Белгородская региональная общественная организация

МБОУДОД «Центр детского-юношеского туризма и экскурсий»

Г. Белгорода

Методическая разработка

Тема: «Физиологически основы адаптации организма спортсмена к новым климатическим условиям»

тренер-преподаватель ЦДЮТЭ

г. Белгород, 2014

1. Понятие адаптации

2. Адаптация и гомеостаз

3. Адаптация к холоду

4. Акклиматизация. Горная болезнь

5. Развитие специфической выносливости как фактор, способствующий высотной акклиматизации

1. Понятие адаптации

Адаптация - это процесс приспособления, который формируется в течение жизни человека. Благодаря адаптационным процессам человек приспосабливается к непривычным условиям или нового уровня активности, т. е. повышается устойчивость его организма против действия различных факторов. Организм человека может адаптироваться к высокой и низкой температурам, эмоциональным раздражениям (страх, боль и т. д.), к низкому атмосферному давлению или даже некоторым патогенным факторам.

Например, адаптированный к недостатку кислорода альпинист может подняться на горную вершину высотой 8000 м и более, где парциальное давление кислорода приближается к 50 мм рт. ст. (6,7 кПа). Атмосфера на такой высоте столь разрежена, что нетренированный человек погибает за несколько минут (из-за нехватки кислорода) даже в состоянии покоя.

Люди, живущие в северных или южных широтах, в горах или на равнине, во влажных тропиках или в пустыне по многим показателям гомеостаза отличаются друг от друга. Поэтому ряд показателей нормы для отдельных регионов земного шара может отличаться.

Можно сказать, что жизнь человека в реальных условиях является постоянным адаптационным процессом. Организм его адаптируется к воздействию различных климатогеографических, природных (атмосферное давление и газовый состав воздуха, продолжительность и интенсивность инсоляции, температура и влажность воздуха, сезонные и суточные ритмы, географическая долгота и широта, горы и равнина и др.) и социальных факторов, условий цивилизации. Как правило, организм адаптируется к действию комплекса различных факторов. Потребность в стимулировании механизмов, приводящих в действие процесс адаптации, возникает по мере нарастания силы или продолжительности воздействия ряда внешних факторов. Например, в естественных условиях жизни такие процессы развиваются осенью и весной, когда организм постепенно перестраивается, адаптируясь к похолоданию, или при потеплении.

Адаптация развивается и тогда, когда человек изменяет уровень активности и начинает заниматься физкультурой или каким-либо нехарактерным видом трудовой деятельности, т. е. нарастает активность двигательного аппарата. В современных условиях в связи с развитием скоростного транспорта человек часто меняет не только климатогеографические условия, но и часовые пояса. Это накладывает свой отпечаток на биоритмы, что также сопровождается развитием адаптационных процессов.

2. Адаптация и гомеостаз

Человек вынужден постоянно приспосабливаться к изменяющимся условиям окружающей среды, сохраняя свой организм от разрушения под действием внешних факторов. Сохранение организма возможно благодаря гомеостазу - универсальному свойству сохранять и поддерживать стабильность работы различных систем организма в ответ на воздействия, нарушающих эту стабильность.

Гомеостаз - относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма. Любые физиологические, физические, химические или эмоциональные воздействия, будь то температура воздуха, изменение атмосферного давления или волнение, радость, печаль, могут быть поводом к выходу организма из состояния динамического равновесия. Автоматически, при помощи гуморальных и нервных механизмов регуляции осуществляется саморегуляция физиологических функций, обеспечивающая поддержание жизнедеятельности организма на постоянном уровне. Гуморальная регуляция осуществляется через жидкую внутреннюю среду организма с помощью молекул химических веществ, выделяемых клетками или определенными тканями и органами (гормонов, ферментов и т. д.). Нервная регуляция обеспечивает быструю и направленную передачу сигналов в виде нервных импульсов, поступающих к объекту регуляции.

Важным свойством живого организма, влияющим на эффективность механизмов регуляции, является реактивность. Реактивность - это способность организма отвечать (реагировать) изменениями обмена веществ и функции на раздражители внешней и внутренней среды. Компенсация изменений факторов среды обитания оказывается возможной благодаря активации систем, ответственных за адаптацию (приспособление) организма к внешним условиям.

Гомеостаз и адаптация - два конечных результата, организующих функциональные системы. Вмешательство внешних факторов в состояние гомеостаза приводит к адаптивной перестройке организма, в результате которой одна или несколько функциональных систем компенсируют возможные нарушения и восстанавливают равновесие.

3. Адаптация к холоду

В высокогорье в условиях повышенных физических нагрузок наиболее существенны процессы акклиматизации – адаптации к холоду.

Оптимальная микроклиматическая зона соответствует диапазону температур 15...21 °С; она обеспечивает хорошее самочувствие человека и не вызывает сдвигов со стороны систем терморегуляции;

Допустимая микроклиматическая зона соответствует диапазону температур от минус 5,0 до плюс 14,9°С и 21,7...27,0°С; обеспечивает сохранение здоровья человека в течение длительного времени воздействия, но вызывает неприятные ощущения, а также функциональные сдвиги, не выходящие за пределы его физиологических приспособительных возможностей. При нахождении в этой зоне организм человека способен сохранять температурный баланс за счет изменения кожного кровотока и потоотделения длительное время без ухудшения состояния здоровья;

Предельно допустимая микроклиматическая зона, эффективные температуры от 4.0 до минус 4,9°С и от 27,1 до 32,0°С. Поддержание относительно нормального функционального состояния в течение 1-2 ч достигается за счет напряжения сердечно - сосудистой системы и системы терморегуляции. Нормализация функционального состояния происходит через 1,0-1,5 ч пребывания в условиях оптимальной среды. Частые повторные воздействия приводят к нарушению объемных процессов, истощению защитных сил организма, снижению его неспецифической сопротивляемости;

Предельно переносимая микроклиматическая зона, эффективные температуры от минус 4,9 до минус 15,0 ºС и от 32,1 до 38,0°С.

Выполнение нагрузки при температурах в указанных диапазонах приводит через 30-60 мин. к выраженному изменению функционального состояния: при низких температурах в меховой одежде прохладно, руки в меховых перчатках мерзнут: при высоких температурах теплоощущение «жарко», «очень жарко», появляется вялость, нежелание работать, головная боль, тошнота, повышенная раздражительность; пот, обильно стекаемый со лба, попадает в глаза, мешает; при нарастании симптомов перегревания нарушается зрение.

Опасная микроклиматическая зона ниже минус 15 и выше 38°С, характеризуется такими условиями, которые уже через 10-30 мин. Могут привести к ухудшению состояния здоровья.

Время сохранения работоспособности

при выполнении нагрузки в неблагоприятных микроклиматических условиях

Микроклиматическая зона

Ниже оптимальных температур

Выше оптимальных температур

Эффективная температура, С

Время, мин.

Эффективная температура, С

Время, мин.

Допустимая

5,0…14,9

60 – 120

21,7…27,0

30 – 60

Предельно допустимая

От 4,9 до минус 4.9

30 – 60

27,1…32,0

20 – 30

Предельно переносимая

Минус 4,9…15,0

10 – 30

32,1…38,0

10 – 20

Опасная

Ниже минус 15,1

5 – 10

Выше 38,1

5 – 10

4 . Акклиматизация. Горная болезнь

С подъемом на высоту падает давление воздуха. Соответственно, падает давление всех составных частей воздуха и том числе кислорода. Это значит, что количество кислорода попадающего в легкие при вдохе меньше. И молекулы кислорода менее интенсивно присоединяются к эритроцитам крови. Уменьшается концентрация кислорода в крови. Недостаток кислорода в крови называется гипоксией . Гипоксия приводит к развитию горной болезни .

Типичные проявления горной болезни:

· повышенный пульс;

· одышка при нагрузке;

· головная боль, бессонница ;

· слабость, тошнота и рвота;

· неадекватность поведения.

В запущенных случаях горная болезнь может привести к тяжелым последствиям.

Для безопасного нахождения на больших высотах необходима акклиматизация - приспособление организма к условиям высокогорья.

Акклиматизация невозможна без горной болезни. Легкие формы горной болезни запускают механизмы перестройки организма.

Выделяют две фазы акклиматизации:

· Краткосрочная акклиматизация - это быстрый ответ на гипоксию. Изменения в основном касаются систем транспорта кислорода. Увеличивается частота дыхания и сердцебиения. Из депо крови выбрасываются дополнительные эритроциты. Происходит перераспределение крови в организме. Увеличивается мозговой кровоток, т. к. мозг требует кислорода. Это и приводит к головным болям. Но такие механизмы адаптации могут быть эффективны только непродолжительное время. Организм при этом испытывает стресс и работает на износ.

· Долговременная акклиматизация - это комплекс глубоких изменений в организме. Именно она является целью акклиматизации. В этой фазе смещается акцент с механизмов транспорта на механизмы экономного использования кислорода. Разрастается капиллярная сеть, увеличивается площадь легких. Изменяется состав крови - появляется эмбриональный гемоглобин, который легче присоединяет кислород при низком его парциальном давлении. Увеличивается активность ферментов расщепляющих глюкозу и гликоген. Изменяется биохимия клеток миокарда, что позволяет эффективней использовать кислород.

Ступенчатая акклиматизация

При подъеме на высоту организм испытывает недостаток кислорода. Начинается легкая горная болезнь. Включаются механизмы краткосрочной акклиматизации. Для эффективной акклиматизации после подъема лучше спустится, что бы изменения в организме происходили в более благоприятных условиях и не происходило истощение организма. На этом построен принцип ступенчатой акклиматизации - последовательности подъемов и спусков, в которой каждый последующий подъем выше предыдущего.

Рис. 1. Пилообразный график ступенчатой акклиматизации

Иногда особенности рельефа не дают возможности для полноценной ступенчатой акклиматизации. Например, на многих треках в Гималаях, где ежедневно происходит набор высоты. Тогда дневные переходы делают небольшие, что бы рост высоты не происходил слишком быстро. Очень полезно в таком случае искать возможность сделать пусть и небольшой выход верх от места ночевки. Часто можно вечером прогуляться на близлежащий холм или отрог горы, и набрать хоть пару сотен метров.

Что нужно делать, что бы акклиматизация была успешной до поездки?

Общефизическая подготовка . Тренированному спортсмену легче переносить нагрузки связанные с высотой. Прежде всего, следует развивать выносливость. Это достигается продолжительными нагрузками низкой интенсивности. Наиболее доступным средством развития выносливости является бег .

Практически бесполезно бегать часто, но по малу. Лучше пробежать раз в неделю 1 час, чем каждый день по 10 мин. Для развития выносливости длина пробежек должна быть больше 40 мин, частота - по ощущениям. Важно следить за частотой пульса и не перегружать сердце. В общем, тренировки должны быть приятными, фанатизм не нужен.

Здоровье. Очень важно приехать в горы здоровым и отдохнувшим. Если вы тренировались, то за три недели перед поездкой снизить нагрузки и дать организму отдохнуть. Обязателен полноценный сон и питание. Питание можно дополнить приемом витаминов и микроэлементов. Минимизировать, а лучше отказаться от алкоголя. Не допускать стрессов и переутомления на работе. Нужно вылечить зубы.

В первые дни организм подвержен большим нагрузкам. Иммунитет слабеет и легко заболеть. Необходимо не допускать переохлаждения или перегрева. В горах происходят резкие перепады температур и поэтому нужно соблюдать правило - раздеваться до того как вспотел, одеваться до того как замерз.

Аппетит на высоте может быть снижен, особенно если происходит заезд сразу на большие высоты. Есть через силу не нужно. Отдавайте предпочтение легкоусвояемым продуктам. В горах в связи с сухостью воздуха и большими физическими нагрузками человеку требуется большое количество воды - пейте много .

Продолжайте прием витаминов и микроэлементов. Можно начать принимать аминокислоты, обладающие адаптогенными свойствами.

Режим движения. Бывает, только приехав в горы, туристы, испытывая эмоциональный подъем и ощущая переполняющие их силы, слишком быстро идут по тропе. Нужно себя сдерживать, темп движения должен быть спокойным и равномерным. В первые дни на высокогорье пульс в покое в 1,5 раза выше, чем на равнине. Организму и так тяжело, поэтому не нужно гнать, особенно на подъемах. Небольшие надрывы могут быть незаметны, но имеют свойство накапливаться, и могут привести к срыву акклиматизации.

Если вы пришли на место ночевки, и чувствуете себя неважно, не нужно ложиться спать. Лучше погуляйте в спокойном темпе по окрестностям, поучаствуйте в обустройстве бивуака, в общем, займитесь чем-нибудь.

Движение и работа - отличное лекарство от легких форм горной болезни. Ночь - очень важное время для акклиматизации. Сон должен быть крепкий. Если вечером болит голова - примите обезболивающее. Головная боль дестабилизирует организм, и терпеть ее нельзя. Если не удается заснуть - примите снотворное. Терпеть бессонницу тоже нельзя.

Контролируйте свой пульс перед сном и утром сразу после пробуждения. Утренний пульс должен быть ниже - это показатель того, что организм отдохнул.

При хорошо спланированной подготовке и правильном графике набора высоты удается избежать серьезных проявлений горной болезни и получить удовольствие от покорения больших высот.

5. Развитие специфической выносливости как фактор, способствующий высотной акклиматизации

"Если альпинист (горный турист) в межсезонный и предсезонный период будет повышать свой "кислородный потолок" плаванием, бегом, велосипедом , лыжами, греблей, - он обеспечит совершенствование своего организма, успешнее будет затем справляться с большими, но увлекательными трудностями при штурме горных вершин".

Эта рекомендация – и правда, и неправда. В том плане, что готовиться к горам, конечно, необходимо. Но велосипед, гребля, плавание и другие виды тренировок дают разное "совершенствование своего организма" и, соответственно, разный "кислородный потолок". Когда речь идет о двигательных актах организма, следует четко представлять, что нет "движения вообще" и любой двигательный акт предельно специфичен. А с определенного уровня развитие одного физического качества всегда происходит за счет другого: силы за счет выносливости и скорости, выносливости – за счет силы и скорости.

При тренировках к интенсивной работе расход кислорода и субстратов окисления в мышцах в единицу времени столь велик, что быстро восполнить их запасы усилением работы транспортных систем нереально. Чувствительность дыхательного центра к углекислому газу снижена, что защищает дыхательную систему от ненужного перенапряжения.

Мышцы, способные к выполнению такой нагрузки, фактически работают при этом в автономном режиме, рассчитывая на собственные ресурсы. Это не устраняет развития тканевой гипоксии и приводит к накоплению больших количеств недоокисленных продуктов. Важным аспектом адаптивных реакций в этом случае является формирование толерантности, то есть устойчивости к сдвигу рН. Это обеспечивается увеличением мощности буферных систем крови и тканей, возрастанием т. н. щелочного резерва крови. Увеличивается также мощность системы антиоксидантов в мышцах, что ослабляет или предотвращает перекисное окисление липидов клеточных мембран - один из основных повреждающих эффектов стресс-реакции. Увеличивается мощность системы анаэробного гликолиза за счет повышенного синтеза гликолитических ферментов, повышаются запасы гликогена и креатинфосфата - источников энергии для синтеза АТФ.

При тренировках к умеренной работе разрастание сосудистой сети в мышцах, сердце, легких, увеличение числа митохондрий и изменение их характеристик, возрастание синтеза окислительных ферментов, усиление эритропоэза, ведущее к увеличению кислородной емкости крови, позволяют снизить уровень гипоксии или предотвратить ее. При систематическом выполнении умеренных физических нагрузок, сопровождающихся усилением легочной вентиляции , дыхательный центр, напротив, повышает чувствительность к СО 2 , что обусловлено понижением его содержания вследствие вымывания из крови при усиленном дыхании.

Поэтому в процессе адаптации к интенсивной (как правило, кратковременной) работе в мышцах развивается иной спектр адаптивных приспособлений, чем к длительной умеренной работе. Поэтому, например, при гипоксии при нырянии невозможной становится активация внешнего дыхания, типичного для адаптации к высотной гипоксии или гипоксии при мышечной работе. А борьба за поддержание кислородного гомеостаза проявляется в увеличении запасов кислорода, уносимого под воду. Следовательно, спектр адаптивных приспособлений при разных видах гипоксии – различается, следовательно - далеко не всегда полезный для высоких гор.

Таблица. Объем циркулирующей крови (ОЦК) и ее составных частей у спортсменов, тренирующих выносливость, и нетренированных (Л. Рёккер, 1977).

Показатели

Спортсмены

Не спортсмены

ОЦК [л]

6,4

5,5

ОЦК [мл/кг веса тела]

95,4

76,3

Объем циркулирующей плазмы (ОЦП) [л]

3,6

3,1

ОЦП [мл/кг веса тела]

55,2

43

Объем циркулирующих эритроцитов (ОЦЭ) [л]

2,8

2,4

ОЦЭ [мл/кг веса тела]

40,4

33,6

Гематокрит [%]

42,8

44,6

Так, у нетренированных и у представителей скоростно-силовых видов спорта общее содержание в крови гемоглобина составляет 10-12 г/кг (у женщин - 8-9 г/кг), а у выносливых спортсменов - г/кг (у спортсменок - 12 г/кг).

У спортсменов, тренирующих выносливость, обнаруживается усиленная утилизация образующейся в мышцах молочной, кислоты. Этому способствует повышенный аэробный потенциал всех мышечных волокон и особенно высокий, процент медленных мышечных волокон, а также увеличенная масса сердца. Медленные мышечные волокна, как и миокард, способны активно использовать молочную кислоту, в качестве энергетического субстрата. Кроме того, при одинаковых аэробных нагрузках (равном потреблении О 2 ) кровоток через печень у спортсменов - выше, чем у нетренированных, что также может способствовать более интенсивной экстракции печенью молочной кислоты из крови и ее дальнейшему превращению в глюкозу и гликоген. Таким образом, тренировка аэробной выносливости не только повышает аэробные возможности, но и развивает способность выполнять большие длительные аэробные нагрузки без значительного увеличения содержания молочной кислоты в крови.

Очевидно, что зимой лучше заниматься лыжами, в межсезонье – стайерским бегом по пересеченной местности. Этим тренировкам должна быть посвящена львиная доля физической подготовки тех, кто собирается в высокие горы. Не так давно ученые ломали копья по поводу того, какая раскладка сил при беге является оптимальной. Одни считали, что переменная, другие - равномерная. На самом деле это зависит от уровня тренированности.

Литература

1. Павлов. – М., "Паруса", 2000. – 282 с.

2. Физиология человека в условиях высокогорья: Руководство по физиологии. Под ред. . – Москва, Наука, 1987, 520 с.

3. Сомеро Дж. Биохимическая адаптация. М.: Мир, 19с

4. Кислородно-транспортная система и выносливость

5. А. Лебедев . Планирование спортивных походов

  • Специальность ВАК РФ03.00.16
  • Количество страниц 101

ГЛАВА 1. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМЕ АДАПТАЦИИ ОРГАНИЗМА К ХОЛОДУ И ДЕФИЦИТУ ТОКОФЕРОЛА.

1.1 Новые представления о биологических функциях активных форм кислорода при адаптивных преобразованиях метаболизма.

1.2 Механизмы адаптации организма к холоду и роль оксидативного стресса в этом процессе.

1.3 Механизмы адаптации организма к дефициту токоферола и роль оксидативного стресса в этом процессе.

ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1 Организация исследования.

2.1.1 Организация экспериментов по влиянию холода.

2.1.2 Организация экспериментов по влиянию дефицита токоферола.

2.2 Методы исследования

2.2.1 Гематологические показатели

2.2.2 Исследование энергетического метаболизма.

2.2.3 Исследование оксидативного метаболизма.

2.3 Статистическая обработка результатов.

ГЛАВА 3. ИССЛЕДОВАНИЕ ОКСИДАТИВНОГО ГОМЕОСТАЗА, ОСНОВНЫХ МОРФОФУНКЦИОНАЛЬНЫХ ПАРАМЕТРОВ ОРГАНИЗМА КРЫС И ЭРИТРОЦИТОВ ПРИ ДЛИТЕЛЬНОМ ВОЗДЕЙСТВИИ ХОЛОДА.

ГЛАВА 4. ИССЛЕДОВАНИЕ ОКСИДАТИВНОГО ГОМЕОСТАЗА, ОСНОВНЫХ МОРФОФУНКЦИОНАЛЬНЫХ ПАРАМЕТРОВ ОРГАНИЗМА КРЫС И ЭРИТРОЦИТОВ ПРИ ДЛИТЕЛЬНОМ ДЕФИЦИТЕ ТОКОФЕРОЛА.

Рекомендованный список диссертаций

  • Физиологические аспекты клеточно-молекулярных закономерностей адаптации животных организмов к экстремальным ситуациям 2013 год, доктор биологических наук Черкесова, Дилара Улубиевна

  • Механизмы участия токоферола в адаптивных преобразованиях на холоде 2000 год, доктор биологических наук Колосова, Наталия Гориславовна

  • Особенности функционирования гипоталамо-гипофизарно-репродуктивной системы на этапах онтогенеза и в условиях применения геропротекторов 2010 год, доктор биологических наук Козак, Михаил Владимирович

  • Эколого-физиологические аспекты формирования адаптивных механизмов млекопитающих к гипотермии в условиях эксперимента 2005 год, кандидат биологических наук Солодовникова, Ольга Григорьевна

  • Биохимические механизмы антистрессорного эффекта α-токоферола 1999 год, доктор биологических наук Сабурова, Анна Мухаммадиевна

Введение диссертации (часть автореферата) на тему «Экспериментальное исследование ферментных антиоксидантных систем при адаптации к длительному воздействию холода и дефицита токоферола»

Актуальность темы. Исследованиями последних лет показано, что в механизмах приспособления организма к факторам внешней среды важную роль играют так называемые активные формы кислорода - супероксидный и гидро-ксильный радикалы, перекись водорода и другие (Finkel, 1998; Kausalya, Nath, 1998). Установлено, что эти свободно-радикальные метаболиты кислорода, которые до недавнего времени рассматривались лишь как повреждающие агенты, являются сигнальными молекулами и регулируют адаптивные преобразования нервной системы, артериальной гемодинамики и морфогенез. (Luscher, Noll, Vanhoute, 1996; ; Groves, 1999; Wilder, 1998; Drexler, Homig, 1999). Главным источником активных форм кислорода является ряд ферментных систем эпителия и эндотелия (НАДФ-оксидаза, циклооксигеназа, липооксигеназа, ксанти-ноксидаза), которые активируются при раздражении хемо-и механорецепторов, расположенных на люминальной мембране клеток этих тканей.

В то же время известно, что при усилении продукции и накоплении в организме активных форм кислорода, то есть при так называемом оксидативном стрессе, их физиологическая функция может трансформироваться в патологическую с развитием перекисного окисления биополимеров и повреждением вследствие этого клеток и тканей. (Kausalua, Nath, 1998; Smith, Guilbelrt, Yui et al. 1999). Очевидно, что возможность такой трансформации определяется прежде всего скоростью инактивации АФК антиоксидантными системами. В связи с этим, особый интерес представляет исследование изменений инактиваторов активных форм кислорода - ферментных антиоксидантных систем организма, при длительном воздействии на организм таких экстремальных факторов, как холод и дефицит витаминного антиоксиданта - токоферола, которые рассматриваются в настоящее время как эндо- и экзогенные индукторы оксидативного стресса.

Цель и задачи исследования. Целью работы явилось исследование изменений основных ферментных антиоксидантных систем при адаптации крыс к длительному воздействию холода и дефицита токоферола.

Задачи исследования:

1. Сопоставить изменения показателей оксидативного гомеостаза с изменениями основных морфофункциональных параметров организма крыс и эритроцитов при длительном воздействии холода.

2. Сопоставить изменения показателей оксидативного гомеостаза с изменениями основных морфофункциональных параметров организма крыс и эритроцитов при дефиците токоферола.

3. Провести сравнительный анализ изменений оксидативного метаболизма и характера адаптивной реакции организма крыс при длительном воздействии холода и дефицита токоферола.

Научная новизна. Впервые установлено, что длительное интермитти-рующее воздействие холода (+5°С по 8 часов в сутки на протяжении 6 месяцев) вызывает в организме крыс ряд морфофункциональных изменений адаптивной направленности: ускорение прироста массы тела, увеличение содержания спек-трина и актина в мембранах эритроцитов, повышение активности ключевых энзимов гликолиза, концентрации АТФ и АДФ, а также активности АТФ-аз.

Впервые показано, что в механизме развития адаптации к холоду важную роль играет оксидативный стресс, особенностью которого является возрастание активности компонентов системы антиоксидантной системы - энзимов НАДФН-генерирующего пентозофосфатного пути распада глюкозы, суперок-сиддисмутазы, каталазы и глутатионпироксидазы.

Впервые показано, что развитие патологических морфо-функциональных изменений при дефиците токоферола связано с выраженным оксидативным стрессом, протекающим на фоне сниженной активности основных антиокси-дантных ферментов и ферментов пентозофосфатного пути распада глюкозы.

Впервые установлено, что результат преобразований обмена веществ при воздействии на организм факторов внешней среды зависит от адаптивного возрастания активности антиоксидантных ферментов и связанной с этим выраженности оксидативного стресса.

Научно-практическая значимость работы. Полученные в работе новые факты расширяют представления о механизмах приспособления организма к факторам внешней среды. Выявлена зависимость результата адаптивных преобразований метаболизма от степени активации основных ферментных антиок-сидантов, что указывает на необходимость направленного развития адаптивного потенциала этой неспецифической системы стресс-резистентности организма при изменении экологических условий.

Основные положения, выносимые на защиту:

1. Длительное воздействие холода вызывает в организме крыс комплекс изменений адаптивной направленности: возрастание устойчивости к действию холода, которое выражалось в ослаблении гипотермии; ускорение прироста массы тела; повышение содержания спектрина и актина в мембранах эритроцитов; увеличение скорости гликолиза, повышение концентрации АТФ и АДФ; возрастание активности АТФ-аз. Механизм этих изменений связан с развитием оксидативного стресса в сочетании с адаптивным увеличением активности компонентов системы антиоксидантной защиты - ферментов пентозо-фосфатного шунта, а также основных внутриклеточных антиоксидантных ферментов, прежде всего супероксиддисмутазы.

2. Длительный дефицит в организме крыс токоферола вызывает стойкий гипотрофический эффект, повреждение мембран эритроцитов, угнетение гликолиза, снижение концентрации АТФ и АДФ, активности клеточных АТФ-аз. В механизме развития этих изменений существенное значение имеет недостаточная активация антиоксидантных систем - НАДФН-генерирующего пентозо-фосфатного пути и антиоксидантных ферментов, создающая условия для повреждающего действия активных форм кислорода.

Апробация работы. Результаты исследований доложены на совместном заседании кафедры биохимии и кафедры нормальной физиологии Алтайского государственного медицинского института (Барнаул, 1998, 2000), на научной конференции, посвященной 40-летию кафедры фармакологии Алтайского государственного медицинского университета (Барнаул, 1997),на научно-практической конференции"Современные проблемы курортологии и терапии", посвященной 55-летию санатория "Барнаульский" (Барнаул,2000), на II международной конференции молодых ученых России (Москва,2001).

Похожие диссертационные работы по специальности «Экология», 03.00.16 шифр ВАК

  • Исследование роли глутатионовой системы в естественном старении эритроцитов, продуцированных в условиях нормального и напряженного эритропоэза 2002 год, кандидат биологических наук Кудряшов, Александр Михайлович

  • Показатели антиоксидантной системы эритроцитов при ожоговой травме 1999 год, кандидат биологических наук Еремина, Татьяна Владимировна

  • Биохимические изменения в мембранах млекопитающих при зимней спячке и гипотермии 2005 год, доктор биологических наук Кличханов, Нисред Кадирович

  • Исследование воздействия тиоктовой кислоты на свободнорадикальный гомеостаз в тканях крыс при патологиях, сопряженных с оксидативным стрессом 2007 год, кандидат биологических наук Макеева, Анна Витальевна

  • Соотношение между прооксидантной и антиоксидантной системами в эритроцитах при иммобилизационном стрессе у крыс 2009 год, кандидат биологических наук Лаптева, Ирина Азатовна

Заключение диссертации по теме «Экология», Скурятина, Юлия Владимировна

1. Длительное интермиттирующее воздействие холода (+5°С по 8 часов в сутки на протяжении 6 месяцев) вызывает в организме крыс комплекс адаптивных изменений: диссипацию гипотермической реакции на холод, ускорение прироста массы тела, повышение содержания спектрина и актина в мембранах эритроцитов, усиление гликолиза, возрастание суммарной концентрации АТФ и АДФ и активности АТФ-аз.

2. Состоянию адаптированности крыс к длительному интермиттирующе-му воздействию холода соответствует оксидативный стресс, для которого характерны повышенная активность компонентов ферментных антиоксидантных систем - глюкозо-6-фосфатдегидрогеназы, супероксиддисмутазы, каталазы и глутатионпероксидазы.

3. Длительный (6 месяцев) алиментарный дефицит токоферола вызывает в организме крыс стойкий гипотрофический эффект, анемию, повреждение мембран эритроцитов, угнетение в эритроцитах гликолиза, снижение суммарной концентрации АТФ и АДФ, а также активности Na+,K+- АТФ-азы.

4. Дизадаптивные изменения в организме крыс при дефиците токоферола связаны с развитием выраженного оксидативного стресса, для которого характерны снижение активности каталазы и глутатионпероксидазы в сочетании с умеренным возрастанием активности глюкозо-6-фосфатдегидрогеназы и супероксиддисмутазы.

5. Результат адаптационных преобразований метаболизма в ответ на длительное воздействие холода и алиментарного дефицита токоферола зависит от выраженности оксидативного стресса, которая во многом определяется возрастанием активности антиоксидантных ферментов.

ЗАКЛЮЧЕНИЕ

К настоящему времени сложилось достаточно четкое представление о том, что адаптация организма человека и животных определяется взаимодействием генотипа с внешними факторами (Меерсон, Малышев, 1981; Панин, 1983; Голдстейн, Браун, 1993; Адо, Бочков, 1994). При этом следует учитывать, что генетически детерминированная неадекватность включения адаптивных механизмов при воздействии экстремальных факторов может приводить к трансформации состояния напряжения в острый или хронический патологический процесс (Казначеев, 1980).

В основе процесса приспособления организма к новым условиям внутренней и внешней среды лежат механизмы срочной и долговременной адаптации (Меерсон, Малышев, 1981). При этом процесс срочной адаптации, рассматриваемый как временная мера, к которой организм прибегает в критических ситуациях, исследован достаточно подробно (Davis, 1960, 1963; Исаакян, 1972; Ткаченко, 1975; Rohlfs, Daniel, Premont et al., 1995; Beattie, Black, Wood et. al., 1996; Marmonier, Duchamp, Cohen-Adad et al., 1997). В этот период повышенная продукция различных сигнальных факторов, включая гормональные, индуцирует существенную локальную и системную перестройку метаболизма в различных органах и тканях, чем в итоге определяется истинная, долговременная адаптация (Хочачка, Сомеро, 1988). Активация процессов биосинтеза на уровне репликации и транскрипции обусловливает развивающиеся при этом структурные изменения, которые проявляются гипертрофией и гиперплазией клеток и органов (Меерсон, 1986). Поэтому изучение биохимических основ адаптации к длительному воздействию возмущающих факторов имеет не только научный, но и большой практический интерес, особенно с точки зрения распространенности дизадаптивных болезней (Lopez-Torres et al., 1993; Pipkin, 1995; Wallace, Bell, 1995; Sun et al., 1996).

Несомненно, что развитие долговременной адаптации организма является весьма сложным процессом, реализующимся с участием всего комплекса иерархически организованной системы регуляции метаболизма, причем многие стороны механизма этой регуляции остаются неизвестными. Согласно последним литературным данным, адаптация организма к длительно действующим возмущающим факторам начинается с локальной и системной активации филогенетически наиболее древнего процесса свободно-радикального окисления, ведущего к образованию физиологически важных сигнальных молекул в виде активных форм кислорода и азота - оксид азота, супероксидный и гидроксиль-ный радикал, пероксид водорода и др. Этим метаболитам принадлежит ведущая медиаторная роль в адаптивной локальной и системной регуляции метаболизма аутокринным и паракринным механизмами (Sundaresan, Yu, Ferrans et. al., 1995; Finkel, 1998; Givertz, Colucci, 1998).

В связи с этим, при исследовании физиологических и патофизиологических аспектов адаптивных и дизадаптивных реакций занимают вопросы регуляции свободно-радикальными метаболитами, причем особую актуальность составляют вопросы биохимических механизмов адаптации при длительном воздействии на организм индукторов оксидативного стресса (Cowan, Langille, 1996; Kemeny, Peakman, 1998; Farrace, Cenni, Tuozzi et al., 1999).

Несомненно, что наибольшую информацию в этом отношении можно получить в экспериментальных исследованиях на соответствующих "моделях" распространенных видов оксидативного стресса. В качестве таковых наиболее известны модели экзогенного оксидативного стресса, вызываемого холодовой экспозицией, и эндогенного оксидативного стресса, возникающего при дефиците витамина Е - одного из важнейших мембранных антиоксидантов. Эти модели и были использованы в работе для выяснения биохимических основ адаптации организма к длительному оксидативному стрессу.

В соответствии с многочисленными литературными данными (Спиричев, Матусис, Бронштейн, 1979; Aloia, Raison, 1989; Glofcheski, Borrelli, Stafford, Kruuv, 1993; Beattie, Black, Wood, Trayhurn, 1996), нами установлено, что ежедневная 8-часовая холодовая экспозициям на протяжении 24-недель приводила к выраженному повышению концентрации малонилдиальдегида в эритроцитах. Это свидетельствует о развитии под влиянием холода хронического оксидативного стресса. Аналогичные изменения имели место в организме крыс, содержавшихся в течение такого же периода на диете, лишенной витамина Е. Этот факт также соответствует наблюдениям других исследователей (Masugi,

Nakamura, 1976; Tamai., Miki, Mino, 1986; Архипенко, Коновалова, Джапаридзе и др., 1988; Matsuo, Gomi, Dooley, 1992; Cai, Chen, Zhu et al., 1994). Однако причины оксидативного стресса при длительном интермиттирующем воздействии холода и оксидативного стресса при длительном дефиците токоферола различны. Если в первом случае причиной стрессового состояния является воздействие внешнего фактора - холода, вызывающего повышение продукции ок-сирадикалов вследствие индукции синтеза разобщающего протеина в митохондриях (Nohl, 1994; Bhaumik, Srivastava, Selvamurthy et al., 1995; Rohlfs, Daniel, Premont et al., 1995; Beattie, Black, Wood et. al., 1996; Femandez-Checa, Kaplowitz, Garcia-Ruiz et al., 1997; Marmonier, Duchamp, Cohen-Adad et al., 1997; Rauen, de Groot, 1998), то при дефиците мембранного антиоксиданта токоферола причиной оксидативного стресса было снижение скорости нейтрализации оксирадикальных медиаторов (Lawler, Cline, Ни, Coast, 1997; Richter, 1997; Polyak, Xia, Zweier et. al., 1997; Sen, Atalay, Agren et al., 1997; Higashi, Sasaki, Sasaki et al., 1999). Учитывая тот факт, что длительное холодовое воздействие и авитаминоз Е вызывают накопление активных форм кислорода, можно было ожидать трансформацию физиологической регуляторной роли последних в патологическую, с повреждением клеток вследствие перекисного окисления биополимеров. В связи с общепринятым до недавнего времени представлением о повреждающем действии активных форм кислорода, холод и дефицит токоферола рассматриваются как факторы, провоцирующие развитие многих хронических заболеваний (Cadenas, Rojas, Perez-Campo et al., 1995; de Gritz, 1995; Jain, Wise, 1995; Luoma, Nayha, Sikkila, Hassi., 1995; Barja, Cadenas, Rojas et al., 1996; Dutta-Roy, 1996; Jacob, Burri, 1996; Snircova, Kucharska, Herichova et al., 1996; Va-Squezvivar, Santos, Junqueira, 1996; Cooke, Dzau, 1997; Lauren, Chaudhuri, 1997; Davidge, Ojimba, Mc Laughlin, 1998; Kemeny, Peakman, 1998; Peng, Kimura, Fregly, Phillips, 1998; Nath, Grande, Croatt et al., 1998; Newaz, Nawal, 1998; Taylor, 1998). Очевидно, что в свете концепции о медиа-торной роли активных форм кислорода, реализация возможности трансформации физиологического оксидативного стресса в патологический в значительной степени зависит от адаптивного возрастания активности антиоксидантных ферментов. В соответствии с представлением о ферментном антиоксидантном комплексе как функционально динамичной системе находится недавно выявленный феномен субстратной индукции экспрессии генов всех трех основных антиоксидантных энзимов - супероксиддисмутазы, каталазы и глутатионперок-сидазы (Пескин, 1997; Tate, Miceli, Newsome, 1995; Pinkus, Weiner, Daniel, 1996; Watson, Palmer., Jauniaux et al., 1997; Sugino, Hirosawa-Takamori, Zhong, 1998). Важно отметить, что эффект такой индукции имеет достаточно длительный лаг-период, измеряемый десятками часов и даже днями (Beattie, Black, Wood, Trayhurn, 1996; Battersby, Moyes, 1998; Lin, Coughlin, Pilch, 1998). Поэтому данный феномен способен привести к ускорению инактивации активных форм кислорода лишь при длительных воздействиях стресс-факторов.

Проведенные в работе исследования показали, что длительное интермит-тирующее воздействие холодом вызывало гармоничную активацию всех исследованных антиоксидантных энзимов. Это согласуется с мнением Bhaumik G. et al (1995) о протективной роли этих ферментов в ограничении осложнений при длительном холодовом стрессе.

В то же время в эритроцитах крыс с дефицитом витамина Е в конце 24-х недельного периода наблюдений регистрировалась активация лишь суперок-сиддисмутазы. Следует отметить, что в проводимых ранее подобных исследованиях такого эффекта не наблюдалось (Xu, Diplock, 1983; Chow, 1992; Matsuo, Gomi, Dooley, 1992; Walsh, Kennedy, Goodall, Kennedy, 1993; Cai, Chen, Zhu et al., 1994; Tiidus, Houston, 1994; Ashour, Salem, El Gadban et al., 1999). Следует, однако,отметить что возрастание активности супероксиддисмутазы, не сопровождалось адекватным повышением активности каталазы ж глутатионперокси-дазы и не предотвращало развитие повреждающего действия активных форм кислорода. О последнем свидетельствовало значительное накопление в эритроцитах продукта перекисного окисления липидов - малонидиальдегида. Необходимо отметить, что перекисное окисление биополимеров рассматривается в настоящее время как главная причина патологических изменений при авитаминозе Е (Chow, Ibrahim, Wei и Chan, 1999).

Об эффективности антиоксидантной защиты в экспериментах по исследованию холодового воздействия свидетельствовало отсутствие выраженных изменений в гематологических показателях и сохранение устойчивости эритроцитов к действию различных гемолитиков. О сходных результатах ранее сообщалось и другими исследователями (Марачев, 1979; Рапопорт, 1979; Sun, Cade, Katovich, Fregly, 1999). Напротив, у животных с Е-авитаминозом наблюдался комплекс изменений, указывающих на повреждающее действие активных форм кислорода: анемия с явлениями внутрисосудистого гемолиза, появление эритроцитов со сниженной резистентностью к гемолитикам. Последнее считается весьма характерным проявлением оксидативного стресса при Е-авитами нозе (Brin, Horn, Barker, 1974; Gross, Landaw, Oski, 1977; Machlin, Filipski, Nelson et al., 1977; Siddons, Mills, 1981; Wang, Huang, Chow, 1996). Выше изложенное убеждает в значительных возможностях организма по нейтрализации последствий оксидативного стресса внешнего генеза, в частности вызываемого холодом, и неполноценности адаптации к эндогенному оксида-тивному стрессу в случае Е-авитаминоза.

К группе антиоксидантных факторов в эритроцитах относится и система генерации НАДФН, который является кофактором гемоксигеназы, глутатион-редуктазы и тиоредоксинредуктазы, восстанавливающих железо, глутатион и другие тиосоединения. В наших экспериментах наблюдалось весьма значительное увеличение активности глюкозо-6-фосфатдегидрогеназы в эритроцитах крыс как при действии холода, так и при дефиците токоферола, что ранее наблюдали и другие исследователи (Казначеев, 1977; Уласевич, Грозина, 1978;

Gonpern, 1979; Куликов, Ляхович, 1980; Ландышев, 1980; Fudge, Stevens, Ballantyne, 1997). Это указывает на активацию у экспериментальных животных пентозофосфатного шунта, в котором синтезируется НАДФН.

Механизм развития наблюдаемого эффекта во многом становится понятнее при анализе изменений показателей углеводного метаболизма. Наблюдалось усиление поглощения глюкозы эритроцитами животных как на фоне оксидативного стресса, вызванного холодом, так и при оксидативном стрессе, индуцированном дефицитом токоферола. Это сопровождалось существенной активацией мембранной гексокиназы - первого энзима внутриклеточной утилизации углеводов, что хорошо согласуется с данными других исследователей (Лях, 1974, 1975; Панин, 1978; Уласевич, Грозина, 1978; Nakamura, Moriya, Murakoshi. et al., 1997; Rodnick, Sidell, 1997). Однако, дальнейшие превращения интенсивно образующегося в указанных случаях глюкозо-6-фосфата существенно различались. При адаптации к холоду метаболизм этого интермедиата усиливался как в гликолизе (о чем свидетельствовало возрастание активности гексофосфатизомеразы и альдолазы), так и в пентозофосфатном пути. Последнее подтверждалось увеличением активности глюкозо-6-фосфатдегидрогеназы. В то же время у Е-авитаминозных животных перестройка углеводного метаболизма была связана с увеличением активности лишь глюкозо-6-фосфатдегидрогеназы, тогда как активность ключевых ферментов гликолиза не изменялась или даже снижалась. Следовательно, в любом случае оксидативный стресс вызывает повышение скорости метаболизма глюкозы в пентозофосфат-ном шунте, обеспечивающем синтез НАДФН. Это представляется весьма целесообразным в условиях повышения потребности клеток в редокс-эквивалентах, в частности НАДФН. Можно предположить, что у Е-авитаминозных животных данный феномен развивается в ущерб гликолитическим энергопродуцирую-щим процессам.

Отмеченное различие влияний экзогенного и эндогенного оксидативного стресса на гликолитическую энергопродукцию сказывалось и на энергетическом статусе клеток, а также на системах энергопотребления. При холодовом воздействии наблюдалось значимое увеличение концентрации АТФ+АДФ со снижением концентрации неорганического фосфата, увеличение активности общей АТФ-азы, Mg^-АТФ-азы и Ыа+,К+-АТФ-азы. И напротив, в эритроцитах крыс с Е-авитаминозом наблюдалось снижение содержания макроэргов и активности АТФаз. При этом вычисленный индекс АТФ+АДФ/Фн подтвердил имеющиеся сведения о том, что для холодового, но не для Е-авитаминозного оксидативного стресса характерно превалирование энергопродукции над энергопотреблением (Марачев, Сороковой, Корчев с сотр., 1983; Rodnick, Sidell, 1997; Hardewig, Van Dijk, Portner, 1998).

Таким образом, при длительном интермиттирующем воздействии холода перестройка процессов энергопродукции и энергопотребления в организме животных имела явный анаболический характер. В этом убеждает наблюдавшееся ускорение прироста массы тела животных. Исчезновение у крыс гипотермиче-ской реакции на холод к 8-ой неделе эксперимента свидетельствует об устойчивой адаптированности их организма к холоду и, следовательно, об адекватности адаптивных преобразований метаболизма. В то же время судя по основным морфофункциональным, гематологическим и биохимическим показателям, изменения энергетического метаболизма у Е-авитаминозных крыс не приводили к адаптивно-целесообразному результату. Представляется, что основной причиной такого ответа организма на дефицит токоферола является отток глюкозы от энергопродуцирующих процессов в процессы образования эндогенного антиоксиданта НАДФН. Вероятно, выраженность адаптивного оксидативного стресса является своеобразным регулятором метаболизма глюкозы в организме: данный фактор способен включать и усиливать продукцию антиок-сидантов в ходе метаболизма глюкозы, что является более значимым для выживания организма в условиях мощного повреждающего эффекта активных форм кислорода, чем продукция макроэргов.

Следует отметить, что согласно современным данным, кислородные радикалы являются индукторами синтеза отдельных факторов репликации и транскрипции, стимулирующих адаптивную пролиферацию и дифференциров-ку клеток различных органов и тканей (Agani, Semenza, 1998). При этом одной из важнейших мишеней для свободно-радикальных медиаторов являются факторы транскрипции типа NFkB, индуцирующих экспрессию генов антиоксидантных энзимов и других адаптивных белков (Sundaresan, Yu, Ferrans et. al, 1995; Finkel, 1998; Givertz, Colucci, 1998). Таким образом, можно думать, что именно этот механизм срабатывает при холод-индуцированном оксидативном стрессе и обеспечивает возрастание активности не только специфических энзимов антиоксидантной защиты (супероксиддисмутазы, каталазы и глутатион-пероксидазы), но и повышение активности ферментов пентозофосфатного пути. При более выраженном оксидативном стрессе, вызванном дефицитом мембранного антиоксиданта - токоферола, адаптивная субстратная индуцибель-ность указанных компонентов антиоксидантной защиты реализуется лишь частично и, скорее всего, недостаточно эффективна. Следует отметить, что низкая эффективность этой системы в конечном итоге приводила к трансформации физиологического оксидативного стресса в патологический.

Полученные в работе данные позволяют сделать вывод о том, что результат адаптивных преобразований метаболизма в ответ на возмущающие факторы внешней среды, в развитии которых задействованы активные формы кислорода, во многом определяется адекватностью сопряженного возрастания активности основных антиоксидантных ферментов, а также ферментов НАДФН-генерирующего пентозофосфатного пути распада глюкозы. В связи с этим, при изменении условий существования макроорганизма,особенно при так называемых экологических катастрофах, выраженность оксидативного стресса и активность ферментных антиоксидантов должны стать не только объектом наблюдения, но и одним из критериев эффективности адаптации организма.

Список литературы диссертационного исследования кандидат биологических наук Скурятина, Юлия Владимировна, 2001 год

1. Абраров А.А. Влияние жира и жирорастворимых витаминов А, Д, Е на биологические свойства эритроцитов: Дисс. докт. мед. наук. М.,1971.- С. 379.

2. Адо А. Д., Адо Н. А., Бочков Г. В. Патологическая физиология.- Томск: Изд-во ТГУ, 1994.- С. 19.

3. Асатиани В. С. Ферментные методы анализа. М.: Наука, 1969. - 740 с.

4. Бенисович В. И., Идельсон Л. И. Образование перекисей и состав жирных кислот в липидах эритроцитов больных при болезни Маркиафава Микели // Пробл. гематол. и перелив, крови. - 1973. - №11. - С. 3-11.

5. Бобырев В. Н., Воскресенский О. Н. Изменения в активности антиоксидант-ных ферментов при синдроме пероксидации липидов у кроликов // Вопр. мед. химии. 1982. - т. 28(2). - С. 75-78.

6. Виру А. А. Гормональные механизмы адаптации и тренировки. М.: Наука, 1981.-С. 155.

7. Голдстейн Д. Л., Браун М. С. Генетические аспекты болезней // Внутренние болезни / Под. ред. Е. Браунвальда, К. Д. Иссельбахера, Р. Г. Петерсдорфа и др.- М.: Медицина, 1993.- Т. 2.- С.135.

8. Даценко 3. М., Донченко Г. В., Шахман О. В., Губченко К. М., Хмель Т. О. Роль фосфолипидов в функционировании различных клеточных мембран в условиях нарушения антиоксидантной системы // Укр. биохим. ж.- 1996.- т. 68(1).- С. 49-54.

9. Ю.Дегтярев В. М., Григорьев Г. П. Автоматическая запись кислотных эритро-грамм на денситометре ЭФА-1 //Лаб. дело.- 1965.- №9.- С. 530-533.

10. П.Дервиз Г. В., Бялко Н. К. Уточнение метода определения гемоглобина, растворенного в плазме крови // Лаб. дело.- 1966.- №8.- С. 461-464.

11. Деряпа Н. Р., Рябинин И. Ф. Адаптация человека в полярных районах Земли.- Л.: Медицина, 1977.- С. 296.

12. Джуманиязова К. Р. Влияние витаминов A, D, Е на эритроциты периферической крови: Дисс. канд. мед. наук.- Ташкент, 1970.- С. 134.

13. Донченко Г. В., Метальникова Н. П., Паливода О. М. и др. Регуляция а-токоферолом и актиномицином D биосинтеза убихинона и белка в печени крыс при Е-гиповитаминозе // Укр. биохим. ж.- 1981.- Т. 53(5).- С. 69-72.

14. Дубинина Е. Е., Сальникова Л. А., Ефимова Л. Ф. Активность и изофер-ментный спектр супероксиддисмутазы эритроцитов и плазмы крови // Лаб. дело.- 1983.-№10.-С. 30-33.

15. Исаакян JI. А. Метаболическая структура температурных адаптаций Д.: Наука, 1972.-С. 136.

16. Казначеев В. П. Биосистема и адаптация // Доклад на II сессии Научного совета АН СССР по проблеме прикладной физиологии человека.- Новосибирск, 1973.-С. 74.

17. Казначеев В. П. Проблемы адаптации человека (итоги и перспективы) // 2 Всесоюз. конф. по адаптации человека к различ. географич., климатич., и производст. условиям: Тез. докл.- Новосибирск, 1977.- т. 1.-С. 3-11.

18. Казначеев В. П. Современные аспекты адаптации.- Новосибирск: Наука, 1980.-С. 191.

19. Калашников Ю. К., Гейслер Б. В. К методике определения гемоглобина крови с помощью ацетонциангидрина// Лаб. дело.- 1975.- №6.- СГ373-374.

20. Кандрор И. С. Очерки по физиологии и гигиене человека на Крайнем Севере.- М.: Медицина, 1968.- С. 288.

21. Кашевник Л. Д. Обмен веществ при авитаминозе С.- Томск., 1955.- С. 76.

22. Коровкин Б. Ф. Ферменты в диагностике инфаркта миокарда.- Л: Наука, 1965.- С. 33.

23. Куликов В. Ю., Ляхович В. В. Реакции свободнорадикального окисления липидов и некоторые показатели кислородного обмена // Механизмы адаптации человека в условиях высоких широт / Под ред. В. П. Казначеева.- Л.: Медицина, 1980.- С. 60-86.

24. Ландышев С. С. Адаптация метаболизма эритроцитов к действию низких температур и дыхательной недостаточности // Адаптация человека и животных в различных климатических зонах / Под ред. М. 3. Жиц.- Чита, 1980.- С. 51-53.

25. Ланкин В. 3., Гуревич С. М., Кошелевцева Н. П. Роль перекисей липидов в патогенезе атеросклероза. Детоксикация липоперекисей глютатионперокси-дазной системой в аорте // Вопр. мед. химии.- 1976.- №3,- С. 392-395.

26. Лях Л. А. О стадиях формирования адаптации к холоду // Теоретические и практические проблемы действия низких температур на организм: Тез. IV Всесоюз. конф.- 1975.- С. 117-118.

27. Марачев А. Г., Сороковой В. И., Корчев А. В. и др. Биоэнергетика эритроцитов у жителей Севера // Физиология человека.- 1983.- №3.- С. 407-415.

28. Марачев А.Г. Структура и функция эритрона человека в условиях Севера // Биологические проблемы Севера. VII симпозиум. Адаптация человека к условиям Севера/Под ред. В.Ф. Бурханова, Н.Р. Деряпы.- Кировск,1979.- С. 7173.

29. Матусис И. И. Функциональные взаимоотношения витаминов Е и К в метаболизме организма животных // Витамины.- Киев: Наукова думка, 1975.- т. 8.-С. 71-79.

30. Меерсон Ф. 3., Малышев Ю. И. Феномен адаптации и стабилизации структур и защиты сердца.- М: Медицина, 1981.- С. 158.

31. Меерсон Ф. 3. Основные закономерности индивидуальной адаптации // Физиология адаптационных процессов. М.: Наука, 1986.- С. 10-76.

32. Панин JI. Е. Некоторые биохимические проблемы адаптации // Медико -биологические аспекты процессов адаптации / Под ред. JI. П. Непомнящих.-Новосибирск.: Наука.-1975а.-С. 34-45.

33. Панин Л. Е. Роль гормонов гипофизо адреналовой системы и поджелудочной железы в нарушении холестеринового обмена при некоторых экстремальных состояниях: Дисс. докт. мед. наук.- М., 19756.- С. 368.

34. Панин Л. Е. Энергетические аспекты адаптации.- Л.: Медицина, 1978.- 192 с.43 .Панин Л. Е. Особенности энергетического обмена // Механизмы адаптациичеловека к условиям высоких широт / Под ред. В. П. Казначеева.- Л.: Медицина, 1980.- С. 98-108.

35. Пескин А. В. Взаимодействие активного кислорода с ДНК (Обзор) // Биохимия.- 1997.- Т. 62.- №12.- С. 1571-1578.

36. Поберезкина Н. Б., Хмелевский Ю. В. Нарушение структуры и функции мембран эритроцитов Е авитаминозных крыс и его коррекция антиоксидан-тами // Укр. биохим. ж.- 1990.- т. 62(6).- С. 105-108.

37. Покровский А. А., Орлова Т. А., Поздняков A. JL Влияние токоферольной недостаточности на активность некоторых ферментов и их изоферментов в семенниках крыс // Витамины и реактивность организма: Труды МОИП.- М., 1978.-Т. 54.- С. 102-111.

38. Рапопорт Ж. Ж. Адаптация ребенка на Севере.- Л.: Медицина, 1979.- С. 191.

39. Россомахин Ю. И. Особенности терморегуляции и устойчивости организма к контрастным воздействиям тепла и холода при различных режимах температурных адаптаций: Автореф. дисс. канд. биол. наук.- Донецк, 1974.- С. 28.

40. Сейц И. Ф. О количественном определении аденозинтри- и аденозиндифос-фатов // Бюлл. эксп. биол. и мед.- 1957.- №2.- С. 119-122.

41. Сень И. П. Развитие Е-витаминной недостаточности у белых крыс при питании качественно различными жирами: Дисс. канд. мед. наук.- М.,1966.- С. 244.

42. Слоним А. Д. О физиологических механизмах природных адаптаций животных и человека // Докл. на ежегод. засед. ученого совета посвящ. памяти акад. К. М. Быкова.- JL, 1964.

43. Слоним А. Д. Физиологические адаптации и периферическая структура рефлекторных ответов организма // Физиологические адаптации к теплу и холоду / Под ред. А. Д. Слоним.- JL: Наука, 1969.- С. 5-19.

44. Спиричев В. Б., Матусис И. И., Бронштейн JL М. Витамин Е. // В кн.: Экспериментальная витаминология / Под ред. Ю. М. Островского.- Минск: Наука и техника, 1979.- С. 18-57.

45. Стабровский Е. М. Энергетический обмен углеводов и его эндокринная регуляция в условиях действия низкой температуры среды на организм: Авто-реф. дисс. докт. биол. наук.- JL, 1975.- С. 44.

46. Теплый Д. JL, Ибрагимов Ф. X. Изменение проницаемости оболочек эритроцитов у грызунов под действием рыбьего жира, витамина Е и жирных кислот // Ж. эволюцион. биохимии и физиологии.- 1975.- т. 11(1).- С. 58-64.

47. Терсков И. А., Гительзон И. И. Эритрограммы как метод клинического исследования крови.- Красноярск, 1959.- С. 247.

48. Терсков И. А., Гительзон И. И. Значение дисперсионных методов анализа эритроцитов в норме и патологии // Вопросы биофизики, биохимии и патологии эритроцитов.- М.: Наука, 1967.- С. 41-48.

49. Ткаченко Е. Я. О соотношении сократительного и несократительного термо-генеза в организме при адаптации к холоду // Физиологические адаптации к холоду, условиям гор и субарктики / Под ред. К. П. Иванова, А. Д. Слоним.-Новосибирск: Наука, 1975.- С. 6-9.

50. Узбеков Г. А., Узбеков М. Г. Высокочувствительный микрометод фотометрического определения фосфора // Лаб. дело.- 1964.- №6.- С. 349-352.

51. Хочачка П., Сомеро Дж. Биохимическая адаптация: пер. с англ. М.: Мир, 1988.-576 с.

52. Щеглова А. И. Адаптивные изменения газообмена у грызунов с разной экологической специализацией // Физиологические адаптации к теплу и холоду / Под ред. А. Д. Слоним.- Л.: Наука, 1969.- С. 57-69.

53. Якушева И. Я., Орлова Л. И. Метод определения аденозинтрифосфатаз в ге-молизатах эритроцитов крови // Лаб. дело.- 1970.- № 8.- С. 497-501.

54. Agani F., Semenza G. L. Mersalyl is a novel inducer of vascular endothelial growth factor gene expression and hypoxia-inducible factor 1 activity // Mol. Pharmacol.- 1998.- Vol. 54(5).- P. 749-754.

55. Ahuja В. S., Nath R. A kinetik study of superoxide dismutase in normal human erytrocytes and its possible role in anemia and radiation damage // Simpos. on control mechanisms in cell, processes.- Bombey, 1973.- P. 531-544.

56. Aloia R. C., Raison J. K. Membrane function in mammalian hibernation // Bio-chim. Biophys. Acta.- 1989.- Vol. 988.- P. 123-146.

57. Asfour R. Y., Firzli S. Hematologic stadies in undernowrished children with low serum vitamin E levels // Amer. J. Clin. Nutr.- 1965.- Vol. 17(3).- P. 158-163.

58. Ashour M. N., Salem S. I., El Gadban H. M., Elwan N. M., Basu Т. K. Antioxidant status in children with protein-energy malnutrition (РЕМ) living in Cairo, Egypt //Eur. J. Clin. Nutr.- 1999.- Vol. 53(8).- P. 669-673.

59. Bang H. O., Dierberg J., Nielsen A. B. Plasma lipid and lipoprotein pattern in Greenlandic west coast Eskimos // Lancet.- 1971.- Vol. 7710(1).- P. 1143-1145.

60. Barja G., Cadenas S., Rojas C., et al. Effect of dietary vitamin E levels on fatty acid profiles and nonenzymatic lipid peroxidation in the guinea pig liver // Lipids.-1996.- Vol. 31(9).- P. 963-970.

61. Barker M. О., Brin М. Mechanisms of lipid peroxidation in erithrocytes of vitamin E deficients rats and in phospholipid model sistems // Arch. Biochem. and Biophys.- 1975.- Vol. 166(1).- P. 32-40.

62. Battersby B. J., Moyes C. D. Influence of acclimation temperature on mitochondrial dna, rna and enzymes in skeletal muscle // APStracts.- 1998.- Vol. 5.- P. 195.

63. Beattie J. H., Black D. J., Wood A. M., Trayhurn P. Cold-induced expression of the metallothionein-1 gene in brown adipose tissue of rats // Am. J. Physiol.-1996.- Vol. 270(5).- Pt 2.- P. 971-977.

64. Bhaumik G., Srivastava К. K., Selvamurthy W., Purkayastha S. S. The role of free radicals in cold injuries // Int. J. Biometeorol.- 1995.- Vol. 38(4).- P. 171-175.

65. Brin M., Horn L. R., Barker M. O. Relationship between fatty acid composition oferithrocytes and susceptibility to vitamin E deficiency // Amer. J. Clin. Nutr.-%1974.- Vol. 27(9).- P. 945-950.

66. Caasi P. I., Hauswirt J. W., Nair P. P. Biosynthesis of heme in vitamin E deficiency // Ann. N. Y. Acad. Sci.- 1972.- Vol. 203.- P. 93-100.

67. Cadenas S., Rojas C., Perez-Campo R., Lopez-Torres M., Barja G. Vitamin E protects guinea pig liver from lipid peroxidation without depressing levels of antioxidants//Int. J. Biochem. Cell. Biol.- 1995.-Vol. 27(11).-P. 1175-1181.

68. Cai Q. Y., Chen X. S., Zhu L. Z., et al. Biochemical and morphological changes in the lenses of selenium and/or vitamin E deficient rats // Biomed. Environ. Sci.-1994.-Vol. 7(2).-P. 109-115.

69. Cannon R. O. Role of nitric oxide in cardiovascular disease: focus on the endothelium // Clin. Chem.- 1998.- Vol. 44.- P. 1809-1819.

70. Chaudiere J., Clement M., Gerard D., Bourre J. M. Brain alterations induced by vitamin E deficiency and intoxication with methyl ethyl ketone peroxide // Neuro-toxicology.- 1988.- Vol. 9 (2).- P. 173-179.

71. Chow С. K. Distribution of tocopherols in human plasma and red blood cells // Amer. J. Clin. Nutr.- 1975.- Vol. 28(7).- P. 756-760.

72. Chow С. K. Oxidative damage in the red cells of vitamin E-deficient rats // Free. Radic. Res. Commun.- 1992 vol. 16(4).- P. 247-258.

73. Chow С. K., Ibrahim W., Wei Z., Chan A. C. Vitamin E regulates mitochondrial hydrogen peroxide generation // Free Radic. Biol. Med.- 1999.- Vol. 27 (5-6).- P. 580-587.

74. Combs G. F. Influences of dietary vitamin E and selenium on the oxidant defense system of the chick//Poult. Sci.- 1981.- Vol. 60(9).- P. 2098-2105.

75. Cooke J. P., Dzau V. J. Nitric oxide synthase: Role in the Genesis of Vascular Disease // Ann. Rev. Med.- 1997.- Vol. 48.- P. 489-509.

76. Cowan D. В., Langille B. L. Cellular and molecular biology of vascular remodeling // Current Opinion in Lipidology.- 1996.- Vol. 7.- P. 94-100.

77. Das К. С., Lewis-Molock Y., White С. W. Elevation of manganese superoxide dismutase gene expression by thioredoxin // Am. J. Respir. Cell Mol. Biol.- 1997.-Vol. 17 (6).-P. 12713-12726.

78. Davidge S. Т., Ojimba J., McLaughlin M. K. Vascular Function in the Vitamin E Deprived Rat. An Interaction Between Nitric Oxide and Superoxide Anions // Hypertension.- 1998.- Vol. 31.- P. 830-835.

79. Davis T. R. A. Shivering and nonshivering heat production in animals and man // Cold Injury: Ed. S. H. Horvath.- N. Y., I960.- P. 223-269.

80. Davis T. R. A. Nonshivering thermogenesis // Feder. Proc.- 1963.- Vol. 22(3).- P. 777-782.

81. Depocas F. Calorigenesis from various organ systems in the whole animal // Feder. Proc.- I960.-Vol. 19(2).-P. 19-24.

82. Desaultes M., Zaror-Behrens G., Hims-Hagen J. Increased purine nucleotide binding, altered polipeptide composition and thermogenesis in brown adipose tissue mitochondria of cold-acclimated rats // Can. J. Biochem.- 1978.- Vol. 78(6).- P. 378-383.

83. Drexler H., Hornig B. Endothelial dysfunction in human disease // J. Mol. Cell. Cardiol.- 1999.- Vol. 31(1).- P. 51-60.

84. Dutta-Roy A. K. Therapy and clinical trials // Current Opinion in Lipidology.-1996.-Vol. 7.-P. 34-37.

85. Elmadfa I., Both-Bedenbender N., Sierakowski В., Steinhagen-Thiessen E. Significance of vitamin E in aging // Z. Gerontol.- 1986.- Vol. 19(3).- P. 206-214.

86. Farrace S., Cenni P., Tuozzi G., et al. Endocrine and psychophysiological aspects of human adaptation to the extreme //Physiol.Behav.- 1999.- Vol.66(4).- P.613-620.

87. Fernandez-Checa, J. C., Kaplowitz N., Garcia-Ruiz C., et al. Importance and characteristics of glutahione transport in mitochondria: defense against TNF-induced oxidative stress and defect induced by alcohol // APStracts.- 1997.-Vol.4.- P. 0073G.

88. Finkel T. Oxygen radicals and signaling // Current Opinion in Cell Biology.-1998.- Vol. 10.-P. 248-253.

89. Photobiol.- 1993.- Vol. 58(2).-P. 304-312.

90. Fudge D. S., Stevens E. D., Ballantyne J. S. Enzyme adaptation along a hetero-thermic tissue the visceral retia mirabilia of the bluefin tuna // APStracts.- 1997.-Vol. 4,- P. 0059R.

91. Givertz M. M., Colucci W. S. New targets for heart-failure therapy: endothelin, inflammatory cytokines, and oxidative stress // Lancet.- 1998.- Vol.352- Suppl 1.-P. 34-38.

92. Glofcheski D. J., Borrelli M. J., Stafford D. M., Kruuv J. Induction of tolerance to hypothermia and hyperthermia by a common mechanism in mammalian cells // J. Cell. Physiol.- 1993.- Vol. 156.- P. 104-111.

93. Chemical Biology.- 1999.- Vol. 3.- P. 226-235.1 ll.Guarnieri C., Flamigni F., Caldarera R. C:, Ferrari R. Myocardial mitochondrial functions in alpha-tocopherol-deficient and -refed rabbits // Adv. Myocardiol.-1982.- Vol.3.- P. 621-627.

94. Hardewig I., Van Dijk P. L. M., Portner H. O. High energy turnover at low temperatures: recovery from exhaustive exercise in antarctic and temperate eelpouts (zoarcidae) // APStracts.- 1998.- Vol. 5.- P. 0083R.

95. Hassan H., Hashins A., van Italie Т. В., Sebrell W. H. Syndrom in premature infants anemia associated with low plasma vitamin E level and high poliunsaturated fatty acid diet // Amer. J. Clin. Nutr.-1966.- Vol. 19(3).- P. 147-153.

96. Hauswirth G. W., Nair P. P. Some aspects of vitamine E in expression of biological information // Ann. N. Y. Acad. Sci.- 1972.- Vol. 203.- P. 111-122.

97. Henle E. S., Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide // J. Biol, chem.- 1997.- Vol. 272(31).- P. 19095-19098.

98. Higashi Y., Sasaki S., Sasaki N., et al. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension // Hypertension.- 1999.- Vol. 33(1).-Pt 2.-P. 591-597.

99. Howarth P. H Pathogenic mechanisms: a rational basis for treatment // В. M. J.-1998.-Vol. 316.-P. 758-761.

100. Hubbell R. В., Mendel L. В., Wakeman A. J. A new salt mixture for use in experimental diets // J. Nutr.- 1937.- Vol. 14.- P. 273-285.

101. Jacob R. A., Burri B. J. Oxidative damage and defense // Am. J. Clin. Nutr.-1996.- Vol. 63.- P. 985S-990S.

102. Jain S. K., Wise R. Relationship between elevated lipid peroxides, vitamin E deficiency and hypertension in preeclampsia // Mol. Cell. Biochem.- 1995.- Vol. 151(1).-P. 33-38.

103. Karel P., Palkovits M., Yadid G., et al. Heterogeneous neurochemical responses to different stressors: a test of selye"s doctrine of nonspecificity // APStracts.-1998.-Vol. 5.-P. 0221R.

104. Kausalya S., Nath J. Interactive role of nitric oxide and superoxide anion in neu-trophil-mediated endothelial cell in injury // J. Leukoc. Biol.- 1998.- Vol. 64(2).-P. 185-191.

105. Kemeny M., Peakman M. Immunology // В. M. J.- 1998.- Vol. 316.- P. 600-603.

106. Kozyreva Т. V., Tkachenko E. Y., Kozaruk V. P., Latysheva Т. V., Gilinsky M. A. The effects of slow and rapid cooling on catecholamine concentration in arterial plasma and the skin // APStracts.- 1999.- Vol. 6.- P. 0081R.

107. Lauren N., Chaudhuri G. Estrogens and atherosclerosis // Ann. Rev. Pharmacol. Toxicol.- 1997.- Vol. 37.- P. 477-515.

108. Lawler J. M., Cline С. C., Hu Z., Coast J. R. Effect of oxidative stress and acidosis on diaphragm contractile function // Am. J. Physiol.- 1997.- Vol. 273(2).- Pt 2.-P. 630-636.

109. Lin В., Coughlin S., Pilch P. F. Bi-directional regulation of uncoupling protein-3 and glut4 mrna in skeletal muscle by cold // APStracts.- 1998.- Vol. 5.- P. 0115E.

110. Lindquist J. M., Rehnmark S. Ambient temperature regulation of apoptosis in brown adipose tissue // J. Biol. Chem.- 1998.- Vol. 273(46).-P. 30147-30156.

111. Lowry О. H., Rosenbrough N. G., Farr A. L., Randell R. I. Protein measurement with the Folin phenol reagent // J. Biol. Chem.-195L- Vol. 193.- P. 265-275.

112. Luoma P. V., Nayha S., Sikkila K., Hassi J. High serum alpha-tocopherol, albumin, selenium and cholesterol, and low mortality from coronary heart disease in northern Finland//J.Intern. Med.- 1995.-Vol. 237(1).-P. 49-54.

113. Luscher T. F., Noll G., Vanhoutte P. M. Endothelial dysfunction in hypertension //J.Hypertens.- 1996.- Vol. 14(5).- P. 383-393.

114. Machlin L. J., Filipski R., Nelson J., Horn L. R., Brin M. Effect of prolonged vitamin E deficiency in the rat // J. Nutr.- 1977.- Vol. 107(7).- P. 1200-1208.

115. Marmonier F., Duchamp C., Cohen-Adad F., Eldershaw T. P. D., Barra H. Hormonal control of thermogenesis in perfused muscle of muscovy ducklings // AP-Stracts.-1997.- Vol. 4.- P. 0286R.

116. Marvin H. N. Erithrocyte survival of rat deficient in vitamin E or vitamin B6 // J. Nutr.- 1963.-Vol. 80(2).-P. 185-190.

117. Masugi F., Nakamura T. Effect of vitamin E deficiency on the level of superoxide dismutase, glutathione peroxidase, catalase and lipid peroxide in rat liver // Int. J. Vitam. Nutr. Res.- 1976.- Vol. 46 (2).- P. 187-191.

118. Matsuo M., Gomi F., Dooley M. M. Age-related alterations in antioxidant capacity and lipid peroxidation in brain, liver, and lung homogenates of normal and vitamin E-deficient rats // Mech. Ageing Dev.- 1992.- Vol. 64(3).- P. 273-292.

119. Mazor D., Brill G., Shorer Z., Moses S., Meyerstein N. Oxidative damage in red blood cells of vitamin E deficient patients // Clin. Chim. Acta.- 1997.- Vol. 265 (l).-P. 131-137.

120. Mircevova L. The role of Mg++-ATPase (actomyosine-like protein) in maintaining the biconcave shape of erythrocytes // Blut.- 1977.- vol 35(4).- P. 323-327.

121. Mircevova L., Victora L., Kodicek M., Rehackova H., Simonova A. The role of spectrin dependent ATPase in erytrocyte shape maintenance // Biomed. Biochim. Acta.- 1983.- Vol. 42(11/12).- P. 67-71.

122. Nair P. P. Vitamine E and metabolic regulation // Ann. N. Y. Acad. Sci.- 1972a.-Vol. 203.- P. 53-61.

123. Nair P. P. Vitamine E regulation of the biosintesis of porphirins and heme // J. Agr. and Food Chem.- 1972b.- Vol. 20(3).- P. 476-480.

124. Nakamura Т., Moriya M., Murakoshi N., Shimizu Y., Nishimura M. Effects of phenylalanine and tyrosine on cold acclimation in mice // Nippon Yakurigaku Zasshi.- 1997.-Vol. 110(1).-P. 177-182.

125. Nath K. A., Grande J., Croatt A., et al. Redox regulation of renal DNA synthesis, transforming growth factor-betal and collagen gene expression // Kidney Int.-1998.- Vol. 53(2).- P. 367-381.

126. Nathan C. Perspectives Series: Nitric Oxide and Nitric Oxide Synthases Inducible Nitric Oxide Synthase: What Difference Does It Make? // J. Clin. Invest.1997.- Vol. 100(10).- P. 2417-2423.

127. Newaz M. A., Nawal N. N. Effect of alpha-tocopherol on lipid peroxidation and total antioxidant status in spontaneously hypertensive rats // Am J Hypertens.1998.-Vol. 11(12).-P. 1480-1485.

128. Nishiyama H., Itoh K., Kaneko Y., et al. Glycine-rich RNA-binding Protein Mediating Cold-inducible Suppression of Mammalian Cell Growth // J. Cell. Biol.- 1997.- Vol. 137(4).- P. 899-908.

129. Nohl H. Generation of superoxide radicals as byproduct of cellular respiration // Ann. Biol. Clin. (Paris).- 1994.- Vol. 52(3).- P. 199-204.

130. Pendergast D. R., Krasney J. A., De Roberts D. Effects of immersio in cool water on lung-exhaled nitric oxide at rest and during exercise // Respir. Physiol.-1999.-Vol. 115(1).-P. 73-81.

131. Peng J. F., Kimura В., Fregly M., Phillips M. I. Reduction of cold-induced hypertension by antisense oligodeoxynucleotides to angiotensinogen mRNA and ATi receptor mRNA in brain and blood // Hypertension.- 1998.- Vol. 31.- P. 13171323.

132. Pinkus R., Weiner L. M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappa В and glutathione S~transferase gene expression // J. Biol. Client.- 1996.- Vol. 271(23).- P. 13422-13429.

133. Pipkin F. B. Fortnightly Review: The hypertensive disorders of pregnancy // BMJ.- 1995.-Vol. 311.-P. 609-613.

134. Reis S. E., Blumenthal R. S., Gloth S. Т., Gerstenblith R. G., Brinken J. A. Estrogen acutely abolishes cold-induced coronary vasoconstriction in postmenopausal women // Circulation.- 1994.- Vol. 90.- P. 457.

135. Salminen A., Kainulainen H., Arstila A. U., Vihko V. Vitamin E deficiency and the susceptibility to lipid peroxidation of mouse cardiac and skeletal muscles // Acta Physiol. Scand.- 1984.- Vol. 122(4).- P. 565-570.

136. Sampson G. M. A., Muller D. P. Studies on the neurobiology of vitamin E (al-pha-tocopherol) and some other antioxidant systems in the rat // Neuropathol. Appl. Neurobiol.- 1987.- Vol. 13(4).- P. 289-296.

137. Sen С. К., Atalay М., Agren J., Laaksonen D. E., Roy S., Hanninen O. Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise // APStracts.- 1997.- Vol. 4.- P. 0101 A.

138. Shapiro S. S., Mott D. D., Machlin L. J. Altered binding of glyceraldehyde 3 -phosphate dehidrogenase to its binding site in vitamine E - deficient red blood cells //Nutr. Rept. Int.- 1982.- Vol. 25(3).- P. 507-517.

139. Sharmanov А. Т., Aidarkhanov В. В., Kurmangalinov S. M. Effect of vitamin E deficiency on oxidative metabolism and antioxidant enzyme activity of macrophages // Ann. Nutr. Metab.- 1990.- Vol. 34(3).- P. 143-146.

140. Siddons R. C., Mills C. F. Glutatione peroxidase activity and erythrocyte stability in calves differing in selenium and vitamin E status // Brit. J. Nutr.-1981.- Vol. 46(2).-P. 345-355.

141. Simonoff M., Sergeant C., Gamier N., et al. Antioxidant status (selenium, vitamins A and E) and aging // EXS.- 1992.- Vol. 62.- P. 368-397.

142. Sklan D., Rabinowitch H. D., Donaghue S. Superoxide dismutase: effect of vitamins A and E // Nutr. Rept. Int.- 1981.- Vol. 24(3).- P. 551-555.

143. Smith S. C., Guilbert L. J., Yui J., Baker P. N., Davidge S. T. The role of reactive nitrogen/oxygen intermediates in cytokine-induced trophoblast apoptosis // Placenta.- 1999.- Vol. 20(4).- P. 309-315.

144. Snircova M., Kucharska J., Herichova I., Bada V., Gvozdjakova A. The effect of an alpha-tocopherol analog, MDL 73404, on myocardial bioenergetics // Bratisl Lek Listy.- 1996.- Vol. 97. P. 355-359.

145. Soliman M. K. Uber die Blutveranderungen bei Ratten nach verfuttem einer Tocopherol und Ubichinon Mangeldiat. 1. Zytologische und biochemische Ve-randerungen im Blut von vitamin E Mangelratten // Zbl. Veterinarmed.- 1973.-Vol. 20(8).- P. 624-630.

146. Stampfer M. J., Hennekens С. H., Manson J. E., et al. Vitamin E consumption and the risk of coronary disease in women // N. Engl. J. Med.- 1993.- Vol. 328.- P. 1444-1449.

147. Sun J. Z., Tang X. L., Park S. W., et al. Evidence for an Essential Role of Reactive Oxygen Species in the Genesis of Late Preconditioning Against Myocardial Stunning in Conscious Pigs // J. Clin. Invest. 1996,- Vol. 97 (2).- P. 562-576.

148. Sun Z., Cade J. R., Fregly M. J. Cold-induced hypertension. A model of miner-alocorticoid-induced hypertension// Ann.N.Y.Acad.Sci.- 1997.- Vol.813.- P.682-688.

149. Sun Z., Cade R, Katovich M. J., Fregly M. J. Body fluid distribution in rats with cold-induced hypertension // Physiol. Behav.- 1999.- Vol. 65(4-5).- P. 879-884.

150. Sundaresan M., Yu Z.-X., Ferrans V. J., Irani K., Finkel T. Requirement for generation of H202 for platelet-derived growth factor signal transduction // Science (Wash. DC).- 1995.- Vol. 270.- P. 296-299.

151. Suzuki J., Gao M., Ohinata H., Kuroshima A., Koyama T. Chronic cold exposure stimulates microvascular remodeling preferentially in oxidative muscles in rats // Jpn. J. Physiol.- 1997.- Vol. 47(6).- P. 513-520.

152. Tamai H., Miki M., Mino M. Hemolysis and membrane lipid changes induced by xanthine oxidase in vitamin E deficient red cells // J. Free Radic. Biol. Med.-1986.-Vol. 2(1).- P. 49-56.

153. Tanaka M., Sotomatsu A., Hirai S. Aging of the brain and vitamin E // J. Nutr. Sci. Vitaminol. (Tokyo).- 1992.- Spec. No.- P. 240-243.

154. Tappel A. L. Free radical lipid peroxidation damage and its inhibition by vita-mine E and selenium // Fed. Proc.- 1965.- Vol. 24(1).- P. 73-78.

155. Tappel A. L. Lipid peroxidation damage to cell components // Fed. Proc.- 1973.-Vol. 32(8).-P. 1870-1874.

156. Taylor A.J. N. Asthma and allergy // В. M. J.- 1998.- Vol. 316.- P. 997-999.

157. Tate D. J., Miceli M. V., Newsome D. A. Phagocytosis and H2C>2 induce catalase and metaliothionein irene expression in human retinal pigment epithelial cells // Invest. Onithalmol. Vis. Sci.- 1995.- Vol. 36.- P. 1271-1279.

158. Tensuo N. Effect of daily infusion of noradrenaline on metabolism and skin temperature in rabbits // J. Appl. Physiol.- 1972.- Vol. 32(2).- P. 199-202.

159. Tiidus P. M., Houston M. E. Antioxidant and oxidative enzyme adaptations to vitamin E deprivation and training // Med. Sci. Sports. Exerc.- 1994.- Vol. 26(3).-P. 354-359.

160. Tsen С. C., Collier H. B. The protective action of tocopherol against hemolisis of rat eritrocites by dialuric acid // Canad. J. Biochem. Physiol.- I960.- Vol. 38(9).- P. 957-964.

161. Tudhope G. R., Hopkins J. Lipid peroxidation in human erythrocytes in tocopherol deficiency // Acta Haematol.- 1975.- Vol. 53(2).- P. 98-104.

162. Valentine J. S., Wertz D. L., Lyons T. J., Liou L.-L., Goto J. J., Gralla E. B. The dark side of dioxygen biochemistry // Current Opinion in Chemical Biology.-1998.-Vol. 2.-P. 253-262.

163. Vransky V. K. Red blood cell membrane resistanse // Biophys. Membrane Transport.- Wroclaw.- 1976.- Part 2.- P. 185-213.

164. Vuillanine R. Role biologiqe et mode d" action des vitamines E // Rec. med vet.-1974.-Vol. 150(7).-P. 587-592.

165. Wang J., Huang C. J., Chow С. K. Red cell vitamin E and oxidative damage: a dual role of reducing agents // Free Radic. Res.- 1996 Vol. 24(4).- P. 291-298.

166. Wagner B. A., Buettner G. R., Burns C. P. Vitamin E slows the rate of free radical-mediated lipid peroxidation in cells // Arch. Biochem. Biophys.- 1996.- Vol. 334.-P. 261-267.

167. Wallace J. L., Bell C. J. Gastroduodenal mucosal defense // Current Opinion in Gastroenterology 1994 .-Vol. 10.-P. 589-594.

168. Walsh D. M., Kennedy D. G., Goodall E. A., Kennedy S. Antioxidant enzyme activity in the muscles of calves depleted of vitamin E or selenium or both // Br. J. Nutr.- 1993.- Vol. 70(2).- P. 621-630.

169. Watson A. L., Palmer M. E., Jauniaux E., Burton G. J. Variations in expression of copper/zinc superoxide dismutase in villous trophoblast of the human placenta with gestational age // Placenta.- 1997.- Vol. 18(4).- P. 295-299.

170. Young J. В., Shimano Y. Effects of rearing temperature on body weight and abdominal fat in male and female rats // APStracts.-1991.- Vol. 4.- P. 041 OR.

171. Zeiher A. M., Drexler H., Wollschlager H., Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis // Circulation.- 1991.- Vol. 84.- P. 19841992.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

3.1. Адаптация к воздействию низкой температуры

Приспособление к холоду – наиболее трудно - достижимый и быстро утрачиваемый без специальных тренировок вид климатической адаптации человека. Объясняется это тем, что, согласно современным научным представлениям, наши предки жили в условиях теплого климата и были гораздо больше приспособлены к защите от перегревания. Наступившее похолодание было относительно быстрым и человек, как вид, "не успел" приспособиться к этому изменению климата большей части планеты. Кроме того, к условиям низких температур люди стали приспосабливаться, в основном, за счет социальных и техногенных факторов – жилища, очага, одежды. Однако, в экстремальных условиях человеческой деятельности (в том числе в альпинистской практике) физиологические механизмы терморегуляции - "химическая" и "физическая" ее стороны становятся жизненно важными.

Первой реакцией организма на воздействие холода является снижение кожных и респираторных (дыхательных) потерь тепла за счет сужения сосудов кожи и легочных альвеол, а также за счет уменьшения легочной вентиляции (снижение глубины и частоты дыхания). За счет изменения просвета сосудов кожи кровоток в ней может варьировать в очень широких пределах – от 20 мл до 3 литров в минуту во всей массе кожи.

Сужение сосудов приводит к снижению температуры кожи, но когда эта температура достигает 6 С и возникает угроза холодовой травмы, развивается обратный механизм – реактивная гиперемия кожи. При сильном охлаждении может возникнуть стойкое сужение сосудов в виде их спазма. В этом случае появляется сигнал неблагополучия – боль.

Снижение температуры кожи кистей рук до 27 º С связано с ощущением "холодно", при температуре, меньшей 20 º С - "очень холодно", при температуре меньше 15 º С - "невыносимо холодно".

При воздействии холода вазоконструкторные (сосудосуживающие) реакции возникают не только на охлажденных участках кожи, но и в отдаленных областях организма, в том числе во внутренних органах ("отраженная реакция"). Особенно выражены отраженные реакции при охлаждении стоп – реакции слизистой носа, органов дыхания, внутренних половых органов. Сужение сосудов при этом вызывает снижение температуры соответствующих областей тела и внутренних органов с активизацией микробной флоры. Именно этот механизм лежит в основе так называемых "простудных" заболеваний с развитием воспаления в органах дыхания (пневмонии, бронхиты), мочевыделения (пиелиты, нефриты), половой сферы (аднекситы, простатиты) и т.д.

Механизмы физической терморегуляции первыми включаются в защиту постоянства внутренней среды при нарушении равновесия теплопродукции и теплоотдачи. Если этих реакций недостаточно для поддержания гомеостаза, подключаются "химические" механизмы – повышается мышечный тонус, появляется мышечная дрожь, что приводит к усилению потребления кислорода и увеличению теплопродукции. Одновременно возрастает работа сердца, повышается кровяное давление, скорость кровотока в мышцах. Подсчитано, что для поддержания теплобаланса обнаженного человека при неподвижном холодном воздухе необходимо увеличение теплопродукции в 2 раза на каждые 10о снижения температуры воздуха, а при значительном ветре теплопродукция должна удваиваться на каждые 5о понижения температуры воздуха. У тепло одетого человека удвоение величины обмена будет компенсировать понижение внешней температуры на 25º.

При многократных контактах с холодом, локальных и общих, у человека вырабатываются защитные механизмы, направленные на предотвращение неблагоприятных последствий холодовых воздействий. В процессе акклиматизации к холоду повышается устойчивость к возникновению отморожений (частота отморожений у акклиматизированных к холоду лиц в 6 – 7 раз ниже, чем у неакклиматизированных). При этом, в первую очередь, происходит совершенствование сосудодвигательных механизмов ("физическая" терморегуляция). У лиц, длительно подвергающихся действию холода, определяется повышенная активность процессов "химической" терморегуляции – основной обмен; у них повышен на 10 – 15%. У коренных жителей Севера (например, эскимосов) это превышение достигает 15 – 30% и закреплено генетически.

Как правило, в связи с совершенствованием механизмов терморегуляции в процессе акклиматизации к холоду уменьшается доля участия скелетной мускулатуры в поддержании теплобаланса – становится менее выраженной интенсивность и продолжительность циклов мышечной дрожи. Расчеты показали, что за счет физиологических механизмов приспособления к холоду обнаженный человек способен переносить длительное время температуру воздуха не ниже 2оС. По-видимому, эта температура воздуха является пределом компенсаторных возможностей организма поддерживать теплобаланс на стабильном уровне.

Условия, при которых организм человека адаптируется к холоду, могут быть различными (например, работа в неотапливаемых помещениях, холодильных установках, на улице зимой). При этом действие холода не постоянное, а чередующееся с нормальным для организма человека температурным режимом. Адаптация в таких условиях выражена нечетко. В первые дни, реагируя на низкую температуру, теплообразование возрастает неэкономно, теплоотдача еще недостаточно ограничена. После адаптации процессы теплообразования становятся более интенсивными, а теплоотдача снижается.

Иначе происходит адаптация к условиям жизни в северных широтах, где на человека влияют не только низкие температуры, но и свойственные этим широтам режим освещения и уровень солнечной радиации.

Что же происходит в организме человека при охлаждении?

Вследствие раздражения холодовых рецепторов изменяются рефлекторные реакции, регулирующие сохранение тепла: сужаются кровеносные сосуды кожи, что на треть уменьшает теплоотдачу организма. Важно, чтобы процессы теплообразования и теплоотдачи были сбалансированными. Преобладание теплоотдачи над теплообразованием приводит к понижению температуры тела и нарушению функций организма. При температуре тела 35 º С наблюдается нарушение психики. Дальнейшее понижение температуры замедляет кровообращение, обмен веществ, а при температуре ниже 25 º С останавливается дыхание.

Одним из факторов интенсификации энергетических процессов является липидный обмен. Например, полярные исследователи, у которых в условиях низкой температуры воздуха замедляется обмен веществ, учитывают необходимость компенсировать энергетические затраты. Их рационы отличаются высокой энергетической ценностью (калорийностью).

У жителей северных районов более интенсивный обмен веществ. Основную массу их рациона составляют белки и жиры. Поэтому в их крови содержание жирных кислот повышено, а уровень сахара несколько понижен.

У людей, приспосабливающихся к влажному, холодному климату и кислородной недостаточности Севера, также повышенный газообмен, высокое содержание холестерина в сыворотке крови и минерализация костей скелета, более утолщенный слой подкожного жира (выполняющего функцию теплоизолятора).

Однако не все люди в одинаковой степени способны к адаптации. В частности, у некоторых людей в условиях Севера защитные механизмы и адаптивная перестройка организма могут вызвать дезадаптацию - целый ряд патологических изменений, называемых "полярной болезнью".

Одним из наиболее важных факторов, обеспечивающих адаптацию человека к условиям Крайнего Севера, является потребность организма в аскорбиновой кислоте (витамин С), повышающей устойчивость организма к, различного рода инфекциям.

Теплоизоляционная оболочка нашего тела включает поверхность кожи с подкожным жиром, а так же расположенные под ним мышцы. Когда кожная температура понижается ниже обычного уровня, сужение кровеносных сосудов кожи и сокращение скелетных мышц повышают изоляционные свойства оболочки. Установлено, что сужение сосудов пассивной мышцы обеспечивает до 85% общей изоляционной способности организма в условиях экстремально низких температур. Эта величина противодействия теплопотерям в 3 – 4 раза превышает изоляционные способности жира и кожи.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Герасимова Людмила Ивановна. Патогенетическая роль дезадаптации к холоду в развитии донозологических состояний в условиях Севера: диссертация... доктора медицинских наук: 14.00.16 / Герасимова Людмила Ивановна; [Место защиты: ГОУВПО "Санкт-Петербургский государственный медицинский университет"].- Санкт-Петербург, 2008.- 242 с.: ил.

Введение

Глава 1. Обзор литературы 16

1.1. Концепция здоровья в аспекте теории адаптации 16

1.2. Адаптация к холоду у человека 21

1.3. Отрицательные эффекты адаптации к холоду. Холод как фактор риска 41

1.4. Возрастные особенности функции терморегуляции 53

Глава 2. Объекты и методы исследования 57

2.1. Обследованные группы 57

2.2. Условия проведения исследований, контроль теплового состояния испытуемых 58

2.3. Биометрические исследования 59

2.4. Методика дозирования нагрузки и утомления 61

2.5. Методики электронейромиографического исследования.61

2.6. Анализ частоты холод-ассоциированных симптомов 78

2.7. Оценка функции внешнего дыхания 80

2.8. Анализ вызванных кожных вегетативных потенциалов 83

2.9. Статистическая обработка результатов исследований 87

Глава 3. Холод-ассоциированные симптомы как признак снижения устойчивости к холоду . 88

3.1. Влияние длительности проживания на Европейском Севере на частоту холод-ассоциированных симптомов 88

3.2. Частота холод-ассоциированных симптомов у пациентов с терапевтической патологией 96

3.3. Факторы, ограничивающие работоспособность рук при манипуляциях на холоде 105

Глава 4. Функциональное состояние легочной вентиляции и вегетативной нервной системы при высокой чувствительности к холоду 115

4.1. Функциональные показатели системы внешнего дыхания у лиц с различной адаптированностью к условиям Европейского Севера 117

4.2. Влияние адаптированности к условиям Европейского Севера на параметры вызванного кожного вегетативного потенциала 125

Глава 5. Влияние адаптации к условиям севера на проводящие свойства периферических нервов 133

Глава 6. Электромиографические характеристики нервно-мышечного статуса в разных возрастных группах в условиях европейского севера 139

6.1. Оценка нервно-мышечного статуса с помощью турн-амплитудного анализа ИЭМГ 139

6.2. Возрастные особенности турн-амплитудных параметров ЭМГ изометрического сокращения 155

6.3. Влияние возраста на работоспособность и турн-амплитудные характеристики ЭМГ при утомлении, вызванном динамической нагрузкой 166

Глава 7. Электронеиромиографические характеристики и работоспособность двигательной системы при длительном воздействии производственной вибрации , 175

7.1. Параметры проведения импульса по двигательным и чувствительным волокнам периферических нервов 176

7.2. Параметры потенциалов двигательных единиц 177

7.3. Турн-амплитудные характеристики ЭМГ при дозированном изометрическом сокращении 183

7.4. Влияние длительного воздействия вибрации на работоспособность и турн-амплитудные параметры ЭМГ при динамическом утомлении 188

Глава 8. Обсуждение результатов 199

Заключение 228

Список литературы 235

Приложение 282

Введение к работе

Актуальность проблемы

Проблема сохранения здоровья человека, проживающего в условиях Севера, остается актуальной на протяжении последнего времени, что связано, с активным освоением территорий, увеличением миграционных процессов на территории России, повышением доли пожилого населения, в том числе в Северо-Западном регионе. Здоровье человека на Севере формируется под действием комплексного эффекта всех составляющих климата высоких широт . Сложный комплекс внешних воздействий, включая суровые природно-климатические факторы, большой спектр антропогенных влияний предъявляют высокие требования к организму. Сохранение здоровья человека, предупреждение заболеваний становится не только частной проблемой медицины, но и естествознания в целом, а также одной из общегуманитарных ценностей . Негативные тенденции в изменении показателей здоровья населения и состояния среды обитания человека ставят эту проблему в разряд наиболее приоритетных задач государственной политики .

В суровых климатических условиях высоких широт многие заболевания характеризуются ранним началом, неспецифичностью симптомов, большей распространенностью нарушения функционального состояний организма, чем в других климатических зонах . Значительное место в заболеваемости занимают болезни системного перенапряжения, снижается порог вредного воздействия на организм производственно-экологических факторов и уменьшаются функциональные возможности организма к восстановлению нарушений гомеостаза , поскольку, по мнению Ю. П. Гичева, воздействие внешних факторов на организм современного человека превышает его адаптивные возможности .

Как показано в обзоре В. И. Хаснулина с соавт. , Республика Карелия, регион Северо-Запада РФ, отличается дискомфортностью климато-географических условий, которая сравнима с таковой в регионах Крайнего Севера, что вызывает напряжение адаптационных систем, затрудняет компенсацию и увеличивает показатели общей смертности, в том числе людей трудоспособного возраста. Аналогичные данные о состоянии здоровья населения Республики Карелия приведены в монографии Н. В. Доршаковой .

Таким образом, данные многочисленных исследований свидетельствуют о том, что для состояния здоровья населения, проживающего в регионах Севера, характерны системные проявления дезадаптации организма , важную роль в которой, на наш взгляд, играет неадекватность приспособления к холоду.

Представляется целесообразным рассмотреть особенности функционирования организма в условиях Севера с точки зрения адекватности механизмов температурной адаптации. Приспособление к длительному действию холода затрагивает практически все процессы жизнедеятельности, которые координируются в рамках единой программы сохранения температурного гомеостаза организма. Многочисленными исследованиями показаны нейро-гормональные механизмы управления процессом адаптации к холоду, направленные на сохранение гомойотермии, основу которого составляют системные изменения нейро-гормональной регуляции и обмена веществ, ведущее значение в котором имеют повышение участия адренергических механизмов и изменение тиреоидного статуса организма .

Проявления отрицательного влияния холода в различных системах организма объединяют в понятие «холод-ассоциированные симптомы» (ХАС) , включающее в себя боли (дискомфорт), нарушения чувствительности и изменения цвета открытых частей тела, а также признаки функциональной недостаточности физиологических систем организма . Феномен Рейно,

7 в котором сочетаются перечисленные признаки, считается одним из специфичных проявлений непереносимости холода .

Многими авторами отмечено, что феномен Рейно имеет общие патогенетические механизмы с холод-индуцированной вазоконстрикциеи, основу которых составляет усиление адренореактивности сосудов . Этим обусловлены трудности дифференциальной диагностики ранних проявлений феномена Рейно и усиленной холод-индуцированной вазоконстрикции, в возникновении которой, как и феномена Рейно, помимо указанных факторов, играют роль нарушения эндотелий-зависимой и эндотелий-независимой вазодилатации .

Исследованиями последних лет в области определения факторов риска для населения высоких широт показано, что распространенность феномена Рейно составляет, по разным данным, от 0,5 до 20 % , наблюдается зависимость частоты феномена Рейно от широты местности , установлена связь между наличием данного симптома и частотой Холодовых повреждений (отморожений) , а также возможность участия механизмов развития феномена Рейно в формировании соматических заболеваний человека , отмечена зависимость электронейромиографи-ческих параметров от наличия вторичного (индуцированного вибрацией) феномена Рейно . Указанные факты, а также общность происхождения холод-индуцированной вазоконстрикции и феномена Рейно на основе усиления активности адренергических механизмов позволяют расценивать ХАС в качестве признаков напряженной адаптации к холоду и факторов риска для населения, проживающего в условиях Севера ,

Морфо-функциональное состояние двигательной системы и ее основного эффекторного органа - скелетной мускулатуры - играет важную роль как в реакциях срочной, так и долговременной адаптации к холоду. В экспериментальных исследованиях показано вовлечение и характер участия двигательной системы в поддержании температурного гомеостаза организма . Вместе с тем в литературе нет данных, интегративно характеризующих нервно-мышечный статус человека при долговременной адаптации к холоду и особенности функционирования двигательной системы с точки зрения адекватности процесса приспособления к холоду.

Электромиография является одним из наиболее информативных современных методов оценки функционального состояния двигательной системы , поэтому исследование интерференционной электромиограммы (ИЭМГ) позволяет получить объективную картину состояния нервно-мышечного аппарата и дополнить данные других методов диагностики . В последнее время отмечается значительный рост интереса исследователей к использованию и разработке объективных методов интерпретации ИЭМГ, учитывая ее неинвазивность, хорошую переносимость и возможность использования в эргономических исследованиях, в том числе для оценки функционального состояния и работоспособности двигательной системы человека в различных видах деятельности и в диагностических целях .

Проблема донозологических состояний, или «предболезни», давно находится в сфере внимания клинической медицины. При этом в последнее время большое значение придается выявлению изменений в организме, соответствующих начальному звену патогенеза определенного заболевания . В этой связи современная научная концепция оценки и прогнозирования функциональных состояний организма представляет интерес для медицины и для общества в целом, поскольку позволяет выявлять донозологические состояния организма и проводить своевременную профилактическую работу с целью сохранения здоровья населения, проживающего в неблагоприятных климато-географических условиях.

С этой целью в рамках настоящего исследования проведен комплексный анализ механизмов, лежащих в основе жизнеобеспечения организма при длительном влиянии условий Севера, и, в частности, приспособления к хо-

9 лоду. Установлена роль механизмов, обеспечивающих устойчивую адаптацию к холоду, а именно, значение холод-индуцированнных сосудистых реакций и функционального состояния двигательной системы на основании современных электронейромиографических методов.

Цель исследования

Установить значение механизмов температурной адаптации в формировании здоровья человека в условиях Севера, а также изучить механизмы развития дезадаптации к холоду и их проявления с целью диагностики доно-зологических состояний человека в условиях Севера.

Задачи исследования

Исследовать адекватность процесса приспособления к холоду на основе анализа частоты холод-ассоциированных симптомов.

Оценить функциональное состояние вегетативной нервной системы и параметры легочной вентиляции в зависимости от степени адаптации субъектов к условиям Европейского Севера.

Исследовать проводящие свойства сенсорных и моторных волокон периферических нервов в группах с различной адаптированностью к условиям Европейского Севера.

Установить турн-амплитудные характеристики ИЭМГ изометрического сокращения, характеризующие «неврогенный» тип нарушений функции скелетных мышц.

Установить онтогенетические особенности двигательной системы на основе турн-амплитудного анализа ИЭМГ при дозированном изометрическом сокращении, а также при проведении функционального теста с мышечным утомлением.

Установить электронейромиографические признаки, характеризующие работоспособность и функциональное состояние двигательной системы

10 при сочетанном влиянии холода и вредного производственного фактора (производственная вибрация).

Научная новизна

В исследовании впервые проведен системный анализ состояния организма человека в условиях Севера и показаны роль механизмов, лежащих в основе температурной адаптации, в формировании здоровья человека на Севере, а также предпосылки развития дезадаптации к холоду и возникновения донозологических состояний.

Впервые изучена роль холод-ассоциированных симптомов в качестве признаков дезадаптации организма к условиям холода и показана связь их возникновения с состоянием функциональной системы температурной адаптации. Установлено, что субъективные признаки дезадаптации к холоду в форме ХАС коррелируют с «предпатологическими» изменениями вегетативной регуляции, функционирования сердечно-сосудистой системы, состояния легочной вентиляции и электрофизиологическими свойствами двигательной системы.

С помощью современных электрофизиологических методов даны количественные характеристики функционального состояния и резервов двигательной системы человека в условиях длительного действия холода как проявления пластичности двигательной системы. Кроме того, впервые на основе количественных параметров ИЭМГ установлены особенности структурно-функционального состояния периферического отдела двигательной системы в различные периоды онтогенеза. Показано взаимодействие механизмов долговременной адаптации к холоду и индивидуальных факторов на уровне скелетных мышц.

С помощью комплексных электронейромиографических методов впервые выявлен отрицательный эффект адаптации к холоду в форме нарушения миелинизации в периферической нервной системе и показана его потенциальная роль в снижении работоспособности двигательной системы у лиц,

11 длительно проживающих в условиях Севера, а также в развитии и прогрес-сировании заболеваний двигательной системы при длительном воздействии охлаждения.

Теоретическая и научно-практическая значимость

Проведенное исследование развивает положения адаптационной медицины в изучении факторов, влияющих на здоровье человека в условиях Севера, и общих закономерностей развития дезадаптационных реакций. В рамках настоящего исследования проведен системный анализ состояния здоровья человека в условиях Севера с точки зрения адекватности процесса долговременной адаптации к холоду. Показано значение холод-ассоциированных симптомов в качестве признаков неадекватности процесса долговременной адаптации к холоду и факторов риска развития патологии в различных системах организма в условиях Севера.

Сопоставлены субъективные признаки дезадаптации к холоду в форме ХАС и результаты комплексного функционального исследования. В частности, с помощью методов функциональной диагностики установлены признаки, свидетельствующие о дезадаптации к холоду: повышение участия адренергических механизмов регуляции функций у мигрантов по сравнению с постоянными жителями Севера, а также у лиц с холод-ассоциированными симптомами в форме феномена Рейно; установлены субклинические нарушения вентиляции у мигрантов по сравнению с постоянными жителями Севера, а также у лиц с холод-ассоциированными симптомами в форме холодовой одышки.

Доказан отрицательный эффект адаптации к холоду в форме снижения нервно-мышечной иннервации и установлены особенности электронейро-миографических характеристик двигательной системы в зависимости от адаптированности к холоду, при сочетании средовых условий длительного охлаждения и возрастных изменений, а также вредных производственных факторов (производственная вибрация).

Анализ взаимодействия функционального состояния двигательной системы (механизмы долговременной адаптации к холоду) и вегетативного обеспечения функций организма (факторы срочной адаптации к холоду, компенсаторные механизмы) имеет теоретическое значение для изучения иерархии и взаимодействия разных функций организма, и может найти свое приложение в теории систем.

Научно-практическое значение диссертации заключается в усовершенствовании методики ЭМГ в части развития неинвазивных способов регистрации сигналов и количественного (турн-амплитудного) анализа ИЭМГ. Сопоставлены результаты использованной методики турн-амплитудного анализа ИЭМГ при дозированном изометрическом сокращении и широко применяемого метода стимуляционной ЭНМГ. Расширено использование количественного анализа ИЭМГ для оценки работоспособности и функциональных резервов двигательной системы человека при различных функциональных состояниях, в том числе связанных с длительным влиянием Севера.

С помощью комплексного применения электронейромиографических методов исследования, включая турн-амплитудный анализ ИЭМГ, выделены электромиографические синдромы, характеризующие возрастные изменения двигательной системы у жителей Севера, состояния, связанные с мышечным перенапряжением, в процессе утомления и восстановления, а также при патологии двигательной системы вследствие длительного влияния производственной вибрации.

Показана значимость холод-ассоциированных симптомов как ранних признаков дезадаптации к холоду и развития донозологических состояний в условиях Севера.

Положения, выносимые на защиту:

Холод-ассоциированные симптомы характеризуют состояние «предбо-лезни», связанное с неадекватным обеспечением процесса долговременной адаптации к холоду; усиленная холод-индуцированная вазоконстрикция является признаком повышения участия адренергиче-ских механизмов регуляции функций организма и напряженной адаптации к холоду.

Отрицательный эффект адаптации к холоду, формирующийся в двигательной системе человека, характеризуется снижением функциональных возможностей скелетной мускулатуры вследствие нарушения проводящих свойств периферических нервов.

Формирующийся с возрастом «неврогенный» тип ИЭМГ обусловлен, потенцирующим влиянием средовых факторов, в частности, условиями охлаждения, что способствует возрастному снижению функции двигательной системы у постоянных жителей Севера, а также служит фактором, предрасполагающим к развитию и прогрессированию патологии опорно-двигательной системы в регионах с холодным климатом.

Апробация работы

Основные результаты диссертации доложены и обсуждены на российских и международных научных симпозиумах: III Международном конгрессе по патофизиологии (Lahti, 1998); II и III российском конгрессе по патофизиологии (Москва, 2000, 2004); XXXIII Международном конгрессе по физиологическим наукам (Санкт-Петербург, 1997); VIII Мировом конгрессе Общества по адаптивной медицине (Москва, 2006); на объединенных Пленумах Российского и Московского научных обществ по патофизиологии (Москва, 2006, 2007); XVII Мировом конгрессе по неврологии (London, 2001), XVIII и XIX съездах ВФО им. И. П. Павлова (Казань, 2001; Екатерин-

14 бург, 2004), IV и V съездах физиологов Сибири и Дальнего Востока (Новосибирск, 2002; Томск, 2004); Всероссийском форуме «Здоровье нации - основа процветания России»» (Москва, 2005); XI Национальном конгрессе «Человек и его здоровье» (Санкт-Петербург, 2006); международных конференциях Environmental Ergonomics (Aahen, 2000), Problems with Cold Work (Solna, 1998); симпозиуме «Патофизиология и современная медицина» (Москва, 2004); конференции «Механизмы типовых патологических процессов» (Санкт-Петербург, 2003), II, III, IV международных конференциях по физиологии мышц и мышечной деятельности (Москва, 2003, 2005, 2007), I Всероссийской с международным участием конференции «Управление движением» (Великие Луки, 2006); российской конференции «Организм и окружающая среда: жизнеобеспечение и защита человека в экстремальных условиях» (Москва, 2000); международной конференции «Проблемы экологии человека» (Архангельск, 2000, 2004); 10-й Всероссийской конференции по физиологии труда (Москва, 2001); российской конференции «Актуальные проблемы экологической физиологии человека на Севере» (Сыктывкар, 2001, 2004); XI международном симпозиуме «Эколого-физиологические проблемы адаптации» (Москва, 2003); 6-й научно-практической конференции «Методы исследования регионарного кровообращения и микроциркуляции в клинике и эксперименте» (Санкт-Петербург, 2007).

Реализация результатов исследования

Диссертационная работа выполнена в рамках целевых программ научных исследований (№ гос. регистрации 0120.0603111 (Исследование базовых механизмов терморегуляционной мышечной активности в построении движения и двигательном контроле у человека), 0120.0502699 (Изучение нейрофизиологических механизмов движения человека при действии факторов, лимитирующих функциональные возможности двигательной системы)). Исследования были поддержаны грантами РФФИ 307-2003-04, РГНФ «Русский

15 Север» 01-06-49004 а/с, Программой Росбразования «Университеты России» УР 11.01.245.

Теоретические положения диссертации включены в учебные программы по дисциплинам «Патофизиология» и «Нормальная физиология» на медицинском факультете ПетрГУ, автором разработан и внедрен в образовательный процесс электронный учебный ресурс «Стресс и адаптация» (акт о внедрении от 10.10.07). Результаты работы используются в лечебно-диагностической практике Республиканской больницы, Детской республиканской больницы (Республика Карелия, г. Петрозаводск).

Личный вклад

Постановка целей и задач исследования, планирование и проведение исследований, анализ и обобщение данных, подготовка публикаций по материалам диссертации выполнены автором лично, в совместно проведенных исследованиях - при его решающей роли.

Публикации

Объем и структура диссертации

Текст диссертации изложен на 289 страницах, состоит из введения, обзора литературы, материалов и методов исследования, результатов собственного исследования, обсуждения результатов, заключения, выводов, практических рекомендаций и списка литературы. Список литературы включает 430 источников, в том числе 185 - отечественных и 245 - зарубежных. Диссертация содержит 28 таблиц и 48 рисунков.

Концепция здоровья в аспекте теории адаптации

В настоящее время проблема взаимодействия организма человека с окружающей средой не теряет своей актуальности. Сложный комплекс внешних воздействий, включая большой спектр антропогенных влияний, предъявляет высокие требования к организму. Сохранение здоровья человека, предупреждение заболеваний становится не только частной проблемой медицины, но и естествознания в целом, а также одной из общегуманитарных ценностей .

Приспособление строения и функций организма к условиям окружающей среды происходит в процессе адаптации. Согласно концепции Г. Селье, адаптация - одно из фундаментальных качеств живой материи, которое нередко отождествляется с самим понятием жизни . В современном понимании адаптация - это процесс формирования оптимального структурно-функционального соответствия, обеспечивающий наиболее выгодное функционирование организма в определенных условиях. В данном случае проблема взаимодействия организма со средой рассматривается в рамках системно-функционального подхода, учитывающего не только внешние связи, но и комплекс изменений внутри организма, направленный на сохранение гомеостаза .

В этой связи главное содержание адаптации - это внутренние процессы в системах, которые обеспечивают сохранение ее внешних функций по отношению к среде . Эта цель достигается за счет адаптивных и компенсаторных реакций. Адаптивные реакции заключаются в том, что система, реагируя на изменение существенных для нее параметров среды, перестраивает свои структурные связи для сохранения функций, обеспечивающих ее существование как целого. Компенсаторные реакции направлены на сохранение функции системы даже в случае нарушения дея тельности функционального элемента. Таким образом, компенсаторные реакции осуществляются не элементом, а системой в отношении элемента.

Понятие адаптации используется в разных аспектах. Существует гено-типическая адаптация - процесс, составляющий основу эволюции, при котором вследствие наследственной изменчивости, мутаций и естественного отбора сформировались современные виды животных и растений. Комплекс видовых наследственных признаков лежит в основе другого вида адаптации, приобретаемой в ходе индивидуального развития организма, - фенотипиче-ской адаптации, которая формирует индивидуальный облик организма .

Концепция фенотипической адаптации была сформулирована Ф. 3. Меерсоном . Согласно этой теории, в развитии большинства адаптационных реакций прослеживаются два этапа: начальный этап - срочная, но несовершенная адаптация и последующий этап - совершенная, долговременная адаптация.

Срочная адаптационная реакция возникает сразу после начала действия раздражителя. Наибольшее значение в поддержании гомеостаза на ранних этапах адаптации имеют компенсаторные реакции организма. Типичными проявлениями срочного этапа адаптации служат рефлекторные реакции, возникающие при действии гипоксии, холода, тепла и т. д. Важнейшая черта этого этапа состоит в том, что деятельность организма протекает на пределе его физиологических возможностей - при почти полной мобилизации функциональных резервов - и оказывается недостаточной . Важное место в начальный период приспособления занимают неспецифические механизмы повышения устойчивости организма, т. е. стресс-реакция.

Долговременная адаптация развивается постепенно, в результате многократного или длительного действия факторов среды, на основе многократной реализации срочной адаптации. Основу долговременной адаптации составляют структурные изменения в органах и системах, наиболее вовле ченных в компенсаторные реакции срочного этапа. Исследования, проведенные на самых различных объектах, однозначно показали, что увеличение функции органов и систем закономерно влечет за собой активацию синтеза нуклеиновых кислот и белков в клетках, образующих эти органы и системы . Это приводит к комплексу структурных изменений, которые принципиально увеличивают мощность систем, ответственных за адаптацию, что и составляет основу перехода от срочного этапа адаптации к долговременному.

По мнению Ф. 3. Меерсона , основоположника направления «адаптационная медицина», фенотипическая адаптация у человека имеет более важное значение, чем у других видов животных, поскольку у человека данный процесс является более содержательным и эффективным. В соответствии с этими представлениями Р. П. Казначеев определил адаптацию (приспособление) как процесс поддержания функционального состояния го-меостатических систем и организма в целом, обеспечивающий его сохранение, развитие, работоспособность, максимальную продолжительность жизни в неадекватных условиях среды. Неадекватными считаются экологические условия, не соответствующие в данный момент генофенотипическим свойствам организма как биосистемы. Использование адаптации организма к различным факторам среды делает возможным расширение зоны существования человека и позволяет сохранить здоровье в неблагоприятных условиях .

Условия проведения исследований, контроль теплового состояния испытуемых

Перед проведением исследования каждый испытуемый был ознакомлен с протоколом электромиографического исследования и характером температурного воздействия. Группу сравнения составили испытуемые-добровольцы, практически здоровые к моменту исследования, при наличии хронических заболеваний вне обострения. Отбор испытуемых осуществляли на основании данных анамнеза и стандартного обследования непосредственно перед сеансом электромиографии (измерение температуры, артериального давления). Исследование детей проведено с согласия родителей в присутствии медицинского персонала. Испытуемые по собственному желанию могли прекратить участие в исследовании в любое время.

Электронейромиографические исследования, анализ вызванного кожного вегетативного потенциала (ВКВП) и спирометрические тесты проведены в лаборатории (температура воздуха +22 - 24С, влажность 50-60%; скорость движения воздуха менее 0.1 м/с) после 30-минутного нахождения испытуемого в помещении для стабилизации температуры кожи.

Для контроля теплового состояния испытуемых измеряли центральную температуру (Тц) сублингвально или ректально и средневзвешенную температуру кожи (СВТК) по N. L. Ramanathan . Для этого измеряли температуру колеи в 4 точках - под ключицей (Ті), на латеральной поверхности середины плеча (Тг), на латеральной поверхности середины бедра (Тз) и на медиальной поверхности середины голени (Т4). Дальнейший расчет СВТК производили по формуле : СВТК = 0.3 (Т, + Т2) + 0.2 (Т3 + Т4), где коэффициент перед значениями температур означает примерную площадь поверхности данных участков кожи. СВТК определяли каждые 5 - 10 мин. На рисунке 2.1 представлены графики регистрации СВТК при проведении электронейромиографических исследований у взрослых испытуемых. Центральную температуру измеряли сублингвально, так как она достаточно точно отражает ее изменения и проста в практическом применении .

У детей в возрасте от 7 дней до 3 лет измеряли температуру кожи только в одной точке (на бедре), поскольку, во-первых, она достаточно точно отражает изменения СВТК и, во-вторых, обилие электродов (электромиографических и температурных) вызывало значительное эмоционально-двигательное беспокойство ребенка, что неизбежно повлияло бы на характер ЭМГ.

Для измерения температуры использованы температурные датчики, изготовленные на основе медно-константановых термопар. Изменения электрических свойств термопары преобразовывались в цифровые значения с помощью 5-канального индикатора.

Силу максимального произвольного сокращения (maximal voluntary contraction - MVC) двухглавой мышцы плеча (га. biceps brachii) определяли следующим образом. Испытуемый стоял, его рука находилась в положении локтевого сгибания (плечо расположено вдоль грудной клетки, суставной угол 90). Испытуемый в таком положении должен был осуществлять максимальное давление на динамометр, укрепленный на нижней поверхности неподвижной. Динамометрию проводили перед каждым сеансом ЭМГ.

MVC мышц предплечья определяли при давлении кистью на динамометр, укрепленный на нижней поверхности неподвижной балки. При этом локтевой сустав был фиксирован в лонгете для избежания вовлечения мышц плеча.

Дозирование статического усилия (изометрическое сокращение) т. biceps brachii создавали грузами весом 4, 6, 8 и 10 кг, подвешенными на манжете, укрепленной на предплечье, на 2 - 3 см проксимальнее лучезапя-стного сустава, в течение 3 - 5 с. Испытуемых в положении стоя просили удерживать руку в положении локтевого сгибания (плечо расположено вдоль грудной клетки, суставной угол 90).

Утомление т. biceps brachii было вызвано динамической нагрузкой до отказа. Стоящий испытуемый должен был совершать движения в локтевом суставе типа «сгибание - разгибание» с грузом, составляющим 30% от MVC, до неспособности выполнять полноценные движения с использованием исключительно мышц руки или до появления болевых ощущений.

Дозирование статического усилия мышц предплечья (т. flexor carpi radialis, т. flexor carpi radialis) создавали грузами весом 4, 6, 8 и 10 кг, подвешенными на манжете, укрепленной на кисти, в течение 3 - 5 с. Испытуемых в положении сидя просили поддерживать нагруженную кисть на одном уровне с предплечьем, при этом рука находилась в положении локтевого сгибания, локтевой сустав фиксирован на подлокотнике. Утомление мышц предплечья вызывали движениями в лучезапястном суставе типа «сгибание - разгибание» с грузом, составляющим 30% от MVC.

Функциональные показатели системы внешнего дыхания у лиц с различной адаптированностью к условиям Европейского Севера

Парамеры, характеризующие легочные объемы и проходимость дыхательных путей в зависимости от пола и адаптированности к условиям Европейского Севера, представлены в таблице 4.1. По данным функциональных исследований системы внешнего дыхания нарушения вентиляции легкой степени документированы у 9 человек (30%).

Исследование функции внешнего дыхания выявило тенденцию к формированию нарушений легочной вентиляции у мигрантов (см. табл. 4.1, рис. 4.2, 4.3). Так, ЖЕЛ (% от должного значения) в группе мужчин, постоянно проживающих в Северо-Западном регионе РФ (СЗ - м), составила 96,96±8,54, в группе женщин, постоянно проживающих в Северо-Западном регионе РФ (СЗ - ж), - 98,81±16,27, в группе мужчин, прибывших из других регионов (Юг - м), -76,43±13,98 (р 0,05 по сравнению с СЗ), в группе женщин, прибывших из других регионов (Юг - ж), - 95,13±13,10 (р 0,05 по сравнению с м); объем вдоха (л) в группе СЗ - м составил 3,60±0,35, СЗ - ж - 2,60±0,34 (р 0,001 по сравнению с м), Юг - м - 2,83±0,11 (р 0,001 по сравнению с СЗ), Юг - ж - 2,28±0,36 (р 0,05 по сравнению с Юг - м).

Таким образом, анализ легочных объемов установил рестриктивные нарушения вентиляции у мужчин-мигрантов.

Исследования параметров форсированного выдоха обнаружили об-структивные нарушения вентиляции, также более характерные для мигрантов-мужчин. Так, ФЖЕЛ (% от должного значения) в группе СЗ - м составила 81,64±14,89, СЗ - ж - 84,05±12,06, Юг - м - 71,43±15,29, Юг - ж - 67,20±9,72; ОФВ0,5 (л) в группе СЗ - м составила 3,33±0,31, СЗ - ж - 2,26±0,47 (р 0,001 по сравнению с м), Юг - м - 2,58±0,16 (р 0,01 по сравнению с СЗ), Юг - ж - 2,03±0,44 (р 0,05 по сравнению с м); проба Тиффно, рассчитанная как отношение ОФВі/ФЖЕЛ, в группе СЗ - м составила 99,10±1,40, СЗ - ж - 96,41±3,63, Юг - м - 96,47±3,29, Юг - ж - 99,18±1,28; пиковая объемная скорость во время выдоха (ПОС, % от должного значения) в группе СЗ - м составила 110,19±6,60, СЗ - ж - 90,14±25,85, Юг - м - 74,03±6,83 (р 0,01 по сравнению с СЗ), Юг - ж - 89,48±30,15; SOS25-75 (средняя объемная скорость выдоха, определяемая в процессе выдоха от 25 до 75% ФЖЕЛ), характеризующая проходимость мелких и средних бронхиол, в группе СЗ - м составила 131,71±18,66, СЗ - ж - 109,43±26,06, Юг-м - 88,73±9,00 (р 0,01 по сравнению с СЗ), Юг-ж - 110,30±26,18.

У лиц с одышкой на холоде выявлено достоверное снижение показателей легочной вентиляции (рис. 4.4). Так, объем вдоха был наименьшим у мигрантов с юга при наличии данного симптома (р 0,001), в этой же группе показатели, характеризующие проходимость дыхательных путей (ФЖЕЛ в % от должного значения, ОФВо,5 (л) и ОФВ] в % от должного значения), были также ниже по сравнению с показателями у постоянных жителей СЗ и лиц без одышки (р 0,05).

При высокой чувствительности к холоду в форме усиленной холод-индуцированной вазоконстрикции (феномен Рейно) наблюдались значимые изменеия параметров легочной вентиляции, что свидетельствует об участии нарушений микроциркуляции в патогенезе расстройств внешнего дыхания. Корреляционные связи, показывающие взаимоотношения факторов риска и параметров, характеризующих вентиляцию, показаны на рисунке 4.5.

Показатели артериального давления и пульса значительно не отличались между исследованными группами и составляли в среднем: АДС - 113,41±3,01 мм рт. ст., АДД - 67,00±1,96 мм. рт. ст., ЧСС - 77,64±2,37 уд/мин"1 (табл. 4.2).

Уровень адаптационных возможностей, рассчитанный на основании ИФИ, в исследованной группе в целом соответствовал верхней границе нормальных значений (см. табл. 4.2). Отмечено также, что в группе мужчин уровень ИФИ был выше (р 0,05), что находится на границе значений между удовлетворительной адаптацией и напряжением механизмов адаптации .. Интегральные характеристики функциональных возможностей сердечнососудистой системы на основании индекса ПДП в исследованных группах в целом соответствовали значениям не ниже удовлетворительных оценок, с более высокими показателями у мужчин (рис. 4.6).

Установлена корреляция ИФИ и ПДП с наличием у испытуемых усиленной холод-индуцированной вазоконстрикции (р 0,05). Лица с признаками усиленной холод-индуцированной вазоконстрикции демострировали ИФИ и ПДП, соответствующие напряжению механизмов адаптации . Так, в группе с данным симптомом ИФИ составлял 2,12±0,07 (р 0,05 по сравнению с группой без усиленной холод-индуцированной вазоконстрикции 1,86±0,09); ПДП в группе с данным симптомом был равен 94,41±4,37 (р 0,05 по сравнению с группой без усиленной холод-индуцированной вазоконстрикции 79,85±5,68). Самые высокие показатели ИФИ отмечены у мужчин при наличии усиленной холод-индуцированной вазоконстрикции (2,21±0,09,р 0,05).

Оценка нервно-мышечного статуса с помощью турн-амплитудного анализа ИЭМГ

Определение нервно-мышечного статуса на основе анализа турн-амплитудных параметров ЭМГ проводилось у больных с дифтерийными поражениями периферической нервной системы. Диагностика дифтерийных поражений нервной системы основывалась на данных, установленных клиническим исследованием больных, результатах бактериологического и серологического методов, а также результатах дополнительных методов, позволяющих уточнить выраженность и локализацию поражений нервной системы. Исследования выполнены совместно с А. М. Сергеевым

Электронейромиография (ЭНМГ) проведена 17 больным (6 м., 11 ж.) в возрасте от 18 до 61 года (средний возраст 35,9±3,3 года) через 1 - 18 месяцев после перенесенной дифтерийной инфекции, сопровождавшейся развитием полиневропатии.

Диагноз дифтерии в 15 случаях был подтвержден бактериологически в острый период заболевания, а у 2 больных был поставлен ретроспективно на основании анамнеза, характерной клиники, неблагоприятной эпидемиологической обстановки. У обследованной группы больных симптомы генерализованной сенсорно-моторной полиневропатии появлялись через 9 - 45 дней (в среднем через 26±3 дня) от начала основного инфекционного заболевания, у 6 человек заболевание протекало в виде полирадикулонейропатии по типу синдрома Гийена - Барре.

На момент исследования на основании клинической оценки функции периферической нервной системы больные были разделены на 2 группы. Первая группа включала 6 пациентов (2 м., 4 ж.) в возрасте 18 - 46 лет, об следованных через 10 - 18 месяцев после перенесенной дифтерии, У этой группы больных при клиническом обследовании не обнаруживали нарушений моторной функции. Однако были выявлены расстройства чувствительности по дистальному типу. Ко второй группе нами отнесены 11 больных (4 м., 7 ж.) в возрасте 30 - 56 лет, которые обследованы через 4 - 9 месяцев после начала основного инфекционного заболевания. На момент обследования у этих больных выявляли признаки нарушения моторной функции в виде умеренно выраженного вялого тетрапареза (п=6) или минимальной мышечной слабости в дистальных отделах конечностей, преимущественно в сгибателях кисти (п=5). Это соответствует I - II степени двигательного дефицита по североамериканской шкале .

Контрольную группу составили 7 неврологически здоровых испытуемых-добровольцев (4 м., З ж.) в возрасте от 18 до 39 лет (средний возраст 28,5±2,4 года). Характеристика электронейромиограммы у здоровых испытуемых Скорость распространения возбуждения (СРВ) по моторным волокнам локтевого нерва у здоровых лиц составляла 60 - 70 м/с (в среднем 66,42±2,87 м/с).

У здоровых испытуемых с помощью накожных электродов зарегистрирован 41 потенциал двигательных единиц (ПДЕ) т. triceps brachii. ПДЕ у здоровых лиц характеризовались длительностью 24 - 30 мс, амплитудой, не превышающей 250 мкВ (в основном 90- 150 мкВ), числом фаз, как правило, менее Зх. Число псевдополифазных ПДЕ составляло менее 10%. Средние характеристики ПДЕ представлены в таблице 6.1.

Исследование характеристик интерференционной ИЭМГ у здоровых испытуемых выявило закономерное увеличение амплитуды (RMS) и числа «поворотов» (турнов) ЭМГ т. flexor carpi radialis по мере возрастания нагрузки (табл. 6.2).

В двухмерной системе координат, где ось абсцисс отражает значения предъявляемой нагрузки в кг, а ось ординат - соответствующие значения параметров ЭМГ, зависимость параметров ИЭМГ т. flexor carpi radialis от нагрузки выражалась линейными уравнениями.

Коэффициенты регрессии, отражающие прирост параметров ЭМГ и показывающие наклоны графиков к оси х, практически не отличались у отдельных испытуемых. Значения коэффициентов регрессии находились в пределах 12,9-15,5 для амплитуды ИЭМГ, для числа турнов ЭМГ они составляли 12,0-14,5 (табл. 6.3, рис. 6.1). Обращает на себя внимание практически четырехкратное увеличение как амплитудных характеристик (RMS, рис. 6.1, А), так и числа турнов (рис. 6.1, Б) при возрастании нагрузки с 2 до 8 кг.

Анализ параметров ИЭМГ без учета нагрузки с помощью исследования отношения количества турнов ЭМГ к средней амплитуде ЭМГ за 1 с (метод Виллисона) выявил, что максимальное значение этого отношения для т. flexor carpi radialis наблюдается в интервале амплитуды от 200 до 260 мкВ, для т. gastrocnemius - от 190 до 240 мкВ, составляя в среднем 0,4 - 0,5 и 0,6 - 0,7 соответственно (табл. 6.4, рис. 6.2).

Терентьева Надежда Николаевна

Лекция 38. ФИЗИОЛОГИЯ АДАПТАЦИИ (А.А. Грибанов)

Слово адаптация происходит от латинского adaptacio - приспособление. Вся жизнь человека, как здорового, так и больного сопровождается адаптацией. Адаптация имеет место к смене дня и ночи, временам года, изменениям атмосферного давления, физическим нагрузкам, длительным перелетам, новым условиям при смене места жительства..

В 1975 году на симпозиуме в Москве была принята следующая формулировка: физиологическая адаптация - это процесс достижения устойчивости уровня активности механизмов управления функциональных систем, органов и тканей, который обеспечивает возможность длительной активной жизнедеятельности организма животного и человека в измененных условиях существования и способность к воспроизведению здорового потомства .

Всю сумму разнообразных воздействий на организм человека и животного принято делить на две категории. Экстремальные факторы несовместимы с жизнью, приспособление к ним невозможно. В условиях действия экстремальных факторов жизнь возможна только при наличии специальных средств жизнеобеспечения. Например, полет в космос возможен только в специальных космических кораблях, в которых поддерживается необходимое давление, температура и т.д. Адаптироваться же к условиям космоса человек не может. Субэкстремальные факторы - жизнь при действии этих факторов возможна за счет перестройки физиологически адаптивных механизмов, которыми располагает сам организм. При чрезмерной силе и длительности действия раздражителя субэкстремальный фактор может превратиться в экстремальный.

Процесс приспособления во все времена существования человека играет решающую роль в сохранении человечества и развитии цивилизации. Адаптация к недостатку пищи и воды, холоду и жаре, физической и интеллектуальной нагрузке, социальная адаптация к друг другу и, наконец, адаптация к безвыходным стрессовым ситуациям, которая красной нитью проходит через жизнь каждого человека.

Существует генотипическая адаптация в результате когда, на основе, наследственности мутаций и естественного отбора происходит формирование современных видов животных и растений. Генотипическая адаптация стала основой эволюции, потому что ее достижения закреплены генетически и передаются по наследству.

Комплекс видовых наследственных признаков - генотип - становится пунктом следующего этапа адаптации, приобретаемой в процессе индивидуальной жизни. Эта индивидуальная или фенотипическая адаптация формируется в процессе взаимодействия особи с окружающей средой и обеспечивается глубокими структурными изменениями организма.

Фенотипическую адаптацию можно определить как развивающийся в ходе индивидуальной жизни процесс, в результате которого организм приобретает отсутствовавшую ранее устойчивость к определенному фактору внешней среды и таким образом получает возможность жить в условиях, ранее несовместимых с жизнью и решать задачи, ранее неразрешимые.

При первой встрече с новым фактором среды в организме нет готового, вполне сформированного механизма, обеспечивающего современное приспособление. Имеются только генетически детерминированные предпосылки для формирования такого механизма. Если фактор не подействовал, механизм остается несформированным. Иными словами, генетическая программа организма предусматривает не заранее сформировавшуюся адаптацию, а возможность ее реализации под влиянием среды. Это обеспечивает реализацию только тех адаптационных реакций которые жизненно необходимы. В соответствие с этим следует считать выгодным для сохранения вида тот факт, что результаты фенотипической адаптации не передаются по наследству.

В быстро меняющейся среде следующее поколение каждого вида рискует встретиться с совершенно новыми условиями, в которых потребуется не специализированные реакции предков, а потенциальная, оставшаяся, до поры и времени неиспользованная возможность адаптации к широкому спектру факторов.

Срочная адаптация немедленный ответ организма на действие внешнего фактора, осуществляется путем ухода от фактора (избегание) или мобилизацией функций которые позволяют существовать, несмотря на действие фактора.

Долговременная адаптация - постепенно развивающийся ответ фактора обеспечивает осуществление реакций, которые ранее были невозможны и существование в условиях, которые ранее были несовместимыми с жизнью.

Развитие адаптации происходит через ряд фаз.

1. Начальная фаза адаптации - развивается в самом начале действия как физиологического, так и патогенного фактора. В первую очередь при действии какого - либо фактора возникает ориентировочный рефлекс, который сопровождается торможением многих видов деятельности, проявляющихся до этого момента. После торможения наблюдается реакции возбуждения. Возбуждение ЦНС сопровождается повышенной функцией эндокринной системы, особенно мозгового слоя надпочечников. При этом усиливаются функции кровообращения, дыхания, катоболические реакции. Однако, все процессы протекают в эту фазу некоординированно, недостаточно синхронизированно, неэкономно и характеризуются срочностью реакций. Чем сильнее факторы, действующие на организм, тем больше выражена эта фаза адаптации. Характерным для начальной фазы является эмоциональный компонент, причем, от силы эмоционального компонента зависит "запускание" вегетативных механизмов, которые опережают соматические.

2. Фаза - переходная от начальной к устойчивой адаптации. Характеризуется уменьшением возбудимости ЦНС, снижением интенсивности гормональных сдвигов, выключением ряда органов и систем, первоначально включенных в реакцию. В ходе этой фазы приспособительные механизмы организма как бы постепенно переключаются на более глубокий, тканевый уровень. Эта фаза и сопровождающие ее процессы относительно мало изучены.

3. Фаза устойчивой адаптации . Является собственно адаптацией - приспособлением и характеризуется новым уровнем деятельности тканевых, мембранных, клеточных элементов, органов и систем организма, перестроившихся под прикрытием вспомогательных систем. Эти сдвиги обеспечивают новый уровень гомеостазиса, адекватного организма и к другим неблагоприятным факторам - развивается так называемая перекрестная адаптация. Переключение реактивности организма на новый уровень функционирования не дается организму "даром", а протекает при напряжении управляющих и других систем. Это напряжение принято называть ценой адаптации. Любая активность адаптированного организма обходится ему много дороже, чем в нормальных условиях. Например, при физической нагрузке в горных условиях требуется на 25% больше энергии.

Поскольку фаза устойчивой адаптации связана с постоянным напряжением физиологических механизмов, функциональные резервы во многих случаях могут истощаться, наиболее истощаемым звеном являются гормональные механизмы.

Вследствие истощения физиологических резервов и нарушения взаимодействия нейрогормональных и метаболических механизмов адаптации возникает состояние, которое получило название дезадаптация . Фаза дезадаптации характеризуется теми же сдвигами, которые наблюдаются в фазе начальной адаптации - вновь в состояние повышенной активности приходят вспомогательные системы - дыхание и кровообращение, энергия в организме тратиться неэкономно. Чаще всего дезадаптация возникает в тех случаях, когда функциональная активность в новых условиях чрезмерно или действие адаптогенных факторов усиливается и они по силе приближаются к экстремальным.

В случае прекращения действия фактора, вызывавшего процесс адаптации, организм постепенно начинает терять приобретенные адаптации. При повторном воздействии субэкстремального фактора способность организма к адаптации может быть повышена и адаптивные сдвиги при этом могут быть более совершенными. Таким образом, мы можем говорить о том, что адаптационные механизмы обладают способностью к тренировке и поэтому прерывистое действие адаптогенных факторов является более благоприятным и обусловливает наиболее стойкую адаптацию.

Ключевым звеном механизма фенотипической адаптации является существующая в клетках взаимосвязь между функцией и генотипическим аппаратом. Через эту взаимосвязь функциональная нагрузка, вызванная действием факторов среды, а также прямое влияние гормонов и медиаторов приводят к увеличению синтеза нуклеиновых кислот и белков и как следствие к формированию структурного следа в системах специфически ответственных за адаптацию организма к данному конкретному фактору среды. В наибольшей мере при этом растет масса мембранных структур ответственных за восприятие клеткой управляющих сигналов, ионный транспорт, энергообеспечение, т.е. именно те структуры, которые имитируют функцию клетки в целом. Формирующийся в итоге системный след представляет собой комплекс структурных изменений, обеспечивающих расширение звена имитирующего функцию клеток и тем самым увеличивающий физиологическую мощность доминирующей функциональной системы, ответственной за адаптацию.

После прекращения действия данного фактора среды на организм активность генетического аппарата в клетках, ответственных за адаптацию системы, довольно резко снижается и происходит исчезновение системного структурного следа.

Стресс .

При действии чрезвычайных или патологических раздражителей приводящих к напряжению адаптационных механизмов, возникает состояние, называемое стрессом.

Термин стресс введен в медицинскую литературу в 1936 году Гансом Селье, который определил стресс как состояние организма, возникающее при предъявлении к нему любых требований. Различные раздражители придают стрессу свои особенности обусловленные возникновением специфических реакций на качественно различные воздействия.

В развитии стресса отмечаются последовательно развивающиеся стадии.

1. Реакция тревоги, мобилизации . Это аварийная фаза, для которой характерно нарушение гомеостаза, усиление процессов распада тканей (катаболизм). Об этом свидетельствует уменьшение общего веса, сокращение жировых депо, уменьшение некоторых органов и тканей (мышечной, тимуса и т.д.). Такая генерализованная мобильная адаптационная реакция не экономна, а лишь аварийная.

Продукты распада тканей, видимо становятся строительным материалом для синтеза новых веществ, необходимых при формировании общей неспецифической устойчивости к повреждающему агенту.

2. Стадия резистентности . Характеризуется восстановлением и усилением анаболических, направленных на образование органических веществ, процессов. Повышение уровня резистентности наблюдается не только к данному раздражителю, но и к любому другому. Этот феномен, как уже указывалось, получил название

перекрестной резистентности.

3. Стадия истощения с резким усилением распада тканей. При чрезмерно сильных воздействиях первая аварийная стадия может сразу перейти в стадию истощения.

Более поздними работами Селье (1979) и его последователями установлено, что механизм реализации стресс - реакции запускается в гипоталамусе под влиянием нервных импульсов, поступающих из коры головного мозга, ретикулярной формации, лимбической системы. Происходит активация системы гипоталамус - гипофиз - кора надпочечников и возбуждается симпатическая нервная система. Наибольшее участие в реализации стресса принимают кортиколиберин, АКТГ, СТЧ, кортикостероиды, адреналин.

Гормонам, как известно, принадлежит ведущая роль в регуляции активности ферментов. Это имеет важное значение в условиях стресса когда возникает необходимость в изменении качества какого - либо фермента или увеличении его количества, т.е. в адаптивном изменении обмена веществ. Установлено, например, что кортикостероиды могут влиять на все этапы синтеза и распада ферментов обеспечивая тем самым "настройку" обменных процессов организма.

Основное направление действия этих гормонов заключается в срочной мобилизации энергетических и функциональных резервов организма, причем, происходит направленная передача энергетических и структурных резервов организма в ответственную за адаптацию доминирующую функциональную систему, где формируется системный структурный след. При этом стрессовая реакция, с одной стороны, потенцирует формирование нового системного структурного следа и становление адаптации, а с другой - за счет своего катаболитического эффекта способствует "стиранию" старых, утративших биологическое значение структурных следов - следовательно, эта реакция является необходимым звеном в целостном механизме адаптации организма в меняющейся среде обитания (перепрограммирует адаптационные возможности организма на решение новых задач).

Биологические ритмы .

Колебания смены и интенсивности процессов и физиологических реакций, в основе которых лежат изменения метаболизма биологических систем, обусловленные влиянием внешних и внутренних факторов. К внешним факторам относятся изменение освещенности, температуры, магнитного поля, интенсивности космических излучений, сезонные и солнечно - лунные влияния. Внутренние факторы - это нейро - гуморальные процессы, протекающие в определенном, наследственно закрепленном ритме и темпе. Частота биоритмов - от нескольких секунд до нескольких лет.

Биологические ритмы, вызываемые внутренними факторами изменения активности с периодом от 20 до 28 часов называются околосуточными или циркадными. Если период ритмов совпадает с периодами геофизических циклов, а также близок или кратен им, их называют адаптивными или экологическими. К ним относятся суточные, приливные, лунные и сезонные ритмы. Если период ритмов не совпадает с периодическими изменениями геофизических факторов, их обозначают как функциональные (например, ритм сердечных сокращений, дыхания, циклы двигательной активности - ходьба).

По степени зависимости от внешних периодических процессов выделяют экзогенные (приобретенные) ритмы и эндогенные (привычные).

Экзогенные ритмы обусловлены изменением факторов окружающей среды и могут исчезать при некоторых условиях (например, анабиоз при понижении внешней температуры). Приобретенные ритмы возникают в процессе индивидуального развития по типу условного рефлекса и сохраняется в течение определенного времени в постоянных условиях (например, изменения мышечной работоспособности в определенные часы суток).

Эндогенные ритмы являются врожденными, сохраняются в постоянных условиях среды и передаются по наследству (к ним относятся большинство функциональных и циркадных ритмов).

Для организма человека характерно повышение в дневные и снижение в ночные часы физиологических функций, обеспечивающих его физиологическую активность частоты сердечных сокращений, минутного объема крови, АД, температуры тела, потребление кислорода, содержание сахара в крови, физической и умственной работоспособности и т.д.

Под действием меняющихся с суточной периодичностью факторов происходит внешнее согласование циркадных ритмов. Первичным синхронизатором у животных и растений служит, как правило, солнечный свет, у человека им становятся также социальные факторы.

Динамика суточных ритмов у человека обусловлена не только врожденными механизмами, но и выработанным в течение жизни суточным стереотипом деятельности. По мнению большинства исследователей, регуляция физиологических ритмов у высших животных и человека осуществляется в основном гипоталамо - гипофизарной системой.

Адаптация к условиям длительных перелетов

В условиях длительных полетов и поездок при пересечении многих временных поясов организм человека вынужден приспосабливаться к новому циклу смены дня и ночи. Организм получает информацию о пересечении временных поясов за счет воздействий, связанных также с изменениями влияний как магнитного, так и электрического полей Земли.

Разлад в системе взаимодействия биоритмов, характеризующих протекание различных физиологических процессов в органах и системах организма получил название десинхроноза. При десинхронозе типичны жалобы на плохой сон, уменьшение аппетита, раздражительности, отмечается снижение работоспособности и рассогласование по фазе с датчиками времени частоты сокращений, дыхания, АД, температуры тела и др. функций, изменяется реактивность организма. Это состояние имеет существенное неблагоприятное значение для процесса адаптации.

Ведущее значение в процессе адаптации в условиях формирования новых биоритмов имеет функция ЦНС. На субклеточном уровне в ЦНС отмечается деструкция митохондрий и других структур.

Одновременно в ЦНС развиваются процессы регенерации, которые обеспечивают восстановление функции и структуры к 12-15 дню после перелета. Перестройка функции ЦНС при адаптации к изменению суточной периодики сопровождается перестройкой функций желез внутренней секреции (гипофиза, надпочечников, щитовидной железы). Это приводит к изменению в динамике температуры тела, интенсивности обмена веществ и энергии, активности систем, органов и тканей. Динамика перестройки такова, что если в начальной стадии адаптации эти показатели в дневные часы снижены, то при достижении устойчивой фазы они переходят в соответствие с ритмом дня и ночи. В условиях космоса также происходит нарушение привычных и формирование новых биоритмов. Различные функции организма перестраиваются на новый ритм в разные сроки: динамика высших корковых функций в течение 1-2 суток, ЧСС и температура тела в течение 5-7 суток, умственная работоспособность в течение 3-10 суток. Новый или частично измененный ритм остается непрочным и довольно быстро может быть разрушен.

Адаптация к действию низкой температуры .

Условия, при которых организм должен адаптироваться к холоду могут быть различными. Одним из возможных вариантов таких условий - работа в холодных цехах или холодильниках. При этом холод действует прерывисто. В связи с усиленными темпами освоения Крайнего Севера в настоящее время актуальным становится вопрос адаптации организма человека к жизни в северных широтах, где он подвергается не только воздействию низкой температуры, но также изменению режима освещенности и уровня радиации.

Холодовая адаптация сопровождается большими перестройками в организме. В первую очередь на снижение температуры окружающей среды реагирует перестройкой своей деятельности сердечно - сосудистая система: увеличивается систолический выброс, частота сердечных сокращений. Наблюдается спазм периферических сосудов, вследствие чего снижается температура кожи. Это приводит к уменьшению теплоотдачи. По мере адаптации к холодовому фактору изменения кожного кровообращения становятся менее выраженными, поэтому у акклиматизированных людей температура кожи на 2-3" выше, чем у не акклиматизированных. Кроме того, у

них наблюдается снижение температурного анализатора.

Уменьшение теплоотдачи при холодовом воздействии достигается путем снижения влагопотерь с дыханием. Изменение ЖЕЛ, диффузной способности легких сопровождается повышением количества эритроцитов и гемоглобина в крови, т.е. увеличением кислородной емкости крои - все мобилизуется на достаточное обеспечение тканей организма кислородом в условиях повышенной метаболической активности.

Так как наряду со снижением теплопотерь возрастает окислительный метаболизм - так называемая химическая терморегуляция, в первые дни пребывания на Севере основной обмен повышается, по мнению некоторых авторов, на 43% (в последующем, по мере достижения адаптации, основной обмен снижается почти до нормы).

Установлено, что охлаждение вызывает реакцию напряжения - стресс. В осуществлении которой прежде всего участвуют гормоны гипофиза (АКТГ, ТТГ) и надпочечников. Катехоламины оказывают калоригенное действие за счет катаболического эффекта, глюкокортикоиды способствуют синтезу окислительных ферментов, тем самым повышают теплопродукцию. Тироксин обеспечивает повышение теплопродукции, а также потенцирует калоригенное действие норадреналина и адреналина, активизирует систему митохондрий - главных энергетических станций клетки, разобщает окисление и фосфорилирование.

Стойкая адаптация достигается благодаря перестройке метаболизма РНК в нейронах и нейроглии ядер гипоталамуса, усиленно идет липидный обмен, что выгодно организму для интенсификации энергетических процессов. У людей, живущих на Севере, повышено содержание в крови жирных кислот, уровень глюкозы несколько

снижается.

Становление адаптации в Северных широтах сопряжено часто с некоторыми симптомами: отдышка, быстрая утомляемость, гипоксические явления и др. Эти симптомы являются проявлением так называемого "синдрома полярного напряжения".

У некоторых лиц в условиях Севера защитные механизмы и адаптивная перестройка организма могут давать срыв - дезадаптацию. При этом проявляется ряд патологических симптомов, называемых полярной болезнью.

Адаптация человека к условиям цивилизации

Факторы, вызывающие адаптацию, во многом являются общими для животных и человека. Однако, процесс адаптации животных носит, по существу, в основном физиологический характер, в то время как для человека процесс адаптации тесно связан, к тому же, с социальными сторонами его жизни и его качествами личности.

Человек имеет в своем распоряжении разнообразные протективные (защитные) средства, которые дает ему цивилизация - одежду, дома с искусственным климатом и др., освобождающие организм от нагрузки на некоторые адаптивные системы. С другой стороны, под влиянием защитных технических и других мероприятий в человеческом организме возникает гиподинамия в деятельности различных систем и человек утрачивает тренированность и тренируемость. Адаптивные механизмы детренируются, становятся бездеятельными - в результате отмечается снижение сопротивляемости организма.

Возрастающая перегрузка различными видами информации, производственные процессы, для которых необходимо повышенное умственное напряжение, характерны для людей, занятых в любой отрасли народного хозяйства Факторы, вызывающие психическое напряжение, выдвигаются на первый план среди многочисленных условий, требующих адаптацию организма человека. Наряду с факторами, для которых необходима активизация физиологических механизмов приспособления, действуют факторы чисто социальные - отношения в коллективе, субординационные отношения и т.д.

Эмоции сопровождают человека при изменении места и условий жизни, при физических нагрузках и перенапряжениях и, наоборот, при вынужденном ограничении движений.

Реакция на эмоциональное напряжение неспецифична, она выработана в ходе эволюции и одновременно служит важным звеном, "запускающим" всю нейрогуморальную систему адаптационных механизмов. Адаптация к воздействию психогенных факторов протекает по разному у лиц с разным типом ВНД. У крайних типов (холериков и меланхоликов) такая адаптация часто нестойкая, рано или поздно факторы, воздействующие на психику, могут привести к срыву ВНД и развитию неврозов.

Адаптация к дефициту информации

Частичная утрата информации например, выключение одного из анализаторов или искусственное лишение человека одного из видов внешней информации приводит к адаптационным сдвигам по типу компенсации. Так, у слепых активируется тактильная и слуховая чувствительность.

Относительно полная изоляция человека от каких бы то ни было раздражений приводит к нарушению режима сна, появлению зрительных и слуховых галлюцинаций и другим психическим расстройствам, которые могут стать необратимыми. Адаптация к полному лишению информации невозможна.