и реологическими свойствами жидкой фазы. Не дает объяснения механизма действия минерализаторов снижение вязкости жидкой фазы и вязкости системы в целом как определяющего фактора интенсификации процессов формирования керамических дисперсных структур.

Не находят подтверждение взгляды, в соответствии с которыми снижение температуры образования жидкой фазы за счет и в присутствии минерализатора является решающим фактором активизации протекающих реакций.

Наиболее приемлемыми являются взгляды, по нашему мнению, согласно которым активизация процессов в минерализованной жидкой фазе определяется термореологическими свойствами собственно минерализаторов . Однако нельзя исключать, что только совокупность указанных проявлений определяет активизацию реакций фазообразования керамических дисперсных структур.

Материалы и методы исследований

Исследован низкосортный полиминеральный суглинок Сибирского региона, характеризующийся низким содержанием глинистых частиц. Суглинок характеризуется содержанием глинистых минералов монтмориллонита (d/n=1,530; 0,450; 0,255 нм), каолинита (d/n=0,714; 0,357; 0,237 нм) и гидрослюды (d/n=0,998; 0,447; 0,256 нм). В связи с низким содержанием глинистых частиц (до 20%) суглинок нуждается в улучшении и направленном регулировании его физико-химических и технологических свойств. Химический состав исследованного глинистого сырья приведен в таблице 1.

Таблица 1 - Химический состав исходного глинистого сырья, масс. %

Исследование динамической вязкости осуществляли методом тела, вращающегося в расплаве на ротационном вискозиметре. Минералогический состав сырьевых материалов и спеченных масс определен на основе данных рентгеноструктурного анализа, проведенного на дифрактометре фирмы Shimadzu XRD-6000. Дифференциальный термический анализ проводили с использованием дериватографа фирмы Netche Q-1500 в атмосфере воздуха.

В качестве минерализующего компонента к полиминеральной низкосортной глине изучены добавки с широким диапазоном реологических свойств в интервале обжига керамических материалов в виде соединений NaF, Na 2 СO 3 , LiCl и KCl (динамическая вязкость h= (0,6-6) Па×с) и стеклобоя (h= (10-10 14) Па×с), а также отходы промышленности, содержащие комплекс низковязких минерализующих компонентов.

Наиболее многотоннажные отходы алюминиевого производства - шламы газоочистки представлены тонкодисперсным материалом черного цвета с размером частиц от 0,071 до 1,0 мм. Микроскопическое исследование шлама показало, что материал состоит из метаморфизованных угольных частиц графита, криолита, хиолита, корунда, флюорита, нефелина, диаспора и др. На дифрактограмме графит фиксируется по линиям с величиной d/n = 0,338; 0,202; 0,169 нм, корунд - d/n = 0,208; 0,255; 0,160 нм, криолит - d/n = 0,193; 0,275; 0,233 нм. При нагреве шламов наблюдается эндотермический эффект при температуре 50-100 ºС, относящийся к удалению гигроскопической воды; экзотермический эффект при 90-140 ºС связан с адсорбцией угольной массой кислорода из атмосферы; слабый эффект в интервале температур 180-300 ºС относится к процессу дегидратации гидрооксида алюминия; эндотермический эффект в 340 ºС связан с потерей воды кристаллогидратом криолита; интенсивный экзотермический эффект при 350-600 ºС относится к процессу выгорания углеродистой массы; экзотермический эффект с максимумом в 975 ºС относится к кристаллизации стеклофазы.

Химический состав смешанных отходов алюминиевого производства соответствует содержанию следующих компонентов, масс. %: SiO 2 - 0,68; Al 2 O 3 - 12,53; Fe 2 O 3 - 1,13; CaO - 0,73; MgO - 0,60; Na 2 O - 15,89; F - - 16,38; п.п.п. - 51,42. Шламы алюминиевого производства характеризуются низкой вязкостью их минерализующих составляющих NaF, Na 2 CO 3 , Na 2 SO 4 , NaHCO 3 , Na 3 AlF 6 , AlF 3 друг с другом с h 900-1000 ºС =(4,9-1,9) Па×с.

Результаты исследований и их обсуждение

Изменение вязкости керамической системы с минерализующими добавками в зависимости от реологических свойств минерализаторов установлено в керамических дисперсных системах из масс на основе полиминеральной глины с добавками (минерализаторы NaF, Na 2 CO 3 , стеклобой, а также отходы производства в виде шлама), имеющими температуру плавления ниже оптимальной температуры обжига глины. Кривые изменения вязкости в зависимости от температуры и вида добавки представлены на рисунке 1.

Рис. 1. Изменение вязкости садового суглинка с минерализующими добавками в зависимости от температуры: 1 - чистая глина; 2 - с добавкой стеклобоя; 3 - с Na 2 CO 3 ; 4 - c NaF; 5 - c добавкой шлама.

Анализ процессов, обуславливающих аномалии на кривых вязкости, свидетельствует о том, что с вводом минерализующих добавок кристаллизационные процессы претерпевают изменения.

Так, появление жидкой фазы за счет эвтектических расплавов, характеризующееся для полиминеральной глины температурой в 875 ºС, сдвигается в область более низких температур: при добавлении стеклобоя на 15 ºС, Na 2 CO 3 - на 70 ºС, NaF - на 75 ºС, шлама - на 80 ºС. Начало появления жидкой фазы, обуславливающее монотонное снижение вязкости для масс с NaF и стеклобоем, совпадает по температуре с эндотермическим эффектом на дифференциальной кривой в 810 и 840 ºС соответственно, отвечающим появлению расплава минерализатора. Перегиб на кривой вязкости, соответствующий превращению продуктов дегидратации в новые кристаллические фазы и характеризующийся для чистой глины в 925 ºС сдвигается с вводом минерализаторов в область более низких температур, за исключением добавки стеклобоя, не изменяющего температуру начала кристаллизации новых фаз.

Добавка Na 2 CO 3 сдвигает эту температуру на 15 ºС, NaF - на 25 ºС, шлам - на 30 ºС. Перегиб на кривых, соответствующих чистой глине, и с добавками NaF и стеклобоя совпадает с экзотермическим эффектом на дифференциальной кривой в 925 и 900 ºС соответственно, отвечающим перекристаллизации новых фаз.

Наиболее интенсивно влияет на характер кристаллизационных процессов, протекающих при обжиге легкоплавкой садовой глины, добавка шлама. Очевидно, это связано с тем, что уже при 800 ºС комбинированный минерализатор из минерализующих составляющих шлама обладает низкой динамической вязкостью h=4,9 Па×с. Добавка шлама в установленном ряде активности минерализаторов и их влияние на физико-химические и кристаллизационные процессы: шлам > NaF > Na 2 СО 3 > стеклобой, опережает отдельные минерализующие составляющие шлама (NaF, Na 2 CO 3), что подтверждает эффективность комбинированных минерализаторов.

Введение добавок NaF и стеклобоя приводит к увеличению интенсивности эндотермического эффекта с максимумом в 130 ºС для садовой глины и сдвигает процесс, обусловленный дегидратацией и удалением межслоевой воды из решетки монтмориллонита в область более низких температур: NaF - на 15 ºС, стеклобоя - на 5 ºС.

По отношению к гидрослюдисто-каолинито-монтмориллонитовой садовой глине установлено значительное снижение температуры диссоциации CaCO 3 в присутствии минерализаторов и сдвиг зоны декарбонизации в область более низких температур, о чем свидетельствует смещение максимума эндотермического эффекта, соответствующего данному процессу и характеризующегося максимальным пиком в 805 ºС для глины на 55-60 ºС при добавлении NaF и на 20-25 ºС при добавлении стеклобоя.

Температура плавления минерализаторов NaF и стеклобоя выше температуры диссоциации карбоната кальция CaCO 3 , что дает основание предположить, что реакции взаимодействия между минерализатором и карбонатом кальция идут в твердой фазе с образованием твердых растворов, способствующих деформации кристаллических решеток реагирующих компонентов и повышению их реакционной способности.

Образование твердых растворов объясняется увеличением амплитуды колебания ионов Na + вокруг своего геометрического центра при 600-700 ºС и близости величины его ионного радиуса к радиусу Ca 2+ , что создает условия для внедрения иона Na + в кристаллическую решетку CaCO 3 , CaO. На термограммах сразу же после эндотермического эффекта диссоциации CaCO 3 обнаружены эндотермические эффекты при температуре 810, 840 ºС в массах с минерализаторами NaF и стеклобоем соответственно, что может быть связано с появлением жидкой фазы при температурах ниже температуры плавления минерализатора за счет образования легкоплавких эвтектик минерализатора и карбоната кальция. Это наблюдение вполне согласуется с данными Н.А. Торопова , указывающего на образование жидкой фазы в системе NaF-CaCO 3 при 400-600 ºС. Значительно больший по интенсивности пик эндотермического эффекта, связанный с появлением жидкой фазы у масс с содержанием NaF, характеризует более активный процесс ее образования в сравнении с массой глины и стеклобоя, что связано с меньшей вязкостью жидкой фазы, образованной минерализатором NaF в глине в период диссоциации кальцита и, как следствие, увеличением количества расплава за счет активизации процесса растворения в нем карбоната кальция.

Установленное значительное уменьшение интенсивности пика эндотермического эффекта, связанного с диссоциацией кальцита в массе глины и NaF, вызвано перекрытием его экзотермической реакцией образования силикатов кальция, являющимся следствием прямого ускорения воздействия гидрослюды и монтмориллонита глины и содержащихся в них минерализаторов на диссоциацию карбонатов.

Судя по приведенным выше данным, минерализующее действие ряда веществ приводит к ускорению термических превращений в глинистых системах, повышению их реакционной способности, причем эффективность воздействия минерализаторов на данные процессы находится в зависимости от их реологических характеристик в температурном интервале обжига керамических масс.

Нашли экспериментальное подтверждение предположения об эффективности и целесообразности использования комплексных минерализующих добавок, сочетающих минерализаторы с низкой температурой плавления и ускорители спекания с низкой динамической вязкостью в интервале температур обжига керамических материалов для регулирования процесса образования жидкой фазы с оптимальными реологическими характеристиками.

Результаты исследований реологических свойств комплексных добавок минерализаторов (рис. 2, 3), совпадающие с данными Бондаренко Н.В. , свидетельствуют о возможности снижения температуры плавления расплава путем сочетания минерализующих добавок с различными реологическими свойствами.

Рис. 2. Зависимость вязкости комплексной добавки от температуры и состава (масс., %): 1 - LiCl 100; 2 - KCl 100; 3 - LiCl 10, KCl 90; 4 - LiCl 30, KCl 70; 5 - LiCl 50, KCl 50; 6 - LiCl 70, KCl 30.


Рис. 3. Зависимость вязкости комплексной добавки стеклобой - NaF от температуры и состава (масс. %): 1 - стеклобой 100; 2 - NaF 100;

3 - стеклобой 50, NaF 50; 4 - стеклобой 75, NaF 25; 5 - стеклобой 25, NaF 75.

Как следует из рис. 2, наиболее эффективна с точки зрения оценки ее реологических свойств, в сравнении с чистыми добавками LiCl и KCl, комбинированная минерализующая добавка в сочетании LiCl и KCl 1:1, образующая расплав при температуре плавления LiCl, в то же время вязкость комплексной добавки приближается к вязкости KCl. Также весьма эффективна комбинированная минерализующая добавка, сочетающая низковязкую добавку NaF (h 1000º C = 2Па×с) и высоковязкую добавку стеклобоя (h 800º C = 10 9 Па×с), образующая расплав при температуре на 130 ºС ниже температуры плавления NaF. В то же время вязкость комбинированного минерализатора приближается к вязкости NaF(h 870º C =4 Па×с). В соответствии с установленными закономерностями очевидна возможность активации отдельных высоковязких добавок, характеризующихся началом размягчения в области достаточно низких температур 575-875 ºС (эрклез, борат кальция, стеклобой, фритта, цеолит) уже в данном температурном интервале.

Заключение

Установлено изменение вязкости керамической дисперсной системы из масс на основе полиминеральной глины с минерализующими добавками в зависимости от термореологических свойств минерализаторов. Выявлен характер изменения кристаллизационных процессов, обусловливающих аномалии на кривых вязкости.

Экспериментально доказана возможность повышения эффективности высоковязких добавок и перевода их термореологических свойств в оптимальный диапазон путем комбинирования с низковязкими минерализаторами. Сочетание высоковязких добавок, имеющих низкую температуру размягчения с низковязкими минерализаторами, приводит к снижению вязкости и сохранению низкой температуры размягчения.

Рецензенты:

  • Толкачев В.Я., д.т.н., профессор, главный технолог ЦПК ООО «Сибирский элемент», г. Красноярск.
  • Ступко Т.В., д.т.н., старший научный сотрудник, заведующая кафедрой «Химия» Красноярского государственного аграрного университета, г. Красноярск.

Библиографическая ссылка

Еромасов Р.Г., Никифорова Э.М., Симонова Н.С., Васильева М.Н., Таскин В.Ю. ИЗМЕНЕНИЕ ВЯЗКОСТИ КЕРАМИЧЕСКОЙ СИСТЕМЫ С МИНЕРАЛИЗАТОРАМИ // Современные проблемы науки и образования. – 2012. – № 3.;
URL: http://science-education.ru/ru/article/view?id=6282 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Вязкостью называется способность жидкости оказывать сопротивление сдвигающим усилиям. Это свойство жидкости проявляется лишь при ее движении. Допустим, что некоторое количество жидкости заключено между двумя плоскими неограниченными параллельными пластинами (рис. 2.1); расстояние между ними – п; скорость движения верхней пластины относительно нижней – υ.

Опыт показывает, что слой жидкости, непосредственно прилегающий к стенке, прилипает к ней. Отсюда следует, что скорость движения жидкости, прилегающей к нижней стенке, равна нулю, а к верхней – υ. Промежуточные слои движутся со скоростью, постепенно возрастающей от 0 до υ.

Рис. 2.1.

Таким образом, существует разность скоростей между соседними слоями, и возникает взаимное скольжение слоев, которое приводит к проявлению силы внутреннего трения.

Чтобы перемещать одну пластину относительно другой, необходимо приложить к движущейся пластине некоторую силу Г, равную силе сопротивления жидкости в результате внутреннего трения. Ньютон установил, что эта сила пропорциональна скорости и, поверхности соприкосновения S и обратно пропорциональна расстоянию между пластинами n , т.е.

где μ – коэффициент пропорциональности, называемый динамической вязкостью (или динамическим коэффициентом вязкости).

Для большего уточнения этой зависимости ее следует отнести к бесконечно малому расстоянию между слоями жидкости, тогда

где Δ υ – относительная скорость движения соседних слоев; Δп – расстояние между ними. Или в пределе

Последнее выражение представляет закон Ньютона для внутреннего трения. Знак плюс или минус принимается в зависимости от знака градиента скорости dv/dn.

Так как τ = Т/S есть касательное напряжение сдвига, то закону Ньютона можно придать более удобный вид:

Касательное напряжение, возникающее в жидкости, пропорционально градиенту скорости в направлении, перпендикулярном вектору скорости и площадке, по которой оно действует.

Коэффициент пропорциональности µ характеризует физические свойства жидкости и называется динамической вязкостью. Из формулы Ньютона следует, что

Из этого выражения вытекает физический смысл коэффициента р: если , то µ = τ.

В гидродинамике вводят в рассмотрение величину

называемую кинематической вязкостью (кинематическим коэффициентом вязкости).

Динамическая вязкость µ с ростом температуры уменьшается, а с увеличением давления увеличивается. Однако влияние давления для капельных жидкостей незначительно. Динамическая вязкость газов с увеличением температуры возрастает, а от изменения давления меняется незначительно.

Закон Ньютона для внутреннего трения в жидкостях существенно отличается от законов трения в твердых телах. В твердых телах существует трение покоя. Кроме того, сила трения пропорциональна нормальному давлению и мало зависит от относительной скорости движения. В жидкости, подчиняющейся закону Ньютона, при отсутствии относительной скорости движения слоев сила трения отсутствует. Сила трения не зависит от давления (нормального напряжения), а зависит от относительной скорости перемещения слоев. Жидкости, подчиняющиеся закону Ньютона, называются ньютоновскими. Однако существуют жидкости, которые не подчиняются этому закону (аномальные жидкости). К их числу относятся различного вида эмульсии, коллоидные растворы, представляющие собой неоднородные тела, состоящие из двух фаз (твердой и жидкой).

Так, глинистые растворы, применяемые при бурении нефтяных скважин, некоторые сорта нефтей вблизи температуры их застывания не подчиняются закону Ньютона. Опытами установлено, что в подобных жидкостях движение наступает после того, как касательные напряжения достигнут некоторого значения, называемого начальным напряжением сдвига.

Для таких жидкостей справедлива более общая зависимость для τ (формула Бингема):

где τ0 – начальное напряжение сдвига; η – структурная вязкость.

Таким образом, эти жидкости при напряжении τ < τ0 ведут себя как твердые тела и начинают течь лишь при τ ≥ τ0. В дальнейшем градиент скорости пропорционален не т, а разнице τ -τ0.

Графически зависимость между и τ изображается кривой 1 для ньютоновских жидкостей и кривой 2 – для аномальных жидкостей (рис. 2.2).

Рис. 2.2. Зависимость dv/dn от касательного напряжения

При движении структурных жидкостей по трубопроводу наблюдаются три режима их движения: структурный, ламинарный, турбулентный.

Структурный. Для начала движения необходим некоторый начальный перепад давления в трубопроводе Δр 0, после чего жидкость отделяется от стенок и начинает двигаться как одно целое (как твердое тело).

Ламинарный. При увеличении перепада давления Δр будет увеличиваться скорость движения жидкости и вблизи стенок начнет развиваться ламинарный режим течения. По мере дальнейшего увеличения скорости область ламинарного режима будет расширяться, затем структурный режим полностью переходит в ламинарный.

Турбулентный. При дальнейшем увеличении скорости ламинарный режим переходит в турбулентный (см. параграф 6.1).

Зависимость вязкости от температуры и давления. Вискозиметры

Вязкость капельной жидкости в значительной степени зависит от температуры и в меньшей степени – от давления. Зависимостью вязкости от давления в большинстве случаев пренебрегают. Например, при давлениях до 50 105 Па вязкость изменяется не более чем на 8,5%. Исключением является вода при температуре 25°С – ее вязкость с увеличением давления незначительно уменьшается. Другая особенность воды состоит в том, что ее плотность с уменьшением температуры до +4°С возрастает, а при дальнейшем уменьшении температуры (от +4 до 0°С) – уменьшается. Этим объясняется тот факт, что вода замерзает с поверхности. При температуре около 0°С она имеет наименьшую плотность, и слои жидкости, имеющие такую температуру, как наиболее легкие всплывают на поверхность, где и происходит замерзание воды, если ее температура оказывается меньшей 0°С.

При атмосферном давлении вязкость воды в зависимости от температуры определяется по формуле Пуазейля

где v – кинематическая вязкость; µ – динамическая вязкость; ρ – плотность воды при данной температуре; t – температура воды.

Вязкость жидкости определяют при помощи приборов, называемых вискозиметрами. Для жидкостей, более вязких, чем вода, применяют вискозиметр Энглера. Этот прибор состоит из емкости с отверстием, через которое при температуре 20°С определяют время слива дистиллированной воды Т 0 и жидкости T , вязкость которой требуется определить. Отношение величин Т и Т 0 составляет число условных градусов Энглера:

После определения вязкости жидкости в условных градусах Энглера кинематическая вязкость (см2/с) находится по эмпирической формуле Убеллоде

Полученные по этой формуле значения v хорошо согласуются с опытными данными.

В течение года при сезонной смене температуры вязкость транспортируемой нефти изменяется (рис. 1.20). В случае повышения температуры нефти от t 1 до t 2 , вязкость нефти уменьшается. Это приводит к уменьшению гидравлического сопротивления трубопровода (H 2 Q 1).

Рассмотрим влияние изменения вязкости нефти на величину подпоров ПС. Предположим, что на всех станциях установлено одинаковое число однотипных насосов, подпор на головной перекачивающей станции h П, остаточный напор на конечном пункте h ОСТ. Примем для простоты, что нефтепровод состоит из одного эксплуатационного участка N Э =1, а число ПС составляет n (рис. 1.21).

Напор перекачивающей станции в зимний период составит

в летний период

где H 1 , H 2 – суммарные потери напора в трубопроводе, соответственно в зимний и летний периоды.

Рис. 1.20. Совмещенная характеристика трубопровода и ПС

при изменении вязкости нефти

Рис. 1.21. Влияние сезонного изменения вязкости нефти

на величину подпоров перед ПС

Из начальной точки профиля трассы отложим в вертикальном масштабе значения H 1 и H 2 , затем вершины отрезков соединим прямыми с точкой z K +h ОСТ. Полученные линии соответствуют положению линий гидравлических уклонов в зимний i 1 и летний i 2 периоды.

Представим, что трасса трубопровода – восходящая прямая AB. Как видно из построений, при расстановке станций такая трасса будет разбита на равные участки длиной L/n. При этом линии гидравлических уклонов i 1 и i 2 пересекут линию AB в одних и тех же точках. Это говорит о том, что при монотонном профиле трассы нефтепровода изменение вязкости нефти не оказывает влияния на величину подпоров на входе промежуточных ПС.

В реальных условиях профиль трассы может быть сильно пересеченным, тогда расстояния между перекачивающими станциями будут неодинаковы (l 1 l 2 l 3 l n). Рассмотрим изменение подпора перед ПС в этом случае.

Величину подпора H C перед с-й ПС можно найти из уравнения баланса напоров

где a=m M a M и b=m M b M .

Значение расхода в выражении (1.61) определяется из уравнения баланса напоров нефтепровода в целом (1.37), что позволяет записать

. (1.62)

После подстановки (1.62) в (1.61), получим

Как следует из выражения (1.63), от величины вязкости зависит только один сомножитель , так как.

Введем обозначения:

;

–среднее расстояние между перекачивающими станциями на участке до с-й ПС;

–среднее арифметическое расстояние между ПС;

С учетом принятых упрощений выражение (1.63) можно представить в виде

где .

Величина F прямо пропорционально зависит от изменения вязкости нефти: при снижении вязкости уменьшается и величина F.

Если выполняется условие L ср < l ср(С) , то при уменьшении вязкости подпор на с-й ПС возрастает. В противном случае при L ср > l ср(С) подпор на с-й ПС снижается и может оказаться меньше допустимого значения H min (рис. 1. 21). В случае расстановки ПС согласно гидравлическому расчету при минимальной температуре нефти (t 1 =t min ,  1 = mах), необходимо проанали­зи­ровать работу каждого перегона в летний период.

В летнее время, если позволяет прочность трубы, можно увеличить подпор на ГПС включением дополнительного последовательно соединенного подпорного насоса.